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ON SOME RING CLASS INVARIANTS OVER IMAGINARY QUADRATIC
FIELDS (II)

ICK SUN EUM, JA KYUNG KOO, AND DONG HWA SHIN

Abstract. Let K be an imaginary quadratic field. We show by adopting Schertz’s argument with
the Siegel-Ramachandra invariant([14]) that singular values of certain quotients of the ∆-function
generate ring class fields over K(Theorems 4.2, 5.4 and Remark 5.5).

1. Introduction

In number theory ring class fields over imaginary quadratic fields, more precisely, primitive
generators of ring class fields as real algebraic integers play an important role in the study of
certain quadratic Diophantine equations. For example, let n be a positive integer and HO be the
ring class field of the order O = Z[

√
−n] in the imaginary quadratic field K = Q(

√
−n). If p is an

odd prime not dividing n, then we have the following assertion:
p = x2 + ny2 is solvable for some integers x and y

⇐⇒ the Legendre symbol (−np ) = 1 and fn(X) ≡ 0 (mod p) has an integer solution

where fn(X) is the minimal polynomial of a real algebraic integer α for which HO = K(α)([4]).
Given an imaginary quadratic field K with the ring of integer OK = Z[θ] such that θ ∈ H(=the

complex upper half plane), let O = [Nθ, 1] be the order of conductor N(≥ 1) in K. Then we know a
classical result from the main theorem of complex multiplication that the j-invariant j(O) = j(Nθ)
generates the ring class field HO over K([12] or [15]). Moreover, we have an algorithm of finding
the minimal polynomial(=class polynomial) of such generator j(O)([4]) whose coefficients are too
gigantic to handle for practical use.

Thus, unlike the classical case Chen-Yui([1]) constructed a generator of the ring class field
of certain conductor in terms of the singular value of the Thompson series which is a Haupt-
modul for Γ0(N) or Γ†0(N), where Γ0(N) = {γ ∈ SL2(Z) : γ ≡ ( ∗ ∗0 ∗ ) (mod N)} and Γ†0(N) =〈
Γ0(N),

(
0 −1/

√
N√

N 0

) 〉
in SL2(R). In like manner, Cox-Mckay-Stevenhagen([5]) showed that cer-

tain sigular value of a Hauptmodul for Γ0(N) or Γ†0(N) with rational Fourier coefficients generates
HO over K. And, Cho-Koo([2]) recently revisited and extended these results by using the theory
of Shimura’s canonical models and his reciprocity law.

On the other hand, Ramachandra showed in [13] that arbitrary finite abelian extension of an
imaginary quadratic field K can be generated over K by a theoretically beautiful elliptic unit,
but his invariant involves too complicated product of high powers of singular values of the Klein
forms and singular values of the ∆-function to use in practice. This motivates our work of finding
simpler ring class invariants in terms of the Siegel-Ramachandra invariant as Lang pointed out in
his book([12] p.292) in case of ray class fields.
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Koo-Shin established in [9] that if K 6= Q(
√
−1), Q(

√
−3) and p is a prime which is inert or

ramified in K/Q, then the real algebraic integer

p12 ∆(peθ)
∆(pe−1θ)

generates the ring class field HO of the order O = [peθ, 1](e ≥ 1) where

∆(τ) = (2πi)12qτ

∞∏
n=1

(1− qnτ )24 (τ ∈ H) (1.1)

is the discriminant function (or, ∆-function). And, this value is in fact certain root of the norm of
the Siegel-Ramachandra invariant gf(C0) with f = peOK(see Section 2) from the ray class field Kf

modulo f to HO.
This paper is a continuation of our previous work. More precisely, for any pair (r1, r2) ∈ Q2 \Z2

we first define a Siegel function g(r1, r2)(τ) by the following Fourier expansion

g(r1, r2)(τ) = −q
1
2
B2(r1)

τ eπir2(r1−1)(1− qz)
∞∏
n=1

(1− qnτ qz)(1− qnτ q−1
z ) (τ ∈ H) (1.2)

where B2(X) = X2 − X + 1
6 is the second Bernoulli polynomial, qτ = e2πiτ and qz = e2πiz with

z = r1τ+r2. As singular values of Siegel functions we shall define the Siegel-Ramachandra invariants
in Section 2. And, motivated from the idea of Schertz([14]) we shall determine certain class fields
over K generated by norms of the Siegel-Ramachandra invariants(Theorem 2.7). Furthermore, in
case of ring class field, the product formulas (1.1), (1.2) and Theorem 2.7 enable us to express the
norms as singular values of certain quotients of the ∆-function(Theorem 4.2). For example, let

N =
n∏
k=1

pekk

be a product of odd primes pk which are inert or ramified in K/Q and we further assume that

ek + 1 >
2
rk

for all k = 1, · · · , n and


gcd(p1, wK) = 1 if n = 1

gcd
( n∏
k=1

pk,
n∏
k=1

(p
2
rk
k − 1)

)
= 1 if n ≥ 2,

where rk is the ramification index of pk in K/Q and wK is the number of roots of unity in K.
Then certain quotient of singular values ∆

(
N
NS
θ
)
, where NS are the products of pk’s, becomes a

generator of the ring class field of the order of conductor N over K(Remark 4.3). This would be
an extension of the result in [9].

In Section 4, Theorem 4.2 heavily depends on Lemma 2.5 which requires the assumption (2.3).
In Section 5, however, we shall develop certain lemma which substitutes for Lemma 2.5 in order to
release from the assumption (2.3) to some extent(Lemma 5.3 and Remark 5.5). For example, let
K 6= Q(

√
−1), Q(

√
−3) and

N =
A∏
a=1

suaa

B∏
b=1

qvbb

C∏
c=1

rwcc



ON SOME RING CLASS INVARIANTS OVER IMAGINARY QUADRATIC FIELDS (II) 3

be the prime factorization of N , where each sa (respectively, qb and rc) splits completely (respec-
tively, is inert and ramified) in K/Q and A, B, C ≥ 0, and assume

4
A∑
a=1

1
(sa − 1)sua−1

a

+ 2
B∑
b=1

1
(qb + 1)qvb−1

b

+ 2
C∑
c=1

1
rwcc

< 1.

Then one can also apply Theorem 4.2 without assuming (2.3)(Theorem 5.4, Remark 5.5).
And, by making use of our simple invariant developed in Theorem 4.2 we present three exam-

ples(Examples 4.4, 4.5 and 5.6).

2. Primitive generators of class fields

In this section we investigate some class fields over imaginary quadratic fields generated by norms
of the Siegel-Ramachandra invariants.

For a given imaginary quadratic field K we let

dK : the discriminant of K
dK : the different of K/Q
OK : the ring of integers of K
wK : the number of root of unity in K

IK : the group of fractional ideals of K
PK : the subgroup of IK consisting of principal ideals of K.

And, for a nonzero integral ideal f of K we set

IK(f) : the subgroup of IK consisting of ideals relatively prime to f

PK,1(f) : the subgroup of IK(f) ∩ PK generated by the principal ideals αOK
for which α ∈ OK satisfies α ≡ 1 (mod f)

Cl(f) : the ray class group (modulo f), namely IK(f)/PK,1(f)
C0 : the unit class of Cl(f)

w(f) : the number of roots of unity in K which are ≡ 1 (mod f)
N(f) : the smallest positive integer in f.

By the ray class field Kf modulo f of K we mean a finite abelan extension of K whose Galois group
is isomorphic to Cl(f) via the Artin map σ, namely

σ =
(
Kf/K

·

)
: Cl(f) −→ Gal(Kf/K).

In particular, if f = OK , we denote Kf by H and call it the Hilbert class field of K. Then by
definition and characterization of ray class field([12] p.109 or [3] Proposition 3.2.3) we have a short
exact sequence

1 −→ πf(OK)∗/πf(O∗K)
Φf−→ Cl(f) −→ Cl(OK) −→ 1 (2.1)

where
πf : OK −→ OK/f

is the natural surjection and Φf is induced by the homomorphism

Φ̃f : πf(OK)∗ −→ Cl(f)
πf(x) 7→ [xOK ] the class containing xOK
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whose kernel is πf(O∗K). Let χ be a character of Cl(f). We then denote by fχ the conductor of χ,
namely

fχ = gcd
(

g : χ = ψ ◦
(
Cl(f)→ Cl(g)

)
for some character ψ of Cl(g)

)
,

and let χ0 be the proper character of Cl(fχ) corresponding to χ. Similarly, if χ′ is any character of
πf(OK)∗, then the conductor fχ′ of χ′ is defined by

fχ′ = gcd
(

g : χ′ = ψ′ ◦
(
πf(OK)∗ → πg(OK)∗

)
for some character ψ′ of πg(OK)∗

)
.

Now, for a character χ of Cl(f) we define a character χ̃ of πf(OK)∗ by

χ̃ = χ ◦ Φ̃f.

And, if

f =
n∏
k=1

pekk ,

then from the Chinese remainder theorem we have an isomorphism

ι :
n∏
k=1

πp
ek
k

(OK)∗ ∼→ πf(OK)∗,

and natural injections and surjections

ιk : πp
ek
k

(OK)∗ ↪→
n∏
`=1

πp
e`
`

(OK)∗ and vk :
n∏
`=1

πp
e`
`

(OK)∗ → πp
ek
k

(OK)∗ (k = 1, · · · , n),

respectively. Furthermore, we consider characters χ̃k of πp
ek
k

(OK)∗ defined by

χ̃k = χ̃ ◦ ι ◦ ιk (k = 1, · · · , n).

Lemma 2.1. (i) fχ̃ = fχ.
(ii) χ̃ ◦ ι =

∏n
k=1 χ̃k ◦ vk.

(iii) If χ̃k 6= 1, then pk | fχ̃.

Proof. (i) and (ii) are immediate by definitions of conductors and the maps χ̃, χ̃k, ι and vk.
(iii) Without loss of generality we may assume χ̃n 6= 1. Suppose on the contrary pn - fχ̃. Then by
definition of fχ̃ there is a character ψ′ of Cl(fχ̃) which makes the following diagram commute:∏n−1

k=1 πp
ek
k

(OK)∗
∏n
k=1 πp

ek
k

(OK)∗

πfχ̃(OK)∗πf(OK)∗

C∗

∼= πfp−en (OK)∗

.............................................................................................................................. .........
...

χ̃

...........................................................................................................................
...
............

ψ′

............................................................................................................... .........
...

ι

.........................................................................................................
...
............

B

................................................................................................................................................................................................................................................................................................................. ............A

................................................................................................................................................. ............C

where A, B and C are natural surjections. If σn is an element of πpenn (OK)∗ such that χ̃n(σn) 6= 1,
then

1 6= χ̃n(σn) = χ̃ ◦ ι ◦ ιn(σn) = χ̃ ◦ ι(1, · · · , 1, σn)
= (ψ′ ◦ C) ◦ ι(1, · · · , 1, σn) = ψ′ ◦B ◦A(1, · · · , 1, σn) = ψ′ ◦B(1, · · · , 1) = 1,
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which renders a contradiction. Therefore, pn | fχ̃. �

If f 6= OK and C ∈ Cl(f), we take an integral ideal c in C so that fc−1 = [z1, z2] with z = z1
z2
∈ H.

Then, we define the Siegel-Ramachandra invariant by

gf(C) = g
12N(f)

( a
N(f)

, b
N(f)

)
(z)

where a, b ∈ Z such that 1 = a
N(f)z1 + b

N(f)z2. This value depends only on the class C and belongs
to the ray class field Kf. And, we have a well-known transformation formula

gf(C1)σ(C2) = gf(C1C2) (2.2)

for C1, C2 ∈ Cl(f)([10] Chapter 11).
For a nontrivial character χ of Cl(f) with f 6= OK we define the Stickelberger element as

Sf(χ, gf) =
∑

C∈Cl(f)

χ(C) log
∣∣gf(C)

∣∣
and consider the L-function

Lf(s, χ) =
∑

a 6=0 : integral ideals of K

χ(a)
NK/Q(a)s

(s ∈ C).

Then, from the second Kronecker limit formula we get the following proposition.

Proposition 2.2. If fχ 6= OK , then∏
p|f, p-fχ

(
1− χ0(p)

)
Lfχ(1, χ0) =

π

3w(f)N(f)τ(χ0)
√
−dK

Sf(χ, gf)

where

τ(χ0) = −
∑
x∈OK
x mod f

gcd(xOK , fχ)=OK

χ0([xγdKfχ])e2πiTrK/Q(xγ)

with γ any element of K such that γdKfχ is an integral ideal relatively prime to f.

Proof. See [12] Chapter 22 Theorem 2 and [10] Chapter 11 Theorem 2.1. �

Remark 2.3. (i) The product factor
∏

p|f, p-fχ
(
1−χ0(p)

)
is called the Euler factor of χ. If there

is no such p with p | f and p - fχ, then it is understood to be 1.
(ii) As is well-known([7] Chapter IV Proposition 5.7) Lfχ(1, χ0) 6= 0.

Lemma 2.4. Let A  B be finite abelian groups, b ∈ B \ A and χ be a character of A. Let m be
the order of the coset bA in the quotient group B/A. Then we can extend χ to a character ψ of B
such that ψ(b) is any m-th root of χ(bm).

Proof. It suffices to prove the case B = 〈A, b〉. Let ζ be any m-th root of χ(bm). Define a map

ψ : 〈A, b〉 −→ C∗

abk 7→ χ(a)ζk (a ∈ A).

Using the fact ζm = χ(bm) one can readily show that ψ is a (well-defined) character of 〈A, b〉 which
extends χ and also satisfies ψ(b) = ζ. �
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Lemma 2.5. Let L( 6= K) be a finite abelian extension of K contained in some ray class field Kf

modulo

f( 6= OK) =
n∏
k=1

pekk .

For an intermediate field F between K and Kf we denote by Cl(Kf/F ) the subgroup of Cl(f) corre-
sponding to Gal(Kf/F ) via the Artin map. Let

ε̂k = # Ker
(

the natural projection ρ̂k : πf(OK)∗/πf(O∗K) −→ π
fp
−ek
k

(OK)∗/π
fp
−ek
k

(O∗K)
)

and

εk = # Ker
(

the natural projection ρk : πf(OK)∗/πf(O∗K) −→ πp
ek
k

(OK)∗/πp
ek
k

(O∗K)
)

for each k = 1, · · · , n. Assume that

for each k = 1, · · · , n there is an odd prime νk such that
νk - εk and ordνk(ε̂k) > ordνk

(
# Cl(Kf/L)

)
. (2.3)

If D is a class in Cl(f) \ Cl(Kf/L), then there exists a character χ of Cl(f) such that

χ|Cl(Kf/L) = 1, χ(D) 6= 1 and pk | fχ for all k = 1, · · · , n. (2.4)

Proof. Since D ∈ Cl(f) \ Cl(Kf/L), there is a character χ of Cl(f) such that

χ|Cl(Kf/L) = 1 and χ(D) 6= 1

by Lemma 2.4. Let χ̃k (k = 1, · · · , n) be the character of πp
ek
k

(OK)∗ induced from χ as in Lemma
2.1.

Suppose χ̃k = 1 for some k. Let νk be a prime number in the assumption (2.3) and S be a Sylow
νk-subgroup of Φf

(
Ker(ρ̂k)

)
. Then Cl(Kf/L) does not contain S by (2.3). Hence we can take an

element C in S \ Cl(Kf/L) whose order is a power of νk. Now we extend the trivial character of

Cl(Kf/L) to a character ψ′ of Cl(f) so that ψ′(C) = ζνk = e
2πi
νk by Lemma 2.4, because the order of

the coset CCl(Kf/L) in the quotient group Cl(f)/Cl(Kf/L) is also a power of νk. Define a character
ψ of Cl(f) by

ψ =
{
ψ′εk if χ(D)ψ′εk(D) 6= 1
ψ′2εk otherwise.

Then we achieve

(χψ)|Cl(Kf/L) = 1 and (χψ)(D) = χ(D)ψ(D) 6= 1.

Furthermore, since
(
ι ◦ ι`

(
πp

e`
`

(OK)∗
))
πf(O∗K)/πf(O∗K) is a subgroup of Ker(ρk) for ` 6= k(see the

diagram (2.5) below), we derive that

ψ̃`
(
πp

e`
`

(OK)∗
)

= ψ ◦ Φ̃f ◦ ι ◦ ι`
(
πp

e`
`

(OK)∗
)

by definition of ψ̃` in Lemma 2.1

⊆ ψ

(
Φf

(
Ker(ρk)

))
= ψ′εk

(
Φf

(
Ker(ρk)

))
or ψ′2εk

(
Φf

(
Ker(ρk)

))
= 1,

which yields
ψ̃` = 1 and (χ̃ψ)` = χ̃`ψ̃` = χ̃` for ` 6= k.
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On the other hand, since C ∈ Φf

(
Ker(ρ̂k)

)
⊆ Im(Φf), we can take an element c of πf(OK)∗ so that

Φ̃f(c) = C. Thus we get that

ψ̃(c) = ψ ◦ Φ̃f(c) = ψ(C) = ψ′εk(C) or ψ′2εk(C) = ζεkνk or ζ2εk
νk
6= 1,

which shows ψ̃ 6= 1, and hence ψ̃k 6= 1 by the fact ψ̃` = 1 for ` 6= k and Lemma 2.1(ii). Therefore
we obtain

(χ̃ψ)k = χ̃kψ̃k = ψ̃k 6= 1.

Now, we replace χ by χψ and repeat the above process for finitely many `( 6= k) such that χ̃` = 1.
After this procedure, we finally establish a character χ of Cl(f) which satisfies

χ|Cl(Kf/L) = 1, χ(D) 6= 1 and χ̃k 6= 1 for all k = 1, · · · , n.

And we derive by Lemma 2.1 that pk | fχ for all k = 1, · · · , n. This proves the lemma. �

Remark 2.6. From the commutative diagram of exact sequences

1 πf(OK)∗/πf(O∗K) Cl(f) Cl(OK) 1

1 π
fp
−ek
k

(OK)∗/π
fp
−ek
k

(O∗K) Cl(fp−ekk ) Cl(OK) 1

.................................................................................................................................. ............ ..................................................................................................................................................................................................................................................... ............
Φf

............................................................................................................................................................................... ............ ......................................................................................................................................................................................... ............

..................................................................................... ............ ............................................................................................................................................................................. ............

Φ
fp
−ek
k .................................................................................................................................................... ............ ......................................................................................................................................................................................... ............

................................................................................
...
.........
...

ρ̂k

.....................................................................................
...
.........
...

.....................................................................................
...
.........
...

where vertical maps are natural projections, one can readily obtain

Cl(f)/Φf

(
Ker(ρ̂k)

) ∼= Cl(fp−ekk ) ∼= Cl(f)/Cl(Kf/Kfp
−ek
k

).

Hence we have

ε̂k = # Ker(ρ̂k) = # Φf

(
Ker(ρ̂k)

)
= [Kf : K

fp
−ek
k

] =
ϕ(pekk )w(f)
w(fp−ekk )

by using Lemma 3.4(ii), which will be used in the next section. Similarly, again from the commu-
tative diagram

1 πf(OK)∗/πf(O∗K) Cl(f) Cl(OK) 1

1 πp
ek
k

(OK)∗/πp
ek
k

(O∗K) Cl(pekk ) Cl(OK) 1

∏n
`=1 πp

e`
`

(OK)∗/
{∏n

`=1 πp
e`
`

(x) : x ∈ O∗K
}

.................................................................................................................................. ............ ..................................................................................................................................................................................................................................................... ............
Φf

.........................................................................

o

............................................................................................................................................................................... ............ ......................................................................................................................................................................................... ............

......................................................................................................... ............ ................................................................................................................................................................................................................ ............

Φp
ek
k

................................................................................................................................................................... ............ ......................................................................................................................................................................................... ............

................................................................................
...
.........
...

ρk

..................................................................................................................................................................................................................
...
.........
...

..................................................................................................................................................................................................................
...
.........
...

(2.5)
we come up with

εk = # Ker(ρk) = # Φf

(
Ker(ρk)

)
= [Kf : Kp

ek
k

] =
∏n
`=1 ϕ(pe`` )w(f)
ϕ(pekk )w(pekk )

.
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Theorem 2.7. Let L be a field in Lemma 2.5 which satisfies the assumption (2.3). Then the
singular value

ε = NKf/L

(
gf(C0)

)
generates L over K.

Proof. Let F = K(ε) as a subfield of L. Suppose that F is properly contained in L. Then for a
class D in Cl(Kf/F ) \ Cl(Kf/L) we can find a character χ of Cl(f) satisfying the conditions (2.4)
in Lemma 2.5. Since the Euler factor of χ is 1 by the condition pk | fχ for all k, the value Sf(χ, gf)
does not vanish by Proposition 2.2 and Remark 2.3(ii). On the other hand,

Sf(χ, gf) =
∑

C1∈Cl(f)
C1 mod Cl(Kf/F )

∑
C2∈Cl(Kf/F )

C2 mod Cl(Kf/L)

∑
C3∈Cl(Kf/L)

χ(C1C2C3) log
∣∣gf(C1C2C3)

∣∣
=

∑
C1

χ(C1)
∑
C2

χ(C2)
∑
C3

log
∣∣gf(C0)σ(C1)σ(C2)σ(C3)

∣∣ by χ|Cl(Kf/L) = 1 and (2.2)

=
∑
C1

χ(C1)
∑
C2

χ(C2) log
∣∣εσ(C1)σ(C2)

∣∣
=

∑
C1

χ(C1)
(∑

C2

χ(C2)
)

log
∣∣εσ(C1)

∣∣ by the fact ε ∈ F

= 0 because χ(D) 6= 1 implies χ|Cl(Kf/F ) 6= 1,

which gives a contradiction. Therefore L = F as desired. �

Remark 2.8. Observe that any nonzero power of ε generates L over K, too.

3. Action of Galois groups

In this section we shall determine Galois groups of ray class fields over ring class fields by adopting
the idea of Gee and Stevenhagen([6], [16]).

For an integer N(≥ 1), let ζN = e
2πi
N and Γ(N) =

{
γ ∈ SL2(Z) : γ ≡ ( 1 0

0 1 ) (mod N)
}

. Further
we let FN be the field of modular functions whose Fourier coefficients belong to Q(ζN ).

Proposition 3.1. FN is a Galois extension of F1 = Q
(
j(τ)

)
whose Galois group is isomorphic to

GL2(Z/NZ)/{± ( 1 0
0 1 )} = GN · SL2(Z/NZ)/{± ( 1 0

0 1 )} where

GN =
{(

1 0
0 d

)
: d ∈ (Z/NZ)∗

}
.

Here, the matrix
(

1 0
0 d

)
∈ GN acts on

∑∞
n=−∞ cnq

n
N
τ ∈ FN by

∞∑
n=−∞

cnq
n
N
τ 7→

∞∑
n=−∞

cσdn q
n
N
τ

where σd is the automorphism of Q(ζN ) induced by ζN 7→ ζdN . And, for an element γ ∈ SL2(Z/NZ)/{± ( 1 0
0 1 )}

let γ′ ∈ SL2(Z) be a preimage of γ via the natural surjection SL2(Z)→ SL2(Z/NZ)/{± ( 1 0
0 1 )}. Then

γ acts on h ∈ FN by composition
h 7→ h ◦ γ′

as linear fractional transformation.
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Proof. See [12] Chapter 6 Theorem 3. �

We need some transformation formulas of Siegel functions to apply the above proposition.

Proposition 3.2. Let (r1, r2) ∈ 1
NZ

2 \ Z2 for N ≥ 2. Then

(i) g12N
(r1, r2)(τ) satisfies

g12N
(r1, r2)(τ) = g12N

(−r1, −r2)(τ) = g12N
(〈r1〉, 〈r2〉)(τ)

where 〈X〉 is the fractional part of X ∈ R such that 0 ≤ 〈X〉 < 1.
(ii) g12N

(r1, r2)(τ) belongs to FN and α in GL2(Z/NZ)/{±12} ∼= Gal(FN/F1) acts on the function
by (

g12N
(r1, r2)(τ)

)α
= g12N

(r1, r2)α(τ).

(iii) g(r1, r2)(τ) is integral over Z[j(τ)].

Proof. See [8] Proposition 2.4, Theorem 2.5 and Section 3. �

Now, let K be an imaginary quadratic field with discriminant dK and define

θ =

{ √
dK
2 for dK ≡ 0 (mod 4)
−1+

√
dK

2 for dK ≡ 1 (mod 4),
(3.1)

from which we get OK = Z[θ]. We see from the main theorem of complex multiplication that for
every integer N(≥ 1)

K(N) = KFN (θ) = K

(
h(θ) : h ∈ FN is defined and finite at θ

)
([12] Chapter 10 Corollary to Theorem 2). And, due to Gee and Stevenhagen we have the following
proposition for the Shimura’s reciprocity law which relates the class field theory to the theory of
modular functions.

Proposition 3.3. Let min(θ, Q) = X2 +BθX +Cθ ∈ Z[X]. For every integer N(≥ 1) the matrix
group

WN, θ =
{(

t−Bθs −Cθs
s t

)
∈ GL2(Z/NZ) : t, s ∈ Z/NZ

}
gives rise to the surjection

WN, θ −→ Gal(K(N)/H) (3.2)

α 7→
(
h(θ) 7→ hα(θ)

)
where h ∈ FN is defined and finite at θ. Its kernel is given by

{
±
(

1 0
0 1

)
, ±

(
0 −1
1 0

)}
if K = Q(

√
−1){

±
(

1 0
0 1

)
, ±

(
−1 −1
1 0

)
, ±

(
0 −1
1 1

)}
if K = Q(

√
−3){

±
(

1 0
0 1

)}
otherwise.

(3.3)

Proof. See [6] or [16]. �
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The ring class field HO of the order O of conductor N(≥ 1) in K is by definition a finite
abelian extension of K whose Galois group is isomorphic to IK(NOK)/PK, Z(NOK) via the Artin
map where PK, Z(NOK) is the subgroup of PK(NOK) generated by principal ideals αOK such that
α ≡ a (mod NOK) for some integer a with gcd(a, N) = 1. Then, as is well-known HO is contained
in K(N).

Lemma 3.4. Let K be an imaginary quadratic field with discriminant dK . Then we have the
following degree formulas:

(i) If O is the order of conductor N(≥ 1) in K, then

[HO : K] =
hKN

(O∗K : O∗)
∏
p|N

(
1−

(
dK
p

)
1
p

)
where hK is the class number of K and(

dK
p

)
=
{

the Kronecker symbol if p = 2
the Legendre symbol if p is an odd prime.

(ii) If f ∈ IK , then

[Kf : K] =
hKϕ(f)w(f)

wK
where ϕ is the Euler function for ideals, namely

ϕ(pn) =
(
NK/Q(p)− 1

)
NK/Q(p)n−1

for a power of prime ideal p (and we set ϕ(OK) = 1).

Proof. See [12] Chapter 8 Theorem 7 and [11] Chapter VI Theorem 1. One can also derive the
statement (ii) directly from the exact sequence (2.1). �

Lemma 3.5. ( t 0
0 t ) ∈WN,θ fixes j(Nθ).

Proof. Decompose ( t 0
0 t ) ∈WN,θ into ( t 0

0 t ) =
(

1 0
0 t2

)
·α ∈ GN ·SL2(Z/NZ)/{± ( 1 0

0 1 )} as in Proposi-
tion 3.1 and let α′ be a preimage of α via the natural surjection SL2(Z)→ SL2(Z/NZ)/{± ( 1 0

0 1 )}.
Then α′ belongs to Γ0(N) = {γ ∈ SL2(Z) : γ ≡ ( ∗ ∗0 ∗ ) (mod N)}. We then obtain from Propositions
3.3 and 3.1 that(

j(Nθ)
)( t 0

0 t )
=
(
j(Nτ)

)( t 0
0 t )

(θ) =
(
j(Nτ)

)( 1 0
0 t2

)
α

(θ)

=
(
j(Nτ)

)α
(θ) because j(Nτ) has rational Fourier coefficients([12] Chapter 4 Section 1)

= j(Nτ) ◦ α′(θ)
= j(Nθ) by the fact α′ ∈ Γ0(N) and j(Nτ) is modular for Γ0(N)([12] Chapter 6 Theorem 7).

Therefore, this proves the lemma. �

Proposition 3.6. Let O be the order of conductor N(≥ 1) in K. Then the map in (3.2) induces
an isomorphism {(

t 0
0 t

)
: t ∈ (Z/NZ)∗

}/{
±
(

1 0
0 1

)}
∼−→ Gal(K(N)/HO).
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Proof. First, observe that the above map is well-defined and injective by Lemmas 3.5 and (3.3).
Let

N =
A∏
a=1

puaa

B∏
b=1

qvbb

C∏
c=1

rwcc

be the prime factorization of N where each pa (respectively, qb and rc) splits completely (respec-
tively, is inert and ramified) in K/Q and A, B, C ≥ 0. (We understand

∏0
1 as 1.) Then we

have (
dK
pa

)
= 1,

(
dK
qb

)
= −1,

(
dK
rc

)
= 0 (3.4)

and the prime ideal factorization

NOK =
A∏
a=1

(papa)
ua

B∏
b=1

qvbb

C∏
c=1

r2wc
c

with
NK/Q(pa) = NK/Q(pa) = pa, NK/Q(qb) = q2

b , NK/Q(rc) = rc. (3.5)
And, we derive by Lemma 3.4 that

# Gal(K(N)/HO) = [K(N) : HO] =
[K(N) : K]
[HO : K]

=
ϕ(NOK)w(NOK)

2N
∏
p|N
(
1−

(
dK
p

)
1
p

) by the facts wK = # O∗K and O∗ = {±1}

=
w(NOK)

2

∏A
a=1

(
(pa − 1)pua−1

a

)2∏B
b=1(q2

b − 1)q2(vb−1)
b

∏C
c=1(rc − 1)r2wc−1

c∏A
a=1 p

ua−1
a (pa − 1)

∏B
b=1 q

vb−1
b (qb + 1)

∏C
c=1 r

wc
c

by (3.4) and (3.5)

=
w(NOK)

2

A∏
a=1

(pa − 1)pua−1
B∏
b=1

(qb − 1)qvb−1
b

C∏
c=1

(rc − 1)rwc−1
c =

w(NOK)
2

φ(N)

= #
{

( t 0
0 t ) : t ∈ (Z/NZ)∗

}
/
{
± ( 1 0

0 1 )
}

where φ is the Euler function for integers. This concludes the proposition. �

4. Ring class invariants

We shall make use of Theorem 2.7 to construct primitive generators of ring class fields as singular
values of quotients of the ∆-function.

The following lemma was studied in [9], but we provide its proof for completeness.

Lemma 4.1. Let N ≥ 1. Then we have the relation
N−1∏
t=1

g12
(0, t

N
)
(τ) = N12 ∆(Nτ)

∆(τ)

where the left hand side is regarded as 1 when N = 1.

Proof. Note the identity

1−XN

1−X
= 1 +X + · · ·+XN−1 =

N−1∏
t=1

(1− ζtNX). (4.1)
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We then deduce that for N ≥ 2
N−1∏
t=1

g12
(0, t

N
)
(τ) =

N−1∏
t=1

(
− q

1
12
τ ζ−t2N (1− ζtN )

∞∏
n=1

(1− qnτ ζtN )(1− qnτ ζ−tN )
)12

by definition (1.2)

= qN−1
τ N12

∞∏
n=1

(
1− qNnτ
1− qnτ

)24

by the identity (4.1)

= N12 ∆(Nτ)
∆(τ)

by definition (1.1).

�

Now we are ready to prove our main theorem.

Theorem 4.2. Let K be an imaginary quadratic field with θ as in (3.1) and O be the order of
conductor N(≥ 2) in K. For the prime factorization

N =
n∏
k=1

pekk ,

we set

NS =


∏
k∈S

pk if S is a nomepty subset of {1, 2, · · · , n}

1 if S = ∅.
If f = NOK satisfies the assumption (2.3) in Lemma 2.5, then the singular value

p12
1

∆(pe11 θ)
∆(pe1−1

1 θ)
if n = 1

∏
S⊆{1,2,··· ,n}

∆
(
N

NS
θ

)(−1)#S

if n ≥ 2
(4.2)

generates HO over K as a real algebraic integer.

Proof. If f = NOK , then gf(C0) = g12N
(0, 1

N
)
(θ) by definition. And, we get that

NKf/HO

(
gf(C0)

)
if N = 2

NKf/HO

(
gf(C0)

)2

if N ≥ 3

=
∏

1≤t≤N−1
gcd(t, N)=1

(
g12N

(0, 1
N

)
(θ)
)( t 0

0 t )
by Proposition 3.6

=
∏

1≤t≤N−1
gcd(t, N)=1

(
g12N

(0, 1
N

)

)( t 0
0 t )

(θ) by Proposition 3.3

=
∏

1≤t≤N−1
gcd(t, N)=1

g12N
(0, t

N
)
(θ) by Proposition 3.2(ii)
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=
∏

S⊆{1,2,··· ,n}

( ∏
1≤t≤N−1
NS | t

g12
(0, t

N
)
(θ)
)N(−1)#S

by inclusion-exclusion principle

=
∏

S⊆{1,2,··· ,n}

( N
NS
−1∏

w=1

g12

(0,
NSw

N
)
(θ)
)N(−1)#S

=
∏

S⊆{1,2,··· ,n}

((
N

NS

)12 ∆( N
NS
θ)

∆(θ)

)N(−1)#S

by Lemma 4.1 (4.3)

which is a generator of HO over K by Theorem 2.7 and Remark 2.8. On the other hand, the value
NKf/HO

(
gf(C0)

)
is an algebraic integer by Proposition 3.2(iii) and the fact that j(θ) is an algebraic

integer([12] or [15]). Furthermore, each factor
∆( N

NS
θ)

∆(θ) appeared in (4.3) belongs to the ring class

field of the order of conductor N
NS

in K as a real algebraic number([12] Chapter 12 Corollary to
Theorem 1). Therefore the value in (4.3) without N -th power generates HO over K as an algebraic
integer. Here, we further observe that∏

S⊆{1,2,··· ,n}

((
N

NS

)12 ∆( N
NS
θ)

∆(θ)

)(−1)#S

=
(
N12

∆(θ)

)∑
S⊆{1,2,··· ,n}(−1)#S ∏

S⊆{1,2,··· ,n}

N
−12(−1)#S

S

∏
S⊆{1,2,··· ,n}

∆
(
N

NS
θ

)(−1)#S

=



(
p12e1

1

∆(θ)

)1−1

p12
1 ∆(pe11 θ)∆(pe1−1

1 θ)−1 if n = 1(
N12

∆(θ)

)∑n
k=0(nk )(−1)k n∏

k=1

p
−12

∑n
`=1

(
n−1
`−1

)
(−1)`

k

∏
S⊆{1,2,··· ,n}

∆
(
N

NS
θ

)(−1)#S

if n ≥ 2

=


p12

1

∆(pe11 θ)
∆(pe1−1

1 θ)
if n = 1

∏
S⊆{1,2,··· ,n}

∆
(
N

NS
θ

)(−1)#S

if n ≥ 2.

This completes the proof. �

Remark 4.3. For a given imaginary quadratic field K, let O be the order of conductor N(≥ 2) in
K with

N =
n∏
k=1

pekk .

We denote by rk the ramification index of pk in K/Q for each k = 1, · · · , n. Assume first that

each pk is an odd prime which is inert or ramified in K/Q. (4.4)

Then we have the factorization

NOK =
n∏
k=1

prkekk with NK/Q(pk) = p
2
rk
k ,
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and

ε̂k =

 1
wK

(p
2
r1
1 − 1)p

2e1− 2
r1

1 if n = 1

(p
2
rk
k − 1)p

2ek− 2
rk

k if n ≥ 2
, εk =

∏n
`=1(p

2
r`
` − 1)p

2e`− 2
r`

`

(p
2
rk
k − 1)p

2ek− 2
rk

k

(k = 1, · · · , n)

by Remark 2.6 and

# Cl(K(N)/HO) =
1
2

n∏
k=1

(pk − 1)pek−1
k

by Proposition 3.6. Assume further that

ek + 1 >
2
rk

for all k = 1, · · · , n and


gcd(p1, wK) = 1 if n = 1

gcd
( n∏
k=1

pk,
n∏
k=1

(p
2
rk
k − 1)

)
= 1 if n ≥ 2. (4.5)

Then, since

pk - εk and ordpk(ε̂k) = 2ek −
2
rk

> ordpk
(
# Cl(K(N)/HO)

)
= ek − 1 (k = 1, · · · , n),

we can take νk = pk as for the assumption (2.3) in Lemma 2.5. Therefore one can apply Theorem
4.2 under the assumptions (4.4) and (4.5).

Example 4.4. If K = Q(
√
−7) and N = 7, then hK = 1([4]), in other words, K = H. Let O be

the order of conductor N in K. Then we get by Propositions 3.3 and 3.6 that

Gal(HO/K) ∼=
(
W7, θ/

{
± ( 1 0

0 1 )
})/({

( t 0
0 t ) : t ∈ (Z/7Z)∗

}
/
{
± ( 1 0

0 1 )
})

=
{

( 1 0
0 1 ) · ( 1 0

0 1 ) , ( 1 0
0 2 ) ·

(−1 −2
4 7

)
, ( 1 0

0 2 ) ·
(

7 12
−10 −17

)
,

( 1 0
0 4 ) ·

(−13 −16
9 11

)
, ( 1 0

0 1 ) ·
(−5 −16

1 3

)
, ( 1 0

0 1 ) ·
(−3 −16

1 5

)
, ( 1 0

0 4 ) ·
(−16 −9

9 5

)}

where θ = −1+
√
−7

2 . Note that we express here elements of Gal(HO/K) in the form of

(
1 0
0 d

)
for some d ∈ (Z/7Z)∗ · an element of SL2(Z).

On the other hand, since 7 is ramified in K/Q and wK = 2, the assumptions (4.4) and (4.5)
in Remark 4.3 (or, the assumption (5.22) in Remark 5.5) are satisfied. Hence the singular value
712 ∆(7θ)

∆(θ) generates HO over K by Theorem 4.2 (or, Theorem 5.4). Furthermore, since the function
∆(7τ)
∆(τ) has rational Fourier coefficients and belongs to F7([12] Chapter 11 Theorem 4), we obtain its
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minimal polynomial by Propositions 3.3 and 3.1 as

min
(
712 ∆(7θ)

∆(θ) , K
)

=
(
X − 712 ∆(7τ)

∆(τ) ◦ ( 1 0
0 1 ) (θ)

)(
X − 712 ∆(7τ)

∆(τ) ◦
(−1 −2

4 7

)
(θ)
)

(
X − 712 ∆(7τ)

∆(τ) ◦
(

7 12
−10 −17

)
(θ)
)(

X − 712 ∆(7τ)
∆(τ) ◦

(−13 −16
9 11

)
(θ)
)

(
X − 712 ∆(7τ)

∆(τ) ◦
(−5 −16

1 3

)
(θ)
)(

X − 712 ∆(7τ)
∆(τ) ◦

(−3 −16
1 5

)
(θ)
)

(
X − 712 ∆(7τ)

∆(τ) ◦
(−16 −9

9 5

)
(θ)
)

= X7 + 234857X6 + 24694815621X5 + 295908620105035X4

+943957383096939785X3 + 356807315211847521X2

+38973886319454982X − 117649.

On the other hand, if we compare its coefficients with those of the minimal polynomial of the
classical invariant j(7θ), we see in a similar fashion that the latter are much bigger than the former
as follows:

min
(
j(7θ), K

)
= X7 + 18561099067532582351348250X6 + 54379116263846797396254926859375X5

+344514398594838596665876837347342843995647646484375X4

+1009848457088842748174122781381460720529620832094970703125X3

+1480797351289795967859364968037513969226011238564633514404296875X2

−3972653601649066484326573605251406741304015473521796878814697265625X
+4791576562341747034548276661270093305105027267573103845119476318359375.

Example 4.5. Let K = Q(
√
−5) and O be the order of conductor N = 6(= 2 · 3) in K. Then

one can readily check that NOK satisfies neither the assumption (2.3) in Lemma 2.5 nor the
assumption (5.22) in Remark 5.5. Even in this case, however, we will see that our method is still
valid. Therefore, it is worth of studying how much further one can release from the assumption
(2.3) in Lemma 2.5 (or, the assumption (5.22) in Remark 5.5).

Observe that hK = 2([4]) and [HO : K] = 8 by Lemma 3.4(i). Since hK = 2, there are two
reduced positive definite binary quadratic forms of discriminant dK = −20

Q1 = X2 + 5Y 2 and Q2 = 2X2 + 2XY + 3Y 2.

We associate to each Qk(k = 1, 2) a matrix in GL2(Z/NZ) and a CM-point as follows:{
β1 = ( 1 0

0 1 ) , θ1 =
√
−5 for Q1

β2 = ( 1 5
3 2 ) , θ2 = −1+

√
−5

2 for Q2.

Then we see from Lemma 20 in [6] that

Gal(H/K) =
{(
h(θ) 7→ hβk(θk)

)∣∣
H

: k = 1, 2
}

where h ∈ FN is defined and finite at θ =
√
−5. Furthermore, it follows from Propositions 3.3 and

3.6 that

Gal(HO/H) ∼=
{
α1 = ( 1 0

0 1 ) , α2 = ( 0 1
1 0 ) , α3 = ( 2 3

3 2 ) , α4 = ( 3 2
2 3 )

}
.
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Hence we achieve that

Gal(HO/K) =
{(
h(θ) 7→ hα`βk(θk)

)∣∣
HO

: ` = 1, · · · , 4, k = 1, 2
}

where h ∈ FN is defined and finite at θ. On the other hand, the conjugates of the singular value
∆(6θ)∆(θ)
∆(2θ)∆(3θ) estimated according to Theorem 4.2 are

x`, k =
(

∆(6τ)∆(τ)
∆(2τ)∆(3τ)

)α`βk
(θk) (` = 1, · · · , 4, k = 1, 2)

possibly with some multiplicity. And, since the function ∆(6τ)∆(τ)
∆(2τ)∆(3τ) ∈ FN has rational Fourier

coefficients, the action of each α`βk on it can be performed as in the previous example. Thus the
minimal polynomial of ∆(6θ)∆(θ)

∆(2θ)∆(3θ) becomes a divisor of∏
`=1,··· ,4, k=1, 2

(
X − x`, k

)
= X8 − 1304008X7 + 16670918428X6 + 30056736254344X5

+23344024601638470X4 + 7327603919934344X3

+1949665164230428X2 − 1597207512008X + 1.

This polynomial is, however, irreducible and hence the singular value ∆(6θ)∆(θ)
∆(2θ)∆(3θ) should be a prim-

itive generator of HO over K.

5. Another approach

We shall develop a different lemma which substitutes for Lemma 2.5, from which we are able to
find more N ’s in Theorem 4.2.

Throughout this section K( 6= Q(
√
−1), Q(

√
−3)) is also an imaginary quadratic field with θ as

in (3.1). For an integer N ≥ 2 let

f = NOK =
n∏
k=1

pekk

and O be the order of conductor N in K. We use the same notations πf, ι, ιk, vk, Φ̃f as in Section
2. And, by Cl(HO/K) we mean the quotient group of Cl(f) corresponding to Gal(HO/K) via the
Artin map, that is,

Cl(HO/K) = Cl(f)/Cl(Kf/HO). (5.1)
We further let Cl(HO/H) stand for the subgroup of Cl(HO/K) corresponding to Gal(HO/H).

Setting
Ψ̌f =

(
Cl(f) −→ Cl(HO/K)

)
◦ Φ̃f : πf(OK)∗ −→ Cl(HO/K), (5.2)

we obtain by the exact sequence (2.1) and Galois theory another exact sequence

1 −→ πf(OK)∗/Ker(Ψ̌f) −→ Cl(HO/K) −→ Cl(OK) −→ 1 (5.3)

with
Ψ̌f

(
πf(OK)∗

)
= Cl(HO/H). (5.4)

And, we know by the fact wK = 2 and Lemma 3.4 that

#πf(OK)∗/πf(Z)∗ =
ϕ(f)
φ(N)

and [HO : H] =
ϕ(f)
φ(N)

.

On the other hand, since Cl(Kf/HO) = PK, Z(f)/PK, 1(f) by definition of HO, we get πf(Z)∗ ⊆
Ker(Ψ̌f); hence we achieve

Ker(Ψ̌f) = πf(Z)∗. (5.5)
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Lemma 5.1. Let G be a finite abelian group and H be a subgroup of G. Then there is a canonical
isomorphism between character groups{

characters of G which are trivial on H
}
−→

{
characters of G/H

}
(5.6)

χ 7→
(
gH 7→ χ(g) : g ∈ G

)
.

Proof. One can readily check that the map in (5.6) is a well-defined injection. For surjectivity, let
ψ be a character of G/H. Then the character

χ = ψ ◦ (G −→ G/H)

of G maps to ψ via the map in (5.6), which claims the surjectivity. �

Thus we have a canonical isomorphism{
characters of Cl(f) which are trivial on Cl(Kf/HO)

}
−→

{
characters of Cl(HO/K)

}
(5.7)

by Lemma 5.1 and definition (5.1). For any character ψ of Cl(HO/K) we define

ψ̌ = ψ ◦ Ψ̌f and ψ̌k = ψ̌ ◦ ι ◦ ιk (k = 1, · · · , n).

If χ maps to ψ via the map in (5.7), then we derive

χ̃ = χ ◦ Φ̃f = ψ ◦
(
Cl(f) −→ Cl(HO/K)

)
◦ Φ̃f by the proof of Lemma 5.1

= ψ ◦ Ψ̌f = ψ̌ by definition (5.2)

so that
χ̃k = ψ̌k for all k = 1, · · · , n.

Lemma 5.2. Let

U =
{

characters of Cl(HO/K) which are trivial on Cl(HO/H)
}

V =
{

characters of Cl(HO/H)
}

W =
{

characters of Cl(HO/K)
}

Gk = v̂k ◦ ι−1
(
πf(Z)∗

)
(k = 1, · · · , n)

where

v̂k :
n∏
`=1

πp
e`
`

(OK)∗ −→ πp
e1
1

(OK)∗ × · · · × π
p
ek−1
k−1

(OK)∗ × π
p
ek+1
k+1

(OK)∗ × · · · × πpenn (OK)∗

is the natural projection which deletes the k-th component. For each character ψ ∈ V , fix a character
ψ′ ∈W which extends ψ (by Lemma 2.4).

(i) There is a bijective map

U × V −→ W

(χ, ψ) 7→ χ · ψ′.

(ii) We have the inequality

#
{
ξ ∈W : ξ̌k = 1

}
≤ hK

#πf(OK)∗

#πp
ek
k

(OK)∗ ·#Gk
(k = 1, · · · , n).
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Proof. (i) We see from Lemma 5.1 that both U ×V and W have the same size. Hence it suffices to
show that the above map is injective, which is straightforward.
(ii) Without loss of generality it suffices to show that there is an injective map

S =
{
ξ ∈W : ξ̌n = 1

}
−→ U ×

{
characters of

n−1∏
k=1

πp
ek
k

(OK)∗
/
Gn

}
,

because #U = hK by Lemma 5.1 and #
∏n−1
k=1 πp

ek
k

(OK)∗/Gn = #πf(OK)∗

#πp
en
n

(OK)∗·#Gn .

Let ξ ∈ S. Then as an element of W , ξ is of the form χ · ψ′ for some χ ∈ U and ψ ∈ V by (i).
And, by (5.4) and the fact χ ∈ U we get

χ̌ = χ ◦ Ψ̌f = 1,

from which it follows that
1 = ξ̌n = (χ̌ · ψ̌′)n = ψ̌′n. (5.8)

We further deduce by (5.4) that

ψ̌′ = ψ′|
Ψ̌f

(
πf(OK)∗

) ◦ Ψ̌f = ψ′|Cl(HO/H) ◦ Ψ̌f = ψ ◦ Ψ̌f. (5.9)

On the other hand, if β is a character of
∏n
k=1 πp

ek
k

(OK)∗ defined by

β = ψ ◦ Ψ̌f ◦ ι, (5.10)

then we derive that

β ◦ ιn
(
πpenn (OK)∗

)
= ψ ◦ Ψ̌f ◦ ι ◦ ιn

(
πpenn (OK)∗

)
= ψ̌′ ◦ ι ◦ ιn

(
πpenn (OK)∗

)
by (5.9)

= ψ̌′n
(
πpenn (OK)∗

)
= 1 by (5.8),

which implies
ιn
(
πpenn (OK)∗

)
⊆ Ker(β). (5.11)

Furthermore, we have

β ◦ ι−1
(
πf(Z)∗

)
= ψ ◦ Ψ̌f

(
πf(Z)∗

)
= 1 by (5.5),

which claims
ι−1
(
πf(Z)∗

)
⊆ Ker(β). (5.12)

Hence β can be written as

β = γ ◦
( n∏
k=1

πp
ek
k

(OK)∗ −→
n∏
k=1

πp
ek
k

(OK)∗
/〈

ιn
(
πpenn (OK)∗

)
, ι−1

(
πf(Z)∗

)〉)
(5.13)

for a unique character γ of
∏n
k=1 πp

ek
k

(OK)∗
/〈
ιn
(
πpenn (OK)∗

)
, ι−1

(
πf(Z)∗

)〉
by Lemma 5.1, (5.11)

and (5.12).
Now, we define a map

κ : S −→ U ×
{

characters of
n−1∏
k=1

πp
ek
k

(OK)∗
/
Gn

}
ξ 7→ (χ, γ ◦ ι̂n)
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where

ι̂n :
n−1∏
k=1

πp
ek
k

(OK)∗
/
Gn −→

n∏
k=1

πp
ek
k

(OK)∗
/〈

ιn
(
πpenn (OK)∗

)
, ι−1

(
πf(Z)∗

)〉
is definitely a surjection by definition of Gn. To prove the injectivity of the map κ, assume that
κ(ξ1) = κ(ξ2) for some ξ1, ξ2 ∈ S. Then, by (i) there are unique χ1, χ2 ∈ U and ψ1, ψ2 ∈ V such
that ξ1 = χ1 ·ψ′1 and ξ2 = χ2 ·ψ′2. And, by definition of κ we get χ1 = χ2. Let ψ`(` = 1, 2) induce
β` and γ` in the above paragraph (which explains β and γ constructed from ψ). Then, since ι̂n is
surjective, we obtain γ1 = γ2 from the fact γ1 ◦ ι̂n = γ2 ◦ ι̂n, and so we have β1 = β2 by (5.13). It
then follows from the definition (5.10), the fact ψ1, ψ2 ∈ V and (5.4) that ψ1 = ψ2, which concludes
the injectivity of κ. This completes the proof. �

Lemma 5.3. Let F be a field such that K ⊆ F ( HO. If

2#πf(Z)∗
n∑
k=1

1
#πp

ek
k

(OK)∗ ·#Gk
< 1, (5.14)

then there is a character χ of Cl(f) such that

χ|Cl(Kf/HO) = 1, χ|Cl(Kf/F ) 6= 1 and pk | fχ for all k = 1, · · · , n. (5.15)

Proof. We first derive that

#
{

characters χ of Cl(f) : χ|Cl(Kf/HO) = 1, χ|Cl(Kf/F ) 6= 1
}

= #
{
χ of Cl(f) : χ|Cl(Kf/HO) = 1

}
−#

{
χ of Cl(f) : χ|Cl(Kf/F ) = 1

}
= #Cl(f)/Cl(Kf/HO)−#Cl(f)/Cl(Kf/F ) by Lemma 5.1

= [HO : K]− [F : K] = [HO : K]
(

1− 1
[HO : F ]

)
≥ 1

2
[HO : K] by the fact F ( HO

=
hK
2

#πf(OK)∗/πf(Z)∗ from the exact sequence (5.3) and (5.5)

> hK#πf(OK)∗
n∑
k=1

1
#πp

ek
k

(OK)∗ ·#Gk
by the assumption (5.14).

On the other hand, we get that

#
{
χ of Cl(f) : χ|Cl(Kf/HO) = 1, pk - fχ for some k

}
≤ #

{
χ of Cl(f) : χ|Cl(Kf/HO) = 1, χ̃k = 1 for some k

}
by Lemma 2.1

= #
{
ξ of Cl(HO/K) : ξ̌k = 1 for some k

}
by the argument followed by Lemma 5.1

≤ hK#πf(OK)∗
n∑
k=1

1
#πp

ek
k

(OK)∗ ·#Gk
by Lemma 5.2(ii).

Therefore, there exists a character χ of Cl(f) which satisfies the condition (5.15). �

Theorem 5.4. If f = NOK satisfies the assumption (5.14) in Lemma 5.3, then the singular value
in (4.2) generates HO over K as a real algebraic integer.

Proof. Let ε = NKf/HO

(
gf(C0)

)
and F = K(ε) as a subfield of HO. Suppose that F is properly

contained in HO, then there is a character χ of Cl(f) satisfying the condition (5.15) in Lemma 5.3.
Since pk | fk for all k = 1, · · · , n, the Euler factor of χ in Proposition 2.2 is 1, and hence the value
Sf(χ, gf) does not vanish by Remark 2.3(ii). On the other hand, we can derive Sf(χ, gf) = 0 by
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using the condition (5.15) of χ in exactly the same way as the proof of Theorem 2.7, which gives
rise to a contradiction. Therefore HO = K(ε), and hence we can apply the argument of Theorem
4.2 to complete the proof. �

Remark 5.5. Let

N =
A∏
a=1

suaa

B∏
b=1

qvbb

C∏
c=1

rwcc

be the prime factorization of N where each sa (respectively, qb and rc) splits completely (respec-
tively, is inert and ramified) in K/Q and A, B, C ≥ 0. Then we have the prime ideal factorization

f = NOK =
A∏
a=1

(sasa)ua
B∏
b=1

qvbb

C∏
c=1

r2wc
c

with
NK/Q(sa) = NK/Q(sa) = sa, NK/Q(qb) = q2

b , NK/Q(rc) = rc.

Now, for the sake of convenience, we let

f =
2A+B+C∏
k=1

pekk

with

(pk, ek) =


(sk, uk) for k = 1, · · · , A
(sk−A, uk−A) for k = A+ 1, · · · , 2A
(qk−2A, vk−2A) for k = 2A+ 1, · · · , 2A+B
(rk−2A−B, 2wk−2A−B) for k = 2A+B + 1, · · · , 2A+B + C,

(5.16)

and consider the surjection

µk = v̂k ◦ι−1 : πf(Z)∗ −→ Gk
(
⊆ πp

e1
1

(OK)∗×· · ·×π
p
ek−1
k−1

(OK)∗×π
p
ek+1
k+1

(OK)∗×· · ·×πpenn (OK)∗
)
.

If m (mod f) ∈ πf(Z)∗ belongs to Ker(µk), then

(1, · · · , 1︸ ︷︷ ︸
n−1

) = µk
(
m (mod f)

)
= v̂k ◦ ι−1

(
m (mod f)

)
=

(
m (mod pe11 ), · · · , m (mod p

ek−1

k−1 ), m (mod p
ek+1

k+1 ), · · · , m (mod penn )
)
, (5.17)

which shows

ι−1
(
Ker(µk)

)
⊆ ιk

(
πp

ek
k

(Z)∗
)

=
{

(1, · · · , 1, t (mod pekk ), 1, · · · , 1) : t ∈ Z which is prime to pk
}
.

Hence, this gives the inequality

#Gk =
#πf(Z)∗

#Ker(µk)
≥

#πf(Z)∗

#πp
ek
k

(Z)∗
. (5.18)

In particular, if k = 1, · · · , 2A, then µk becomes injective (and so, bijective). Indeed, if m
(mod f) ∈ πf(Z)∗ belongs to Ker(µk), then

m ≡ 1 (mod pe`` ) for ` 6= k (5.19)

by (5.17). But, since m is an integer, (5.19) implies

m ≡ 1 (mod p e`
` ) for ` 6= k. (5.20)
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On the other hand, since pk = pk+A or pk−A by definition (5.16), we deduce by (5.19) and (5.20)
that

m ≡ 1 (mod pe`` ) for all ` = 1, · · · , n,
from which we get m ≡ 1 (mod f). This concludes that µk is injective; hence

#Gk = #πf(Z)∗ for k = 1, · · · , 2A. (5.21)

Thus we achieve by (5.18), (5.21) and the Euler function for integers and ideals that

(LHS) of (5.14) ≤ 4
A∑
a=1

1
(sa − 1)sua−1

a

+ 2
B∑
b=1

1
(qb + 1)qvb−1

b

+ 2
C∑
c=1

1
rwcc

.

Therefore, one can also apply Theorem 5.4 under the assumption

4
A∑
a=1

1
(sa − 1)sua−1

a

+ 2
B∑
b=1

1
(qb + 1)qvb−1

b

+ 2
C∑
c=1

1
rwcc

< 1. (5.22)

Example 5.6. Let K = Q(
√
−2) and O be the order of conductor N = 9(= 32) in K. Then

NOK satisfies the assumption (5.22) in Remark 5.5 (but, not the assumption (2.3) in Lemma 2.5)
and hence the singular value 312 ∆(9θ)

∆(3θ) with θ =
√
−2 generates HO over K by Theorem 5.4. Since

hK = 1([4]), one can estimate its minimal polynomial in exactly the same way as the previous
examples:

min
(
312 ∆(9θ)

∆(3θ) , K
)

= X6 + 52079706X5 + 2739284675932815X4 + 12787916715651570220X3

+190732505724302106460815X2 − 268398119546256294X + 1.
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