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ON SOME RING CLASS INVARIANTS OVER IMAGINARY QUADRATIC
FIELDS (II)

ICK SUN EUM, JA KYUNG KOO, AND DONG HWA SHIN

ABSTRACT. Let K be an imaginary quadratic field. We show by adopting Schertz’s argument with
the Siegel-Ramachandra invariant([14]) that singular values of certain quotients of the A-function
generate ring class fields over K (Theorems 4.2, 5.4 and Remark 5.5).

1. INTRODUCTION

In number theory ring class fields over imaginary quadratic fields, more precisely, primitive
generators of ring class fields as real algebraic integers play an important role in the study of
certain quadratic Diophantine equations. For example, let n be a positive integer and Hp be the
ring class field of the order O = Z[\/—n]| in the imaginary quadratic field K = Q(y/—n). If p is an
odd prime not dividing n, then we have the following assertion:

p = 22 + ny? is solvable for some integers z and y
<= the Legendre symbol (Z*) =1 and f,(X) =0 (mod p) has an integer solution
where f,,(X) is the minimal polynomial of a real algebraic integer « for which Hp = K (a)([4]).

Given an imaginary quadratic field K with the ring of integer Ox = Z[f] such that 0 € H(=the
complex upper half plane), let O = [N@, 1] be the order of conductor N(> 1) in K. Then we know a
classical result from the main theorem of complex multiplication that the j-invariant j(O) = j(N6)
generates the ring class field Hp over K ([12] or [15]). Moreover, we have an algorithm of finding
the minimal polynomial(=class polynomial) of such generator j(O)([4]) whose coefficients are too
gigantic to handle for practical use.

Thus, unlike the classical case Chen-Yui([1]) constructed a generator of the ring class field
of certain conductor in terms of the singular value of the Thompson series which is a Haupt-
modul for T'y(N) or FB(N), where T'o(N) = {y € SLa(Z) : v = ({%) (mod N)} and F(];(N) =
(To(N), (\/ON —1/0\/N) ) in SLy(R). In like manner, Cox-Mckay-Stevenhagen([5]) showed that cer-
tain sigular value of a Hauptmodul for I'g(V) or Fg(N ) with rational Fourier coefficients generates
Hp over K. And, Cho-Koo([2]) recently revisited and extended these results by using the theory
of Shimura’s canonical models and his reciprocity law.

On the other hand, Ramachandra showed in [13] that arbitrary finite abelian extension of an
imaginary quadratic field K can be generated over K by a theoretically beautiful elliptic unit,
but his invariant involves too complicated product of high powers of singular values of the Klein
forms and singular values of the A-function to use in practice. This motivates our work of finding
simpler ring class invariants in terms of the Siegel-Ramachandra invariant as Lang pointed out in
his book([12] p.292) in case of ray class fields.
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Koo-Shin established in [9] that if K # Q(v/—1), Q(v/—3) and p is a prime which is inert or
ramified in K/Q, then the real algebraic integer

p12 A(peg)
A(pe10)

generates the ring class field Hp of the order O = [p°0, 1](e > 1) where

o0

A(r) = @2mi)%¢: [T -a)* (7€ 9) (1.1)

n=1

is the discriminant function (or, A-function). And, this value is in fact certain root of the norm of
the Siegel-Ramachandra invariant g;(Cp) with f = p°Ox (see Section 2) from the ray class field Kj
modulo f to Hp.

This paper is a continuation of our previous work. More precisely, for any pair (ry, r2) € Q2 \ Z2
we first define a Siegel function g, ,)(7) by the following Fourier expansion

o0

1Ba(r Tire(r1— n n _—
G, ray(7) = =g 2 Ve ) T] (1 = ) (1 = glazY) (7€ 9) (1.2)

n=1

where Bo(X) = X? — X + % is the second Bernoulli polynomial, ¢, = €*™7 and ¢, = €>™* with
z = r17+ro. Assingular values of Siegel functions we shall define the Siegel-Ramachandra invariants
in Section 2. And, motivated from the idea of Schertz([14]) we shall determine certain class fields
over K generated by norms of the Siegel-Ramachandra invariants(Theorem 2.7). Furthermore, in
case of ring class field, the product formulas (1.1), (1.2) and Theorem 2.7 enable us to express the
norms as singular values of certain quotients of the A-function(Theorem 4.2). For example, let

N = ﬁpzk
k=1

be a product of odd primes p; which are inert or ramified in K/Q and we further assume that

ged(pr, wg) =1 ifn=1
1 2 for all k=1 d - Tipie
ek+1> - forallk=1,--,n an gcd<Hpk, H(pg’“—l)>—1 ifn 22,
k=1 k=1

where 7 is the ramification index of p; in K/Q and wg is the number of roots of unity in K.
Then certain quotient of singular values A(%H), where Ng are the products of p;’s, becomes a
generator of the ring class field of the order of conductor N over K(Remark 4.3). This would be
an extension of the result in [9].

In Section 4, Theorem 4.2 heavily depends on Lemma 2.5 which requires the assumption (2.3).
In Section 5, however, we shall develop certain lemma which substitutes for Lemma 2.5 in order to
release from the assumption (2.3) to some extent(Lemma 5.3 and Remark 5.5). For example, let

K #Q(v-1), Q(v/~3) and
A B
vl [l L
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be the prime factorization of N, where each s, (respectively, g, and r.) splits completely (respec-
tively, is inert and ramiﬁed) in K/Q and A, B, C >0, and assume

B
I Ry 2y <
a

b= 1(Qb+1 b

Then one can also apply Theorem 4.2 without assuming (2.3)(Theorem 5.4, Remark 5.5).
And, by making use of our simple invariant developed in Theorem 4.2 we present three exam-
ples(Examples 4.4, 4.5 and 5.6).

2. PRIMITIVE GENERATORS OF CLASS FIELDS

In this section we investigate some class fields over imaginary quadratic fields generated by norms
of the Siegel-Ramachandra invariants.
For a given imaginary quadratic field K we let

dr : the discriminant of K
0k @ the different of K/Q
Ok : the ring of integers of K
wg : the number of root of unity in K
Ix : the group of fractional ideals of K
P : the subgroup of Ix consisting of principal ideals of K.
And, for a nonzero integral ideal f of K we set
Ix(f) : the subgroup of I consisting of ideals relatively prime to f
Pk 1(f) : the subgroup of Ix(f) N Pk generated by the principal ideals aOg
for which o € Ok satisfies « =1 (mod f)
CI(f) : the ray class group (modulo f), namely Ix(f)/Pg1(f)
Co : the unit class of CI(f)
w(f) : the number of roots of unity in K which are =1 (mod f)
N(f) : the smallest positive integer in f.

By the ray class field K; modulo f of K we mean a finite abelan extension of K whose Galois group
is isomorphic to CI(f) via the Artin map o, namely

o= (Kf/K> : Cl(f) — Gal(K;/K).

In particular, if f = O, we denote K; by H and call it the Hilbert class field of K. Then by
definition and characterization of ray class field([12] p.109 or [3] Proposition 3.2.3) we have a short
exact sequence

1 — m(Ox)* /1(Ok) 5 CI(f) — CUO) — 1 (2.1)
where
5 Ox — Ok/f
is the natural surjection and ®; is induced by the homomorphism
@ ¢ m(OK)” — CI(f)

mi(x) +— [2Ofk] the class containing 2Ok



4 ICK SUN EUM, JA KYUNG KOO, AND DONG HWA SHIN

whose kernel is m;(Oj;). Let x be a character of CI(f). We then denote by f, the conductor of x,
namely

fy = ged (g s x=¢o (Cl(f) — Cl(g)) for some character ¥ of Cl(g)),

and let xo be the proper character of CI(f,) corresponding to x. Similarly, if x’ is any character of
mi(OKk)*, then the conductor f,s of x’ is defined by

fy = ged (g : X =1 o (m(Ok)" — mg(OK)*) for some character ¢’ of 71'9(0]()*>.
Now, for a character x of CI(f) we define a character X of m;(O)* by
X=X©° &)f.
f=T1 e
k=1

then from the Chinese remainder theorem we have an isomorphism

And, if

n
L H ook (Ok)* = m(Ok)*,
k=1
and natural injections and surjections
n n
U TFPZk(OK)* s HWPZZ(OK)* and vy : HWPZZ(OK)* — Tk (Or)* (k=1,---,n),
/=1 (=1

respectively. Furthermore, we consider characters xj of Tk (Ok)* defined by
k

Xk =Xotoy (k=1,---,n).
Lemma 2.1. (i) fx = Tfx-
(11) i O~L = HZ:I 5(/16 O V-
(i) 1f X # L, then py | fx.

Proof. (i) and (ii) are immediate by definitions of conductors and the maps X, X, ¢ and vy.
(iii) Without loss of generality we may assume X, # 1. Suppose on the contrary p, { f5. Then by
definition of fy there is a character ¥ of Cl(fy) which makes the following diagram commute:

HZ:l ’R’ka((’)K)* A Hk 171' ck (OK) = Wfp—en(OK)*

N i

—>7rf

\/

where A, B and C' are natural surjections. If o, is an element of myen (Ok)* such that Xy (on) # 1,
then

1 75 SCJn(O'n):%OLOLTL(O-TJ:S(JOL(L"'7170n)
= (¢IOC)OL(17"'7170n):¢,oBoA(1>"'7170—n):wloB(17"'71):17
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which renders a contradiction. Therefore, p,, | fy. O

If f # Ok and C € CI(f), we take an integral ideal ¢ in C so that fc=! = [z, 2] with 2z = Len.
Then, we define the Siegel-Ramachandra invariant by

gf(C)zg(HiV(ﬂ b )(Z)

N(f)’ N(F)

where a, b € Z such that 1 = ﬁzl + ﬁ@- This value depends only on the class C' and belongs

to the ray class field K;. And, we have a well-known transformation formula
g5(C1)7() = g5(C1.Cy) (2.2)
for Cy, Cy € CI(f)(][10] Chapter 11).
For a nontrivial character x of Cl(f) with f # Ok we define the Stickelberger element as
Sitx, g = Y x(C)log|gi(C)|
CceCl(f)
and consider the L-function
x(a
Li(s, x) = Z N (a) ( ()CL)S (s € C).
a0 : integral ideals of K K/Q

Then, from the second Kronecker limit formula we get the following proposition.

Proposition 2.2. If f, # Ok, then

1 -7, L (1, _ T (%,
MHHX( Xo(P)) i (1, 30) = g s (X 0
where
T(Xo) = — Y Xoll#0xfy))e™ Mrrel=n)
$EOK
z mod §

ged(zO0k, fx)=0K

with v any element of K such that ydkf, is an integral ideal relatively prime to §.
Proof. See [12] Chapter 22 Theorem 2 and [10] Chapter 11 Theorem 2.1. O

Remark 2.3. (i) The product factor J[,; pif (1—Xo(p)) is called the Euler factor of x. If there

is no such p with p | f and p 1 fy, then it is understood to be 1.
(ii) As is well-known([7] Chapter IV Proposition 5.7) L, (1, xo0) # 0.

Lemma 2.4. Let A & B be finite abelian groups, b € B\ A and x be a character of A. Let m be
the order of the coset bA in the quotient group B/A. Then we can extend x to a character ¢ of B
such that ¥ (b) is any m-th root of x(b™).

Proof. Tt suffices to prove the case B = (A, b). Let ¢ be any m-th root of x(b™). Define a map
P (A, b)) — CF
abt  —  x(a)cF (a € A).

Using the fact ("™ = x(b™) one can readily show that v is a (well-defined) character of (A, b) which
extends y and also satisfies ¥ (b) = (. O
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Lemma 2.5. Let L(# K) be a finite abelian extension of K contained in some ray class field Kj
modulo

f( 0x) =[] pi-
k=1

For an intermediate field F between K and K5 we denote by C1(K;/F') the subgroup of CI(f) corre-
sponding to Gal(K;/F') via the Artin map. Let

k

Er = F# Ker(the natural projection p : m(Ok)*/m(OF) — oo (OK)*/Trfpfek (O}}))
k
and
ep = # Ker(the natural projection py : m(Ok)*/m(O)) — o (OK)*/ﬂ—ka ((’)}}))

for each k=1,--- ,n. Assume that
for each k =1,--- n there is an odd prime vy such that
v f ek and ordy, (€) > ordy, (# Cl(K;/L)).
If D is a class in CI(f) \ CL(Kj/L), then there exists a character x of CI(f) such that
X|Cl(Kf/L) =1, x(D)#1 and pi|fy foralk=1,--- ,n. (2.4)
Proof. Since D € CI(f) \ CI(K5/L), there is a character x of CI(f) such that

Xlewgy =1 and x(D) #1
by Lemma 2.4. Let x; (k= 1,---,n) be the character of gk (Ok)* induced from x as in Lemma
2.1.
Suppose X = 1 for some k. Let v be a prime number in the assumption (2.3) and S be a Sylow
vi-subgroup of ®;(Ker(pr)). Then CI(Kj/L) does not contain S by (2.3). Hence we can take an
element C in S\ CI(Kj/L) whose order is a power of 1. Now we extend the trivial character of

2mi
CI(Kj/L) to a character ¢’ of CI(f) so that ¢/(C') = (,,, = e” by Lemma 2.4, because the order of
the coset CCI(Kj/L) in the quotient group CI(f)/CI(Kj/L) is also a power of v;. Define a character
i of CI(f) by

(2.3)

¢:{W%1MWWWM#1

Y%k otherwise.

Then we achieve
x)lax; ) =1 and  (x¥)(D) = x(D)y(D) # 1.

Furthermore, since <L oLy (ﬂ'ng ((’)K)*)>7rf((9f()/7rf((9}<) is a subgroup of Ker(py) for £ # k(see the
diagram (2.5) below), we derive that
’(Zg(ﬂ‘p;z(OK)*) = 9o :I;f 0LOLy (ﬂng((’)[()*) by definition of 1 in Lemma 2.1

Cc <(I)f(Ker(Pk))>
= v (@y(Ker(p) ) or 02 (@ (xer() ) = 1.

which yields N s N
@/J@ =1 and (X’lﬁ)g = S(Vg’lﬁg = 5& for ¢ 7é k.
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On the other hand, since C' € ®j(Ker(py)) C Im(®Pj), we can take an element ¢ of mj(O)* so that
®5(c) = C. Thus we get that

¥(e) =10 D(e) = ¥(C) = ¢*(C) or ¥ (C) = Gk or GF # 1,

which shows 1:/; # 1, and hence {Ek # 1 by the fact Tz;g =1 for ¢ # k and Lemma 2.1(ii). Therefore
we obtain

(XV)k = Xntor = g # 1.

Now, we replace x by x% and repeat the above process for finitely many ¢(# k) such that x, = 1.
After this procedure, we finally establish a character y of CI(f) which satisfies

Xlaryy =1, x(D)#1 and Xp#1 forallk=1,--- n.
And we derive by Lemma 2.1 that py, | fy for all K =1,--- ,n. This proves the lemma. O
Remark 2.6. From the commutative diagram of exact sequences

1 —)—Wf(@]{)*/ﬂ'f(O}) (I)f Cl(f)-—-““%-Cl(OK)'—>' 1

A |

1 —— Tyt (OK)"/Tgen (Of) ——— Cl(fp;,*) ——— Cl(Ok) ——— 1

where vertical maps are natural projections, one can readily obtain
CI(f)/5(Ker(pr)) = Cllip, ) = CI(f)/CUKT/ K —c,).

Hence we have

& = # Ker(py,) = # Op(Ker(y)) = [K;: K | = 2w
k= Pk) = f Pk)) = fe fp,:ek = w(fp;e’v)
by using Lemma 3.4(ii), which will be used in the next section. Similarly, again from the commu-
tative diagram

Dy

1 ——— m(Ok)*/75(O%) Cl(f) —— > Cl(Okx) —— 1
!
H?:l sze (OK)*/{ H?:l Wp;e ($) Lre O?(}

Pk

1] — szk (OK>*/7rka (O;{)

we come up with

er = # Ker(pr) = # @5(Ker(pr)) = [Kj: Kka]
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Theorem 2.7. Let L be a field in Lemma 2.5 which satisfies the assumption (2.3). Then the
singular value

e=Ng /L <9f(00))
generates L over K.

Proof. Let F' = K(e) as a subfield of L. Suppose that F' is properly contained in L. Then for a
class D in Cl(K;/F) \ CI(Kj/L) we can find a character x of CI(f) satisfying the conditions (2.4)
in Lemma 2.5. Since the Euler factor of x is 1 by the condition py, | f, for all k, the value Sy(X, gj)
does not vanish by Proposition 2.2 and Remark 2.3(ii). On the other hand,

Si(X, g1) = > > > X(C1CyCh)

C1eCI(f) C2eCI(K;/F)  C3eCl(K;/L)
C1 mod CI(K;/F) C3 mod Cl(K;/L)

= ZX (Ch) ZX (C2) Zlog\gf o(Oe(C)(C)| - by ¥y, ) = 1 and (2.2)

= ZY (Ch) ZY (Co) log‘f (G1)a(G)|
1 Cs

= Zxc’l (Zbe)log‘aU(Cl)! by the fact ¢ € F

= O because x(D) # 1 implies x|cy(k;/r) # 1,

which gives a contradiction. Therefore L = F' as desired. O

(C1CoC3)|

Remark 2.8. Observe that any nonzero power of € generates L over K, too.

3. AcTION OF GALOIS GROUPS
In this section we shall determine Galois groups of ray class fields over ring class fields by adopting
the idea of Gee and Stevenhagen([6], [16])
For an integer N(> 1), let (y = ¢ * and I(N)={y€SL(Z) : v=(}) (mod N)}. Further
we let Fy be the field of modular functions whose Fourier coefficients belong to Q({x).

Proposition 3.1. Fy is a Galois extension of F1 = Q(](T)) whose Galois group is isomorphic to
GL2(Z/NZ)/{£ (1)} = Gn - SL2(Z/NZ)/{£ (§ 1)} where

GN:{<(1) 2) :de(Z/NZ)*}.

Here, the matriz (é 3) € Gy actson y o2 canﬁ € Fn by

n
E engl E cntad

where a4 is the automorphism of Q((x) induced by (n — (%. And, for an elementy € SLo(Z/NZ)/{£ ({ 9)}
lety' € SLa(Z) be a preimage of v via the natural surjection SLo(Z) — SLa(Z/NZ)/{x ({ 9)}. Then
v acts on h € Fn by composition

h— ho~

as linear fractional transformation.
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Proof. See [12] Chapter 6 Theorem 3. O
We need some transformation formulas of Siegel functions to apply the above proposition.

Proposition 3.2. Let (r1, ro) € %Z*\ Z? for N > 2. Then
(i) gi2N (1) satisfies

(r1, 72)
12N _ 12N _ 12N
91y r)(T) = 901, =) (7) = 9, ra)(7)

where (X) is the fractional part of X € R such that 0 < (X) < 1.
(i) g(lfljym)(r) belongs to Fy and o in GLa(Z/NZ)/{x12} = Gal(Fn/Fi) acts on the function

by

(47,00 =2 alo)
(iii) g(ry, ro)(7) is integral over Z[j(T)].
Proof. See [8] Proposition 2.4, Theorem 2.5 and Section 3. O

Now, let K be an imaginary quadratic field with discriminant dx and define

9_{‘/? for dg =0 (mod 4)

3.1
% for dg =1 (mod 4), (3.1)

from which we get O = Z[f]. We see from the main theorem of complex multiplication that for
every integer N(> 1)

Kny=KFn(0) = K(h(H) : h € Fy is defined and finite at «9>

([12] Chapter 10 Corollary to Theorem 2). And, due to Gee and Stevenhagen we have the following
proposition for the Shimura’s reciprocity law which relates the class field theory to the theory of
modular functions.

Proposition 3.3. Let min(d, Q) = X2+ ByX + Cy € Z[X]. For every integer N(> 1) the matrix
group

Wy, g = { (t _5395 _f"s> € GLy(Z/NZ) : t, s € Z/NZ}

gives rise to the surjection

WN79 I Gal(K(N)/H) (3.2)

a (h(&)»—>ha(9)>

where h € Fy is defined and finite at 6. Its kernel is given by

{i(é ?),i(? _01>} if K =Q(v~1)
SRl R U S
() —

Proof. See [6] or [16]. O
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The ring class field Ho of the order O of conductor N(> 1) in K is by definition a finite
abelian extension of K whose Galois group is isomorphic to Ix (NOk)/Pk, 7(NOk) via the Artin
map where P 7(NOf) is the subgroup of Px(NOf) generated by principal ideals aOf such that
a =a (mod NOk) for some integer a with gcd(a, N) = 1. Then, as is well-known Hp is contained

Lemma 3.4. Let K be an imaginary quadratic field with discriminant dg. Then we have the
following degree formulas:

(i) If O is the order of conductor N(> 1) in K, then
hx N ( (dK>1>
Ho: K= "~ T[(1- ()~
o K] Ok :0") oy p/)p

where hy is the class number of K and

de | the Kronecker symbol if p =2
p ) | the Legendre symbol  if p is an odd prime.

(i) If f € Ik, then
hio(f)w(f)
Ky K] = el
K
where ¢ is the Fuler function for ideals, namely

p(p") = (Ngsgp) = 1)Ngsgp)"
for a power of prime ideal p (and we set p(Or) =1).

Proof. See [12] Chapter 8 Theorem 7 and [11] Chapter VI Theorem 1. One can also derive the
statement (ii) directly from the exact sequence (2.1). O

Lemma 3.5. (}9) € Wny fizes j(NO).

Proof. Decompose (§9) € Wy into (§9) = (§ 2) o € Gy -SLa(Z/NZ)/{£({9)} as in Proposi-
tion 3.1 and let &’ be a preimage of « via the natural surjection SLy(Z) — SLo(Z/NZ)/{£ (§9)}.
Then o belongs to T'o(N) = {y € SL2(Z) : v = (§ ) (mod N)}. We then obtain from Propositions

3.3 and 3.1 that
) (ﬂNT))(ég) (0) = (j(Nﬂ)@t%)a(e)

(s0v0) .

[e%
= (j(NT)) (0) because j(NT) has rational Fourier coefficients([12] Chapter 4 Section 1)

0
t

= Jj(N7)od(0)
= j(NO) by the fact o/ € T'o(IN) and j(N7) is modular for T'o(N)([12] Chapter 6 Theorem 7).

Therefore, this proves the lemma. O

Proposition 3.6. Let O be the order of conductor N(> 1) in K. Then the map in (3.2) induces

an isomorphism
{ <é (t)> tte (Z/NZ)*}/{ + ((1) (1)> } 5 Gal(K(vy/Ho).
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Proof. First, observe that the above map is well-defined and injective by Lemmas 3.5 and (3.3).

Let B
v T Tl T
a=1

be the prime factorization of N where each p, (mspectwely7 gp and r.) splits completely (respec-
tively, is inert and ramified) in K/Q and A, B, C > 0. (We understand H? as 1.) Then we

have <ij;) . (Cf;b{) _ (Cf,K) _0 (3.4)

and the prime ideal factorization

NOg = H PPy ““Hq HthC

with
Nr/o(Pa) = Ng/o(Pa) =Par Nijo(m) =6, Ngjglte) = re (3.5)
And, we derive by Lemma 3.4 that
# Gal(K(n)/Ho) = [K(ny : Ho] = W) K]
[Ho : K]

O(NOg)w(NOk)
2N [1n (1- (d?K)%)
 w(NOg) T ((pa — Dpte ) T2 (af — 1)gg Y Hclm—l) 2uwe-1
T [T, (o — 1) TIE i Yot DI, e by (3:4) and (5:5)

A
= w(]\;OK)H(pa—l)p““‘lﬂ(qb— K 1H Jre=t = (NQOK)qﬁ(N)
b=1

a=1
= #{(§9) - te@/NL)}/{+(Y)}

where ¢ is the Euler function for integers. This concludes the proposition. (|

by the facts wx = # Of and O* = {£1}

4. RING CLASS INVARIANTS

We shall make use of Theorem 2.7 to construct primitive generators of ring class fields as singular
values of quotients of the A-function.
The following lemma was studied in [9], but we provide its proof for completeness.

Lemma 4.1. Let N > 1. Then we have the relation

2 ANT)
H 9o )7 = N8

where the left hand side is regarded as 1 when N = 1.

Proof. Note the identity

1— XN
1-X

N-1
=14+ X4+ XV = T - G X). (4.1)
t=1
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We then deduce that for N > 2

N—1 N-—1 L 00 12
[T o0 = IT(-eFai-coTa-ad-aeh) by defition (12
t=1 t=1 n=1

00 1 — an 24
= ¢NINT? H <1_;n> by the identity (4.1)
n=1 T

A(NT)

12
NUAm

by definition (1.1).

Now we are ready to prove our main theorem.

Theorem 4.2. Let K be an imaginary quadratic field with 0 as in (3.1) and O be the order of
conductor N(> 2) in K. For the prime factorization

n
N = szk
k=1
we set
Hpk if S is a nomepty subset of {1,2,--- ,n}
Ng = kes
1 if S =0.

If f = NOgk satisfies the assumption (2.3) in Lemma 2.5, then the singular value
12 APT'0)

=\ YT ifn =1
1 A(p(il—le) an
N (—1)#S (4.2)
11 A<9> ifn>2
Ns
Sg{17279n}

generates Ho over K as a real algebraic integer.

Proof. 1f §f = NOg, then g;(Cp) = g(l(iN%)(@) by definition. And, we get that

Ny, /no <9f(00)> ifN =2

NKf/H@( > lfNZ?)

. (§2) N
9 1 ) by Proposition 3.6
0, ¥

1<t<N 1 <

ged(t, N)=
(10)
12N (67) .
= 90, 1) (#) by Proposition 3.3
1<t<N 1
ged(t, N)=
=TI 9i2¥.,(6) by Proposition 3.2(i)
1<t<N-1

ged(t, N)=1
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N(-1)#3
— H < H g(lo2 N )(0)> by inclusion-exclusion principle
SC{1,2,,n} N 1<t<N-1 N
Ns‘ t

N g

Ng N(—1)#5
_ 12
- I o, 5, ©))

Sg{17277n} w=

N\ PAGL VO
= H <<NS> NG > by Lemma 4.1 (4.3)
SC{1,2, n}

which is a generator of Hp over K by Theorem 2.7 and Remark 2.8. On the other hand, the value
Nk, /b (gf(C’o)) is an algebraic integer by Proposition 3.2(iii) and the fact that j(6) is an algebraic
N

A
integer([12] or [15]). Furthermore, each factor % appeared in (4.3) belongs to the ring class

field of the order of conductor % in K as a real algebraic number([12] Chapter 12 Corollary to

Theorem 1). Therefore the value in (4.3) without N-th power generates Hp over K as an algebraic
integer. Here, we further observe that

no (G5

5C{1,2,-,n}
(N2 Lscqze. mp (D No12(D#S A N 0 e
— \A®9) I1 § [1 Ng
SC{1,2,,n} SC{1,2,-,n}
( pi2a 1-1 .
1 12 (1 e1— —1 :
p1 A(pTt0)Ap 0 ifn=1
) (%) 05 )
- N2 Zi=o(k) (D" p—122221(2:11>(—1)2 H A ﬁ@ =0 ifn > 9
A(@) k Ng -
\ k=1 SC{1,2,,n}
el
pi2 A(P1_?) =1
A(p—0)
= N (—1)#s
11 A(G) if n > 2.
Ng
SC{1,2,--,n}
This completes the proof. O

Remark 4.3. For a given imaginary quadratic field K, let O be the order of conductor N (> 2) in
K with
n
N = H PRE.
k=1

We denote by r the ramification index of py in K/Q for each k =1,--- ,n. Assume first that
each py is an odd prime which is inert or ramified in K/Q. (4.4)

Then we have the factorization
2

NOk = H pir with Ny g(pr) = P;:T“,
k=1
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and
2 2e;— 2 l 262_&
1,7 " . ’
. oot =Lpy 7 ifn=1 - [T 1( Py —Up, " (k=1 n)
k % 2 k—% . ’ k= 2ep— ’ ’
(ppF — L)p,, if n > 2 (pk —Dp, ™

by Remark 2.6 and
# CUK(y)/Ho) = Hpk—l er—1
k:l

by Proposition 3.6. Assume further that

) ged(pr, wg) =1 ifn=1
n n 2
ek+1>a forall k=1,---,n and ng<Hpk, H(pl;k_l)>:1 if > 9. (4.5)
k=1 k=1

Then, since

N 2
prter and ordy, (€;) = 2ex — E > ordy, (# CI(K(N)/H@)) =e—1 (k=1,---,n),

we can take v = py as for the assumption (2.3) in Lemma 2.5. Therefore one can apply Theorem
4.2 under the assumptions (4.4) and (4.5).

Example 4.4. If K = Q(v/—7) and N =7, then hx = 1([4]), in other words, K = H. Let O be
the order of conductor N in K. Then we get by Propositions 3.3 and 3.6 that

Gal(Ho/K) = (W ol{=(4D})/({(60) + te @mrh=(9)})

where 0 = _1%‘/_77 Note that we express here elements of Gal(Hp/K) in the form of
(39) for some d € (Z/7Z)* - an element of SLy(Z).

On the other hand, since 7 is ramified in K/Q and wg = 2, the assumptions (4.4) and (4.5)
in Remark 4.3 (or, the assumption (5.22) in Remark 5.5) are satisfied. Hence the singular value

712 A(Z 9)) generates Ho over K by Theorem 4.2 (or, Theorem 5.4). Furthermore, since the function
A(77)

A(m has rational Fourier coefficients and belongs to F7([12] Chapter 11 Theorem 4), we obtain its
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minimal polynomial by Propositions 3.3 and 3.1 as
min (7255, K) = (X ~TP ARG (39 <9>> (X ~TEEE o (W) <9>)
(x-m88e (1, 3) @) (x -8 e (F50) 0))
(x-m4F (P 0) (x4 o (73 0)
(X _ 12 AA(ZTT)) o (7916 39) (9)>
= X7+ 234857X° 4 24694815621.X° + 295908620105035X *

+943957383096939785 X > + 356807315211847521 X2
+38973886319454982.X — 117649.

On the other hand, if we compare its coefficients with those of the minimal polynomial of the

classical invariant j(76), we see in a similar fashion that the latter are much bigger than the former

as follows:

min(j(70), K) = X7 +18561099067532582351348250 X 6 + 54379116263846797396254926859375X °
+344514398594838596665876837347342843995647646484375 X
11009848457088842748174122781381460720529620832094970703125 X 3
+1480797351289795967859364968037513969226011238564633514404296875 X 2
—3972653601649066484326573605251406741304015473521796878814697265625.X
+4791576562341747034548276661270093305105027267573103845119476318359375.

Example 4.5. Let K = Q(v/—5) and O be the order of conductor N = 6(= 2-3) in K. Then

one can readily check that NOpf satisfies neither the assumption (2.3) in Lemma 2.5 nor the

assumption (5.22) in Remark 5.5. Even in this case, however, we will see that our method is still

valid. Therefore, it is worth of studying how much further one can release from the assumption

(2.3) in Lemma 2.5 (or, the assumption (5.22) in Remark 5.5).

Observe that hx = 2([4]) and [Hp : K] = 8 by Lemma 3.4(i). Since hx = 2, there are two
reduced positive definite binary quadratic forms of discriminant dx = —20

Q1 =X?4+5Y? and Q,=2X?+2XY +3Y2
We associate to each Qi(k =1, 2) a matrix in GL2(Z/NZ) and a CM-point as follows:

{ﬁ1=<é?), 6 =v=5  forQ
Bo=(13), 2= for Q.

Then we see from Lemma 20 in [6] that
Gal(H/K) = {(h(&) — B (0))|, © k=1, 2}

where h € Fy is defined and finite at # = v/—5. Furthermore, it follows from Propositions 3.3 and
3.6 that

Gal(Ho /) = {m — (30, an= (1), a5 = (23), au= @a)}.
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Hence we achieve that
Gal(Ho/K) = {(h(e) — hﬁfﬂk(ek))}Ho =1, .4 k=1, 2}

where h € Fp is defined and finite at 6. On the other hand, the conjugates of the singular value
A(60)A(9)

INCIINED) estimated according to Theorem 4.2 are

- - gk
xz,k=<m> O) (=1,---,4, k=1, 2)

possibly with some multiplicity. And, since the function % € Fn has rational Fourier

coefficients, the action of each a3, on it can be performed as in the previous example. Thus the

minimal polynomial of % becomes a divisor of

[Tt s ot o(X =2 k) = X% —1304008X7 + 16670918428 X° + 30056736254344X°

1+23344024601638470X* + 7327603919934344 X 3

+1949665164230428 X 2 — 1597207512008 X + 1.

This polynomial is, however, irreducible and hence the singular value % should be a prim-

itive generator of Hp over K.

5. ANOTHER APPROACH

We shall develop a different lemma which substitutes for Lemma 2.5, from which we are able to
find more N’s in Theorem 4.2.

Throughout this section K(# Q(v/—1), Q(v/=3)) is also an imaginary quadratic field with 0 as
in (3.1). For an integer N > 2 let

f=NOk =[] »i*
k=1

and O be the order of conductor N in K. We use the same notations =y, ¢, tg, vk, &)f as in Section
2. And, by Cl(Hp/K) we mean the quotient group of CI(f) corresponding to Gal(Hp/K) via the
Artin map, that is,
Cl(Ho/K) = CU(5)/CI(K;/ Ho). (5.1)
We further let Cl(Hp/H) stand for the subgroup of Cl(Hp/K) corresponding to Gal(Hp/H).
Setting

¥; = (CI(f) — Cl(Ho/K)) 0 @5 : m(O)* — Cl(Ho/K), (5.2)
we obtain by the exact sequence (2.1) and Galois theory another exact sequence
1 — m(Ok)*/Ker(¥5) — Cl(Ho/K) — Cl(Ok) — 1 (5.3)
with 5
Us(m(Ok)*) = Cl(Ho/H). (5.4)
And, we know by the fact wx = 2 and Lemma 3.4 that
‘ «_ () o(f)
(@ m(Z)" = —% and [Hp:H|=-—"—"%.

On the other hand, since Cl(K;/Hop) = Pk, z(f)/ Pk, 1(f) by definition of Hp, we get m((Z)* C
Ker(¥y); hence we achieve
Ker(¥5) = mj(Z)*. (5.5)
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Lemma 5.1. Let G be a finite abelian group and H be a subgroup of G. Then there is a canonical
isomorphism between character groups

{characters of G which are trivial on H} — {characters of G/H} (5.6)
x = (gH—x(g9) : g€G).

Proof. One can readily check that the map in (5.6) is a well-defined injection. For surjectivity, let
¥ be a character of G/H. Then the character

X =1¢o(G— G/H)
of G maps to v via the map in (5.6), which claims the surjectivity. O
Thus we have a canonical isomorphism

{characters of CI(f) which are trivial on C1(Kj/Hp)} — {characters of Cl(Ho/K)}  (5.7)

by Lemma 5.1 and definition (5.1). For any character ¢ of Cl(Hp/K) we define
&:wo\i/f and Y =voroy (k=1,---,n).
If x maps to ¢ via the map in (5.7), then we derive
X = xo®=1vo (Clf) — Cl(Ho/K)) o ®; by the proof of Lemma 5.1
= tYoW;=1 by definition (5.2)

so that
Xpe=vUp forallk=1,---,n.
Lemma 5.2. Let
U = {characters of Cl(Ho/K) which are trivial on Cl(Ho/H)}
V= {characters of Cl(Ho/H)}
W = {characters of Cl(Ho/K)}
G U © fl(wf(Z)*) (k=1,---,n)

where

n
i}\k : Hﬂp? ((’)K)* N 7rp;a1 ((’)K)* X oo X szkjll (OK)* > ﬂpZ’fgl (OK)* X oo X Tyen (OK)*
=1

is the natural projection which deletes the k-th component. For each character € V, fix a character
' € W which extends ¢ (by Lemma 2.4).

(i) There is a bijective map
UxV — W
06 ) = xev
(ii) We have the inequality

#m(Ok)*

#{EeW : =1} < hK#Wka(OK)*,#Gk

(k=1,---,n).
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Proof. (i) We see from Lemma 5.1 that both U x V' and W have the same size. Hence it suffices to

show that the above map is injective, which is straightforward.

(ii) Without loss of generality it suffices to show that there is an injective map

n—1

S = {5 ew : &, = 1} — U X {Characters of H ﬂpzk(OK)*/Gn},
k=1

because #U = hy by Lemma 5.1 and # [[}Z] Tk (Ok)*/Grn = #(Orc)"

#Wp%n (OK)*#Gn :

Let £ € S. Then as an element of W, ¢ is of the form x - ¢’ for some x € U and ¢ € V by (i).

And, by (5.4) and the fact x € U we get
X=xo¥j=1,

from which it follows that

We further deduce by (5.4) that
V=l (my(0x)) © V1= Vowto ) © W5 =1 o Uy,
On the other hand, if § is a character of [[;_, ok (Ok)* defined by

B=1o \Tlf oL,
then we derive that
Boin(myen (OK)*) = o Uiorou, (Ten (Ok)*)
= J'oLo Ln(ﬂ'pin (Ok)*) by (5.9)
= (1 (OK)*) =1 by (5.8),
which implies
in (mpen (Ok)*) C Ker().

Furthermore, we have

Bou N m(2)*) = ¢o¥y(nm(Z)*) =1 by (5.5),
which claims
U (m(Z)*) € Ker(B).

Hence (8 can be written as

8=0 (1T mpu(©x) — I s 0" / onlrie (a7}, 7 y(2))))
k=1 k=1

(5.11)

(5.12)

(5.13)

for a unique character v of [[;_; e (Ok)*[(in(mpen (Ok)*), v H(m(Z)*)) by Lemma 5.1, (5.11)

and (5.12).
Now, we define a map

n—1

k:S — Ux {Characters of Hﬂ'pzk ((’)K)*/Gn}
k=1

£ = (X, 7o)
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where - .
n H szk(OK)*/Gn — H ﬂpzk(OK)*/<Ln(7rpgn(OK)*), L_l(’in(Z)*)>
k=1 k=1

is definitely a surjection by definition of GG,. To prove the injectivity of the map x, assume that
k(&1) = k(&) for some &1, & € S. Then, by (i) there are unique x1, x2 € U and 11, ¥9 € V such
that & = x1 - 9] and & = x2 - 5. And, by definition of k we get x1 = x2. Let ¢y(¢ = 1, 2) induce
B¢ and 7y, in the above paragraph (which explains § and ~ constructed from ). Then, since 7, is
surjective, we obtain 71 = v from the fact v 07, = 72 07y, and so we have 31 = 33 by (5.13). It
then follows from the definition (5.10), the fact ¢1, 12 € V and (5.4) that ¢, = )2, which concludes

the injectivity of k. This completes the proof. O
Lemma 5.3. Let F be a field such that K C F C Hop. If
= 1
2#mH(Z)* <1, 5.14
#E) ) O G o1

then there is a character x of CI(f) such that
Xlak/me) =1 Xlawpy 71 and p [ f  forallk=1,--- n. (5.15)
Proof. We first derive that
#{characters x of CI(f) : xloi,/me) = 1, Xleww,/r) # 1}
= #{x of CI(f) : Xlawk, /me) =1} — #{x of CI(f) : xlcix,/r) =1}
= #CI(f)/CUK;/Ho) — #C1(f)/CI(K;/F) by Lemma 5.1
1

= [HO;K]—[F:K]:[HO:K]<1—M

1
) > i[HO : K] by the fact FF C Hp

= hTK#Wf(OK)*/Wf(Z)* from the exact sequence (5.3) and (5.5)

a 1
> hg#m(Og)* - by the assumption (5.14).
(O % 04 o

On the other hand, we get that
#{x of CI(f) : Xlewk,/Ho) = 15 Pr 1 fx for some &}
< #{X of CI(f) : X|Cl(Kf/H@) =1, Xr = 1 for some k} by Lemma 2.1
= #{5 of Cl(Hp/K) : &, =1 for some k:} by the argument followed by Lemma 5.1

= 1
< hg#m(Og)* by Lemma 5.2(ii).

Therefore, there exists a character x of CI(f) which satisfies the condition (5.15). O

Theorem 5.4. If f = NOg satisfies the assumption (5.14) in Lemma 5.3, then the singular value
in (4.2) generates Ho over K as a real algebraic integer.

Proof. Let ¢ = N, mo (gf(Co)) and F' = K(e) as a subfield of Hp. Suppose that F' is properly
contained in Hp, then there is a character x of CI(f) satisfying the condition (5.15) in Lemma 5.3.
Since pg, | fx for all k =1,---  n, the Euler factor of x in Proposition 2.2 is 1, and hence the value
S§(X, g5) does not vanish by Remark 2.3(ii). On the other hand, we can derive Si(x, g;) = 0 by



20 ICK SUN EUM, JA KYUNG KOO, AND DONG HWA SHIN

using the condition (5.15) of x in exactly the same way as the proof of Theorem 2.7, which gives
rise to a contradiction. Therefore Hp = K(¢), and hence we can apply the argument of Theorem
4.2 to complete the proof. O

Remark 5.5. Let
B C
N — SZa H qzb H TZ;UC
a=1 b=1 c=1

be the prime factorization of N where each s, (respectively, g, and r.) splits completely (respec-
tively, is inert and ramified) in K/Q and A, B, C' > 0. Then we have the prime ideal factorization

A

B C
= NOx = [[ (i) [ at* T2
b=1 c=1

a=1
with
Nk /0(sa) = Ng/g(8a) = sa, Ngjolas) =@, Nig(re) = re.
Now, for the sake of convenience, we let
2A+B+C

i= TI »
k=1

with
(ﬁk, Uk) fOI‘k:L-u’A
_ ) (Bk—a, ug—a) fork=A+1,---,24
(Pe. ex) = (Qr—24, Vk—24) fork=24+1,--- ,2A+B (5.16)

(tk—24-B, 2wgo4-p) fork=2A+B+1,--- ,2A+B+C,
and consider the surjection

M = i)\kobil : Wf(Z)* — Gk ( - Wpil (OK)* X XTrpek_1 (OK)* ><7Tpek+1 (OK)* X ><7['p7eln (OK)*)

k—1 k41
If m (mod f) € m;(Z)* belongs to Ker(sy), then
1, ---, 1) = m (mod =01, 0 ¢~ (m (mod
( : ) . (m ( 1)) = (m ( )
= (m (HlOd p?)v T, M (HlOd pzli_ll)a m (mOd pzlj:_ll)7 T, M (mOd pfln))a (517)
which shows
v (Ker(ug)) € o (ﬂ-ka (z)*) ={(1, -+, 1, t (mod pj*), 1, ---, 1) : t € Z which is prime to pj }.

Hence, this gives the inequality

_ #m@) | #m(2)

#Gp = > . 5.18

FRer(u) = By (@) (5.18)

In particular, if £k = 1,---,2A, then pu; becomes injective (and so, bijective). Indeed, if m
(mod §) € 7(Z)* belongs to Ker(yuy), then

m=1 (modp,) forl+#k (5.19)

by (5.17). But, since m is an integer, (5.19) implies
m=1 (modp,”) forl#k. (5.20)
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On the other hand, since py, = py 4 or p,_4 by definition (5.16), we deduce by (5.19) and (5.20)
that

m=1 (modp;) foralll{=1,---,n,
from which we get m =1 (mod f). This concludes that py is injective; hence
#G = #m(2)* fork=1,---,2A. (5.21)
Thus we achieve by (5.18), (5.21) and the Euler function for integers and ideals that
A B

1
; — 1)sye ! bz; (qp + 1)

Therefore, one can also apply Theorem 5.4 under the assumption

— 22 o <L (5.22)

Example 5.6. Let K = Q(/—2) and O be the order of conductor N = 9(= 32) in K. Then

NOg satisfies the assumption (5.22) in Remark 5.5 (but, not the assumption (2.3) in Lemma 2.5)

and hence the singular value 3'2 AE%% with 8 = v/—2 generates H» over K by Theorem 5.4. Since

wc'

B

A
1
4; oDy +2)

b= 1(Qb+1 b

hx = 1([4]), one can estimate its minimal polynomial in exactly the same way as the previous
examples:
min (32350, K) = X®+452079706X° + 2739284675932815X ! + 12787916715651570220X >

+190732505724302106460815X 2 — 268398119546256294X + 1.
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