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RAY CLASS FIELDS GENERATED BY TORSION POINTS OF CERTAIN
ELLIPTIC CURVES

JA KYUNG KOO, DONG HWA SHIN, AND DONG SUNG YOON

ABSTRACT. We first normalize the derivative Weierstrass g’-function appearing in the Weierstrass
equations which give rise to analytic parametrizations of elliptic curves by the Dedekind n-function.
And, by making use of this normalization of @’ we associate certain elliptic curve to a given imagi-
nary quadratic field K and then generate an infinite family of ray class fields over K by adjoining
to K torsion points of such elliptic curve(Theorem 5.3). We further construct some ray class invari-
ants of imaginary quadratic fields by utilizing the singular values of the normalization of ', as the
y-coordinate in the Weierstrass equation of this elliptic curve(Theorem 6.2, Corollary 6.4), which
would be a partial result for the Lang-Schertz conjecture of constructing ray class fields over K by
means of the Siegel-Ramachandra invariant([10] p.292, [13] p.386).

1. INTRODUCTION

Let K be an imaginary quadratic field with discriminant dg < —7 and Ok be its ring of integers.
Let 6 be an element in the complex upper half plane $) which generates Ok, namely O = [0, 1].
For an elliptic curve E (over C) with invariant j(Og) = j(#) where j is the elliptic modular
function, there is an analytic parametrization

¢ : C/Ox =5 ECPC) : y? =42 — g2(O)x — g3(O) (1.1)

where g2(Ok) = 603 ,,c0,\ {0} ﬁ and g3(Or) = 1403 ,c0,0\ (0} ﬁ([lE)]) Let h be the Weber
function on F defined by

35 92(0k)93(Ok)

A(Ok)
where A(Og) = g2(Ok)? —27g3(Ok)?. If H and K|y are the Hilbert class field and the ray class
field modulo NOg of K for each integer N > 2, respectively, we know from the main theorem of
complex multiplication that

H=K(j(Ok)) and K(N)—K<j(OK)7 h(w(}v))>

([10] or [14]). Thus in order to describe a ray class field Ky we are to use only the z-coordinates
of the Weierstrass equation in (1.1). However, we want to improve in this paper the above result
so that we are able to rewrite it as

Ko = K (p(L)) = K<x(so(}v)), y(sa(;V)))

by an appropriate modification of the curve in (1.1).

h(fE, y) = 727
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Ishida-Ishii showed in [4] that for N > 7 the function field C(X{(N)) of the modular curve
X1(N) = T'1(N)\$H* can be generated by two functions X;NN and X2V where $* = § UPL(Q),
L(V) = { (24) €SLa(2Z): (£4) = (41) (mod N)} and

N-1¢

() T s 1)(7)

_J 1 if Nisodd _ (L-nm % % B - 3, L)
gN_{2 if Niseven 2207 =€ H Xy(r) = el He ) (7)
N N

as finite products of the Klein forms(see Sectlon 2) They further presented an algorithm to find
a polynomial Fy(X, Y) € Z[(n][X, Y] with (y = ¢ % such that FN(XENN, X3) = 0, which
can be viewed as an affine singular model for the modular curve X;(N). And, for a fixed level N,
Hong-Koo([3]) pointed out that if P = (X2(6)*¥", X3(0)") is a nonsingular point on the curve
defined by the equation Fy (X, Y) = 0, then the ray class field Ky is generated by adjoining P
to K. But it leaves us certain inconvenience of finding the polynomial Fx (X, Y) explicitly.

In this paper we will develop this theme of [3] from a different point of view to overcome such
inconvenience. First in Section 3 we shall normalize the derivative Weierstrass g/-function by the
Dedekind n-function to be a modular function and then we associate certain elliptic curve to a
given imaginary quadratic field K with dg < —39. Next, we will find an infinite family of ray class
fields K(y) generated by adjoining to K certain N-torsion points of such elliptic curve if N > 8
and 4 | N(Theorem 5.3).

Furthermore, we shall show by adopting Schertz’s argument([13]) that certain singular value of
the normalization of ¢, as the y-coordinate in the Weierstrass equation of the above elliptic curve,
gives rise to a ray class invariant of K(y) over K for some N, for example N = p™ where p is an
odd prime which is inert or ramified in K/Q(Corollary 6.4 and Remark 6.5). Here we note that
Theorem 6.2, Corollary 6.4 and Remark 6.5 give us partial results of the Lang-Schertz conjecture
concerning the Kronecker Jugendtraum over K. These ray class invariants are, in practical use,
simpler than those of Ramachandra([12]) consisting of too complicated products of high powers of
singular values of the Klein forms and singular values of the A-function.

2. MODULAR FORMS AND FUNCTIONS
For a lattice L in C the Weierstrass p-function is defined by

o(2; S+ > ( ;) (z € C), (2.1)

weL\{0}
and the Weierstrass o-function is defined by
L) = _ 2 )i 32
o(z; L)==z H (1 w) (z € C).
weL\{0}
Taking the logarithmic derivative we come up with the Weierstrass (-function
o'(z; L) 1 1 1z
i L)=—"732=- —+ —+ = C).
¢z L) o(z; L) 2T Z <z—w+w+w2> (2€C)
weL\{0}

Then, differentiating the function {(z +w; L) — ((z; L) for w € L results in 0, because ('(z; L) =
—p(z; L) and the p-function is periodic with respect to L. Hence there is a constant n(w; L) such
that {(z +w; L) =((z; L)+ n(w; L).

For a pair (71, r2) € Q?\ Z? we define the Klein form as

By, (1) = €T HOIIIOTI g (i g [ 1)) (7€ C)
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where m = n(7; [7, 1]) and n2 = n(1; [, 1]). And we define the Siegel function by

9(r1, Tz)(T) = E(7"1, 7‘2)(7—)772(7—) (T € 57))
where 7 is the Dedekind n-function satisfying

1 A
n(T) = V2r(sq#* H(l —qr) (¢r =¥, 1€ 9). (2.2)
n=1
If we let Bo(X) = X2 - X + % be the second Bernoulli polynomial, then from the ¢,-product
formula of the Weierstrass o-function([10] Chapter 18 Theorem 4) and (2.2) we get the following
Fourier expansion formula
%BQ(TI) wirg(ri—1) - n n, —1
I, ) () = =2 Ve (1—q) [T = ga)(0 = qPq ) (2.3)
n=1
where ¢, = €?™% with z = r17 4 ro. Here we note that (7) and 9(r1, r2)(T) have no zeros and poles
on $ due to (2.2) and (2.3). And, we have the order formula

ordy, (s, (7)) = 5Ba((ra) (2.4)

where (X) is the fractional part of X € R with 0 < (X) < 1([8] Chapter 2 Section 1).
Next, we further define

1 1
@(L)=60 3 . g(L)=140 Y~ AL)=g(L)’ - 27gs(L)° (2.5)
weL\{0} weL\{0}

and the elliptic modular function by

- _ 96 592(L)°
j(L) =23 ALY (2.6)
Proposition 2.1. (i) For T € $ we have the following Fourier expansion formulas
1 o0
() = a7, 1) = (20" g5 (14200 Y ) )
n=1
1 > N
g3(1) = gs([r, 1]) = (27T)6@ (1 - 5042%(”)%)
n=1
A(r) = A([r, 1]) = @2mi) ¢ [T(1 - o)™
n=1
where
or(n) = Z d~.
d>0, djn

(ii) On 9, go(7) (respectively, gs(7)) has zeros only at o((3) (respectively, a(Ca)) for o € SLa(Z),
and has no poles.

Proof. See [10] Chapters 3, 4 and 18. a
Remark 2.2. (i) By definition (2.2) and Proposition 2.1(i) we see the relation
n(r)* = A(7). (2.7)
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(ii) It follows from definition (2.6) and Proposition 2.1(i) that j(7) = j([r, 1]) has the Fourier
expansion with integer coefficients

1
§(7) = — + 744 + 196884g, + 2149376042 + 8642999704> + 20245856256¢" + - - - .

T

For each integer N > 1, let

T'(N) = { <‘CL Z) € SLy(Z) : (‘CL Z) = (é ?) (mod N)}.

Proposition 2.3. We have the following modularity:

Functions

Mot 92(7) | ga(r) | () [ () [ () | ()2 | (2t | o)
with respect to (1) [ T(1) |[T(12) | T'(6) | T'(3) | I'(2) | I'(1) |I'(1)
weight 4 6 1 2 3 6 12 0
Proof. See [10] Chapter 3 Section 2 and [8] Chapter 3 Lemma 5.1. O

For a pair (r1, r2) € Q?\ Z? we now define the Fricke function

fy, vy (7) = —273592(7)93(T)p(£t:)+ i n 1) p ), (2.8)

and for N > 1 we let

Fn = Q(](T), f(,nl7 TQ)(T) : (7‘1, 7‘2) € ;IZ\Z2> (2.9)

which we call the modular function field of level N rational over Q((n).
Proposition 2.4. Let N > 1 and X(N) denote the modular curve T'(N)\$H* where $* = HSUPL(Q).
(The points of PL(Q) = QU {oo} are called cusps.) Then

(i) C(X(N)) = CFy.

(ii) Fn coincides with the field of functions in (C(X(N)) whose Fourier expansions with respect

e
to ¢ have coefficients in Q(({n).

Proof. See [14] Propositions 6.1 and 6.9(1). O

Proposition 2.5. Fy is a Galois extension of F1 = @(j(T)) whose Galois group is isomorphic to
GL2(Z/NZ)/{x12}. In order to describe the Galois action on Fy we consider the decomposition

QLo(Z/NTZ) /{+ 15} = { (é 2) . de (Z/NZ)*}-SLQ(Z/NZ)/{ilg}.

Here, the matriz (é 2) acts on Y > cnqﬁ € Fn by
o0 n o0 n
> e = 3
n=-—o00 n=-—00

where o4 1s the automorphism of Q({n) induced by (n +— Cj‘f,. And, for an element vy € SLo(Z/NZ)/{x12}
let v' € SLa(Z) be a preimage of v via the natural surjection SLo(Z) — SLa(Z/NZ)/{x12}. Then
v acts on h € Fn by composition

hs ho~

as linear fractional transformation.
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Proof. See [10] Chapter 6 Theorem 3. O
Proposition 2.6. Let N > 2. A finite product of Siegel functions
I1 gr(r)™")
r=(r1, ro)€%Z2\Z?
belongs to Fn if
Zm J(Nr)® =D m(r)(Nr)?> =0  (mod ged(2, N) - N)

T

Zm )J(N71)(Nr2) =0 (mod N)
Zm -ged(12, N)=0 (mod 12).

Proof. See [8] Chapter 3 Theorems 5.2 and 5.3. O

3. NORMALIZATION OF p, BY DEDEKIND 7)-FUNCTION AND SOME GEOMETRY

Let L be a lattice in C. An elliptic curve E (over C) with invariant j(L) has an analytic
parametrization in the projective plane P?(C) with homogeneous coordinates [X : Y : Z] via
¢ : C/L = FE :Y?Z=4X3—- g(L)XZ? - g3(1) 23 (3.1)
z o ez L) (2 L) 2 1]
([15] Chapter VI Proposition 3.6(b)). And we have a relation
o(2z; L)

@/(Z; L) - _O'(Z; L)4

(3.2)

([15] p.166).
Let N > 2 and L = [r, 1] with 7 € § as a variable. Furthermore, let z = ri7 4+ ry with
(r1, 2) € %Z*\ Z*. By (3.1) and (3.2) the Weierstrass equation satisfies
o(2rT + 2r9; [7, 1])2
o(rir +ry [, 1])8
Now we set

ur) = 200y = 90)

=4p(r7+ry; [1, 1))° = ga(T)p(r17 + ro; [1, 1]) — g3(7). (3.3)

9(27’1 s 27”2) (7—)

= = oz Lo ra)(7) = =575 fr1, v2) () Y, ) (7) = = PR (3.4)

Then one can readily check that the equation (3.3) becomes
WD)V Yy, ) (T)2 = 42(py 1 (T)° = u(T)o(7)?2(7) — u(r)o(r)™. (3.5)

Moreover, by (2.5) and (2.7) we have an additional relation
u(t) — 27v(7)? = 1. (3.6)

Combining (3.5) and (3.6) we further obtain some geometric fact. To this end we first need the
following lemma.

Lemma 3.1. (i) Let 11, 70 € 9. Then j(m1) = j(r2) if and only if 7o = ~(11) for some
AS SLQ(Z).
(i1) Let L be a lattice in C and z1, zo € C\ L. Then p(z1; L) = p(z2; L) if and only if z1 = £z9
(mod L).
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(iii) For (r1, m2) € Q2 \ Z? we have
0 -1 .

I, Mo (] o) = (129, (8 —01)(7) = (Pal(rs, —r)(7)
11
G, ) () 0 (0 1) = Gl 3T = e, e (7
Proof. See [1] Theorem 10.9, Lemma 10.4 and [7] Proposition 2.4(2). O

Proposition 3.2. Let P3(C) be the projective space with homogeneous coordinates [V : X : Y : Z]
and S be a surface in P3(C) given by the homogeneous equation

(Z2 +21VAV3Y2 = 4Xx37 — (2% + 21VHV2X Z2 — (22 + 2TVH)VAZ.
Let Ty, 4(N) be the congruence subgroup I'1(N)NT(4) where T1(N) = {(24) € SLo(Z) : (28)

(§%) (mod N)} and X1, 4(N) be its corresponding modular curve Ty, 4(N)\$*. If 4 | N, then we
have a holomorphic map

L X1 4(N) — S
T o u(r) iz %)( T) 1Y, %)( T):1].

In particular, if M is the image of {cusps, a((3), a(C4) : @ € SLa(Z)} via the natural quotient
map $* — X1, 4(N), then the restriction morphism v : X1 4(N)\ M — S gives an embedding into
P3(C).
Proof. Let 4 | N. Since the functions v(7), z, %)(7), Yo, %)(T), 1 are not all identically zero, the
map ¢ extends to a holomorphic map defined on all of the modular curve X;, 4(N)([11] Chapter V
Lemma 4.2) and its image is contained in S by (3.5) and (3.6) provided that it is well-defined.

Since v(7) € C(X(2)) by Proposition 2.3, v(r) € C(Xy, 4(INV)). And, (q, %)(T) € Fn by
definition (2.9) and y, %)(T) € Fn by Proposition 2.6. Here we observe that I't(N) = (D(N), T =
(§1)). We then obtain by definition (2.8) and Proposition 2.3 that

92(T(7))g3(T (7)) p (7 [T(7), 1])

o, py(m)e T AT()
Mol 41 1)
A( )
92(7)g3(T )@( ])V [, 1]) — a0, 10

from which we get z, %)(7) € C(X1(N)) € C(Xy, 4(N)). On the other hand, if v € I'y, 4(N)(C

I'1(N)), then ~ is of the form (y,7°¢)--- (y,7°") for some ~v1,--- ,v, € I'(N) and e1,--- ,e, € Z
such that e; +---+ e, =0 (mod 4). Thus we derive from the fact y, %)(7) € Fn that

90, 3)(7) 90, 2)(7) . .
Yo, (T er = (0> oy = (W) o(mT) - (vT)

1
N

—3(€1+"'+€n)g(0’7%)(7—) by Lemma 3.1

= (9 90, %)(7)4
90, %)(7_)

= — 7 =Y i)(T) by the fact e +---+ e, =0 (mod 4),
90, %)(7) TN
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which yields y %)(7) € C(X1, 4(N)). Hence the map ¢ is well-defined.

Now, assume ¢(71) = t(72) for some points 71, 75 € H* \ {cusps, «((3), a({y) : o € SLa(Z)}.
Then we deduce by definitions (2.6) and (3.4) that

Jdo 2y(11) g 2y(72)
(12) and © w) 1= © x) I
9o, 1M 9, 1y(m2)

j(ﬁ) :j(Tz)a f(o, %)(7'1) = f(o

7%)

(Note that all functions v(7

), @
for some vy = (¢ %) € SLy(Z) by the fact j(m1) = j(m2) and Lemma 3.1(i). Moreover, it follows from
)(2) and definition (2.8) that

( ) Yo, %)( 7) do not have poles on £).) So we get 7o = (1)

the fact f(o, 1y (71) f( L
g2(m)gs(m) (55 [m1, 1)) _ 92(12)g3(12) (575 [72, 1))
A(Ty) A(72)
92(7(1)) g3 (v(m)) 9( 575 [v(m), 1) ga(mi)gs(m) el (em + d); [, 1))

A(’Y(Tl)) B A(ry)

due to Proposition 2.3 and definition (2.1). And, we achieve by Proposition 2.1(ii) and Lemma
3.1(ii)

11
N = iN(CTl +d) (mod [, 1]),
from which we have ¢ =0 (mod N) and d = £1 (mod N). Hence the relation det(y) = ad —bc = 1
implies a = d = £1 (mod N). Thus we may assume that  belongs to the congruence subgroup
I'1(N) because v and —~ give rise to the same linear fractional transformation. On the other hand,
since I'1(N) = (D(N), T = (1)), 7 is of the form (y1T)---(y,T°") for some vi,--+ ,yn €
I'(N) and ey,--- ,e, € Z such that e; + <+ 4 e, =0b (mod N). Furthermore, from the fact that

50, 2™ 90, 2)(72) 50, 2)(7)

9(07 %)(7’1)4 - g(O, %)(72)4 9(0, (7_)4 € fN we derive
90, 2)(T1) 90, 2)(12) 9, %)(’y(n)) /90, 2)(7)
()t (r2)* 4 ()4 oy(71)
(0, $H\71 9, H\2 90, %)(7(71)) 90, 1)
) S0 (™)

900, 2(7)
_ ( g0, V) by Lemma 3.1(iii).

a 90 )(7')4
Therefore e; + -+ -+ e, =0 (mod 4), and so b =0 (mod 4) because e; +---+¢e, =b (mod N) and
4 | N. We then see that v belongs to the congruence subgroup I'; 4(N), which implies that 71 and

T represent the same point on X, 4(N) \ M. This proves that the restriction morphism is indeed
an embedding as desired. O

> o(mT) - (T ) (1) = C12 (crtten 90, 1 ()

1
N

Remark 3.3. (i) Unfortunately, however, the morphism ¢ : X; 4(N) — S is not injective. For
instance, one can check it with the cusps. Indeed, let s be a cusp of width w and o« = (“CL g)
be an element of SLa(Z) such that a(co) = s. Then we get that

ords(v(1)) = wxordg, (v(r)oa) =w x tord, ((u(r) — 1) oa) by the relation (3.6)
w x Sordy, ((2 s33J(T) —1) o) by definitions (3.4) and (2.6)
= wx jordg, (% j(t) —1) by Proposition 2.3

= wx (—3) by Remark 2.2(ii). (3.7)
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And, we further obtain that

9(0 l)(T)
ords | Yy 1 T>:w><ord7<’Noa>
( o N)( ) ! 9o, %)(7')4

> by Lemma 3.1 because SLy(Z) = ( (

=]
ol
[
SN—
—
o
=
N~—
~

3 {wx(<fv>—i) if 0 < () <3 (,s0 (%) =2(%))
Sl (@) ) <) <1 so () =2%) - 1),
It then follows
w X ) < ord, Yo )wa}l, (3.8)

whose first equality holds if and only if () = 0. On the other hand, we have by (3.5) and
(3.6)

)(7') — (1 + 271)(7')2)11(7')4.
(3.9)
Let ¢t = ord, (x(O, %)<T)) and assume () # 0. Observe that there exist at least two such

inequivalent cusps with respect to I';, 4(N), for example s = 1, —1. Then we derive by
(3.7) and (3.8)

)(7')3 — (1 + 2721(7’)2)’0(7')21'(0

2=

)

z|~

w x (—3) < ord, (LHS of (3.9)). (3.10)
In this case, if ¢ # w x (—1), then one can readily check that

wx (=3) ift>wx

ord,(RHS of (3.9)) = { ” 1l w E
N))-

because ord,(+) is a valuation on the function field C (X1, 4( Hence, this fact and (3.10)
lead to a contradiction to the identity (3.9), and so ¢t = w x (—1). Therefore we claim that

(i), D o)
o, %)(T) oa /|, g , %)(7) oa/l, —o g, %)(T) o«

([11] Chapter V Lemma 4.2), from which we conclude that the morphism is not injective.
As for the possible zeros of T, L )(T) in $, it is probable that the restriction morphism

t:T1, 4(N)\$H — S is injective. For example, if N = 4, then the image of {a((3), a(4) :
a € SLy(Z)} via the natural quotient map $* — X, 4(IV) consists of 20 points, namely

qT_J:[o:Lo:o]

1 2¢3—1 (3—2
{CS» <3+1, C3+27 <3+3 <3+17 —C3+2’ 3C§+2’ 42_17

1 Gl G-l Q=2 G2 2G4l
G Gl G2 Gt3 5 o oI G S A1 Sh-D 3hie )

And, by numerical computation one can show that the value of Yo, L )(7') at each point is
»'N
distinct, which implies that the restriction morphism ¢ is injective.
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(iii) It seems that in the above proposition there should be an additional hidden relation between
v(7) and yq %)(T) because y, %)(7) is a modular unit(see [8] or [7]). That is, y %)(T)
satisfies a monic polynomial

= I —ye 1))
’yEGal(}—N/}—l)
with coefficients in Q[v(7)]. If we consider f(Y') as a polynomial f(V, Y) of Y and V, then

the intersection of S and a hypersurface obtained from f(V, Y') may be a (singular) curve
in P3(C).

4. EXPLICIT DESCRIPTION OF SHIMURA’S RECIPROCITY LAW

We shall briefly review an algorithm of determining all conjugates of the singular value of a
modular function, from which we can find the conjugates of the singular values of certain Siegel
functions due to [2](or [16]) and [6].

Throughout this section by K we mean an imaginary quadratic field with discriminant dx and
define

o { @ for dg =0 (mod 4) (4.1)

% for dg =1 (mod 4),

from which we get Ox = [0, 1]. And, we denote by H and Ky the Hilbert class field and the ray
class field modulo NOg over K for an integer N > 1, respectively.

Proposition 4.1. By the main theorem of complex multiplication we derive that
() H = K(j(9)).
(i) Ky =K (h(0) : h e Fy is defined and finite at 0).
(iif) If dx < —7 and N > 2, then K(ny = H(fq 1,(9)).

Proof. See [10] Chapter 10. O

Proposition 4.2. Let min(f, Q) = X2 + ByX + Cy € Z[X]. For every integer N > 2 the matrix
group

Wy, 9= { (tfes 395> € GLy(Z/NZ) : t, s e Z/NZ}

gives rise to the surjection

VVN7 0 — Gal(K(N)/H)
a <h(9) — ha(9)>
where h € Fy is defined and finite at 0. If di < —7, then the kernel is {£12}.
Proof. See [2] or [16]. O

Under the properly equivalent relation, primitive positive definite quadratic forms aX?4+bXY +
cY? of discriminant dx determine a group C(dg), called the form class group of discriminant d .
We identify C(dg) with the set of all reduced quadratic forms, which are characterized by the
conditions

—a<b<a<c or 0<b<a=c (4.2)
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together with the discriminant relation
b — dac = dg. (4.3)

From the above two conditions for reduced quadratic forms we deduce

1<a< /=, (4.4)

As is well-known([1]) C(dg) is isomorphic to Gal(H/K). Now, for a reduced quadratic form
Q = aX? +bXY + cY? of discriminant dy we define a CM-point

—b+Vdk
= Y = 4.
e o0 (4.5)
Furthermore, we define 8o = (8p)p € I, . prime GL2(Zp) as

b
<8 %) if pta
_b _
By = <12 OC> ifplaand pte fordxg =0 (mod 4) (4.6)
D
< 21 2_1 > if plaandp|c
and
b—1
g % ifpta
b1
By = ( % 0) ifplaandpte fordxy =1 (mod 4). (4.7)
b1 _ T 1-b
< 21 @ 2_1 C) ifplaandp]|c

Proposition 4.3. Assume dx < —7 and N > 2. Then we have a bijective map
VVN7 9/{:1:12} X C(dK) — Gal(K(N)/K)
(@, Q) — ()~ m2160))
Here, h € Fn is defined and finite at 0. The action of o on Fy is the action as an element of
GL2(Z/NZ)/{£13} = Gal(Fn/F1). And, as for Bg we note that there exists 3 € GL3 (Q) N Ma(Z)

such that 8 = B, (mod NZ,) for all primes p dividing N by the Chinese remainder theorem. Thus
the action of Bg on Fn is understood as that of B which is also an element of GLa(Z/NZ)/{£12}.

Proof. See [6] Theorem 3.4. O
We need some transformation formulas of Siegel functions to apply the above proposition.

Proposition 4.4. Let N > 2. For (r1, ro) € +Z*\ Z? the function 9ir, r2)(7’)12N satisfies

)12N 12N

91, ) (PN = 9, o) (DY = gy, fra) (7)
And, it belongs to Fy and o in GLo(Z/NZ)/{x1l2} = Gal(Fn/F1) acts on the function by

(g(h, rz)(T)mN) = 9(r, rz)a(T)wN-

Proof. See [7] Proposition 2.4 and Theorem 2.5. O
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5. GENERATION OF RAY CLASS FIELDS BY TORSION POINTS OF ELLIPTIC CURVES

Let K be an imaginary quadratic field with discriminant dx and 6 as in (4.1). Here, we shall

construct the ray class field K(y) by adjoining to K some N-torsion point of certain elliptic curve,

if dg < -39, N >8and 4| N.
For convenience we set

D = gK and A= 27”9\ -V —di
Lemma 5.1. We have the following inequalities:
(i) If dg < =7, then
1
¢ <1+ ATom (5.1)

forlgagDandalle%.
(ii) 1+ X < eX for all X > 0.

Proof. (i) The inequality (5.1) is equivalent to
Aatos + Ae < 1.
Since A =e ™V~ <e7“[<1 1<a<DandX>1,weobta1nthat

A%% +A%§A%% —|—A%: 7T\[1?)3 -|-eiﬂ2\/§<1

by the fact AD = ¢~™3_ This proves (i).
(ii) Immediate.
O

Lemma 5.2. Assume that dg < —39 and N > 8. Let Q = aX?+bXY +cY? be a reduced quadratic
form of discriminant dg . If a > 2, then the inequality

g(%, %)(HQ) 90, %)(‘9)
9z, %)(GQ)4 9(o, %)(9)4 '

holds for (s, t) € Z* with (2s, 2t) & NZ2.
Proof. We may assume 0 < s < % by Proposition 4.4. And, observe that 2 < a < D by (4.4) and
A < e ™39 < 1. From the Fourier expansion formula (2.3) we establish that

Geiom) G|

N
S A(%iﬁJ’»ﬁ)T(N, s, t)H (1+A ) (1+A )(1+A J:’ )
oi (1= Am)2(1 — AaC ))4( a(n=R))s
0 n\8 = a(n 1)
< A(i_ﬁ)T(N, s, t)H (L+A")°(A+Ae)(1+ 4 ) bythefactogsgg

o (1= AM)2(1 — AT)A(1 — Aa(n=2))4

o0 n\8 Z 7(77,71)
< AéT(N7 s, t)H (1+A)(1+€D)(1+A? 1) by the fact 2 < a < D
(1= A2(1— 4B )11 — AB(—D)s
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where
W , (1— )| 1- e2mi(3200+3) (1—Cn)?|| 1+ o2 ( 00+ %)
, 8, 1) = 1— Q?V (1 . 6271'1‘(%9@4-%))4 Tl 1+ (N (1 . e2m(%9Q+ﬁ))3 ’
If s =0, then
3 . 3
TN, s, t)=‘<1_<iv) 1+ ¢4 :Ks'mér,r) costy7r
11—l 1+ Cn sin 57 cos &
If s # 0, then
1—(n)3| 1+ Ava N
T(N, s, t) < ‘( Cv)7| L+ T by thefact 1< s <

1+Cn [(1— Awa)3 2
1—Cn)3| 1+ AwD

‘( x) + TD by the fact 2 <a < D
14+C¢n |(1— Awp)3

V3
Asi 3 1 _7mV3
_ s ﬂN te = by the fact AD = ¢ ™V3
COS N (1 _ e—ﬂT)g
< 3.05 from the graph on N > 8.

Therefore we achieve that

(i) e

1
90, 1(0) 9z £
00 n S
1 (1+A™B(1+ AD)(1+ Ap() .
< 3.05A3 H - T— T by Lemma 5.1(i)
o1 (1+ Ato3)—2(1 + ATosp ) —4(1 + ATosp 2/)
o0
< 3.054% 11 (SATFAB 44D 94T 14ATSD 14AToED (D) by Lemma 5.1(ii)
n=1
8A ab NI S 2 AT03 i AATOSD n 4ATO6D
— 3.05A§617A 17,4% 17,4% 17,4?103 17A1.013D 17A14013D
< 1 by the facts A < e~ ™39 and AD = V3,
O

This proves the lemma.
Now we are ready to prove our main theorem of generating ray class fields.

Theorem 5.3. Let K be an imaginary quadratic field with dg < —39 and N > 8. Then
4
)(9) gcd(4, N) > .

Z[=

K(N) = K(I‘(O’ %)(9), y(o’
In particular, if 4 | N then Ky is generated by adjoining to K the N-torsion point
(5.2)

P = (0, 1) v 3©)

of the elliptic curve
u(0)v(0)3y* = 42 — u(0)v(0)*x — u(H)v(H)™.
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Proof. Since x g %)(7’) € Fn by definition (2.9) and y %)(7) I N ¢ Fn by Proposition 2.6,
their singular values %)(9) and y, %)(G)gcdﬁi N lie in Ky by Proposition 4.1(ii). Assume
that any element (o, Q) € Wi, o/{£12} x C(dk) fixes both z, %)(9) and y %)(H)gcdé N). Then

we derive by Propositions 4.3 and 4.4 that
)12N

(9)12N = (9)12N (e Q) ~ 90, $)ase (0 G
Yo, +) = Yo, 4 T 90, 1ras 0BV T g o (6g) BN
WP NN

for some (s, t) € Z? with (2s, 2t) ¢ NZ%. This yields
‘ 9(0, %)(9) ’ ‘ 92, 2)(962)
90, L)(e) 9z, N)(Q )t

Then it follows from Lemma 5.2 and the conditions (4.2) and (4.3) for reduced quadratic forms
that

0- X? - dxy? for dg =0 (mod 4)
X2 +XY +505y? for d =1 (mod 4),
and hence g = 13 by (4.6) and (4.7), and g = 6 by (4.5). We then obtain by Propositions 4.3
and 4.2 that

(o, Q) a
04/3
s0 @ = (20, @) =% 00) =ty 4,0 = (w6, 1®)

s N N
Hence a should be the identity in Wy, g/{£12} because z, %)(9) generates K(y) over H by
Proposition 4.1(iii). Therefore (o, Q) represents the identity in Gal(K(y)/K), which proves that

4
the singular values z(, 1,(0) and y, 1,(0)=I@ %) indeed generate Ky, over K.
b N b N
On the other hand, Proposition 2.1(ii) implies that w(f), v(#) # 0, and hence the equation in
(5.3) represents an elliptic curve. And, (3.5) shows that the point P in (5.2) lies on the elliptic
curve as N-torsion point. The proof of the remaining part of the theorem (the case 4 | N) is the
same as that of the first part. O

6. PRIMITIVE GENERATORS OF RAY CLASS FIELDS

In this last section we shall show that some ray class invariants of imaginary quadratic fields
can be constructed from the y-coordinate of the elliptic curve in (5.3) by utilizing the idea of
Schertz([13]).

Let K be an imaginary quadratic field with discriminant dx and 6 as in (4.1). For a nonzero
integral ideal f of K we denote by CI(f) the ray class group of conductor f and write Cy for its
unit class. By definition the ray class field K; modulo f of K is a finite abelian extension of K
whose Galois group is isomorphic to CI(f) via the (inverse of) Artin map. If f # Ok and C e CI(¥),
then we take an integral ideal ¢ in C so that fc_l = [21, zo] with z = % € 9. Now we define the
Siegel-Ramachandra invariant by

95(C) = 9(e, %)(Z)HN

where N is the smallest positive integer in f and a, b € Z such that 1 = {21 + %zz. This value
depends only on the class C' and belongs to Kj. Furthermore, we have a well-known transformation
formula

g1(C1)7(%) = g{(C1Cs) (6.1)
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for C1, Cy € CI(f) where o is the Artin map([8] Chapter 11 Section 1).

Let x be a character of CI(f). We then denote by f, the conductor of x and let xo be the proper
character of CI(f,) corresponding to x. For a nontrivial character x of CI(f) with f # O we define
the Stickelberger element and the L-function as follows:

a
Ste )= Y x@glg@)] ad Lis o= Y O eo)
CeCI(f) a#0 : integral ideals K/Q
ged(a, f)=0Ok

If f, # Ok, then we see from the second Kronecker limit formula that

Ls, (1, x0) = ToSs, Xos 95)

where T is certain nonzero constant depending on xo([10] Chapter 22 Theorem 2). Here we observe
that the value Ly, (1, xo) is nonzero([5] Chapter IV Proposition 5.7). Moreover, multiplying the
above relation by the Euler factor we derive the identity

IT @=%o()Ls (1, x0) =TSs(x, 9¢) (6.2)
p‘f: pﬁX
where T is certain nonzero constant depending on f and x([8] Chapter 11 Section 2 LF 2).

Lemma 6.1. Let § be an integral ideal of K. Then we have the degree formula
hgo(fw(f)

WK
where hi is the class number, ¢ is the Euler function for ideals, namely

¢(p") = (Nijg(p) = )Ng/g(p)" ™

for a power of prime ideal p (and we set ¢(Ok) = 1), w(f) is the number of roots of unity in K
which are =1 (mod f) and wk is the number of roots of unity in K.

Proof. See [9] Chapter VI Theorem 1. O

[Ky: K] =

Theorem 6.2. Let f # O be an integral ideal of K with prime ideal factorization
n
f=]]wx
k=1
Assume that
n
[Kj: K] > 2 ;[Kﬂokek . K. (6.3)

Then the singular value

for any class C" € CI(f)

generates K over K.
Proof. We identify CI(f) with Gal(K;/K) via the Artin map. Setting F' = K () we derive that
#{x of Gal(K;/K) : X|cal(x;/F) 7 1} (6.4)

= #{x of Gal(K}/K)} — #{x of Gal(K}/K) : Xlcalx;/F) = 1}
= #{x of Gal(K;/K)} — #{x of Gal(F/K)} = [K;: K] — [F : K].
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Furthermore, we have

#{x of Gal(Kj/K) : pj1fy for some k} (6.5)
= #{X of Gal(Kj/K) : fy | fp,“* for some k}
< Z#{X of Gal(K 7e,€/K } = Z bk K
k=1
Now, suppose that F' is properly contained in Kj. Then we get from the hypothesis (6.3) that
1 n
[Kj: K]~ [F: K] = [Kf:K]<1 %, ) >22 oo K <12> :Z[KP_% . K.

k

Thus there exists a character ¢ of Gal(Kj/K) such that

¢‘Gal(Kf/F) #1 and ypy | fy for all k
by (6.4) and (6.5). Hence we obtain by (6.2)

0 # Ls, (1, vo) = TSy, g5) (6.6)

for certain nonzero constant 7" and the proper character 1y of Cl(fy) corresponding to ¢. On the
other hand, we achieve that

(W(C) = 4)Si(0, g) = (@(C)=4) Y D(C)log|g(C)]

CeCI(f)

- peleE”

CeCl(f)

= > S B(Ci0)log 7@ )

C1€CGal(K/K)  C2€Gal(K/F)
C1 (mod Gal(K;/F))

= Z@(Cl)logka(cl <Zw (Ca) > by (6.1) and the fact € € F'
C1

=0 by the fact WGal(Kf/F) 7& 1,
which contradicts (6.6) because ¥(C’) — 4 # 0. Therefore F' = Kj as desired. O
Remark 6.3. Any nonzero power of ¢ can also generate K; over K in the proof of Theorem 6.2.

Corollary 6.4. Let N > 3 be an odd integer and assume (6.3) with f = NOg. Then the singular
value yq, %)(9)4 generates Ky over K.

Proof. Observe that for the unit class Cy we have

95(Co) = g, 1(0)™N.

> N

Since N is odd, o = (39) belongs to Wy, g. Then by Propositions 4.2 and 4.4 we deduce that

900, 2 =g, 1)a(0)*" = (g( 1)(9)12N) = g5(C0)” )
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for some C” € CI(f). Therefore the singular value

(9)12N gf(C’)

90, %)
0 12N _ ) —
( ) )(9)48N gf(co)él

1
) W) g(o

2z |2

)

4
generates Kj = K(y) over K by Theorem 6.2. Since Yo L)(G)gcd(‘lv N belongs to Ky, it also
"N

generates K(y) over K. O

Remark 6.5. Let K be an imaginary quadratic field with dxg < —7 and N (> 3) be an odd integer.

10.
11.
12.
13.
14.

15.
16.

(i) Suppose that N = p™(n > 1) where p is an odd prime which is inert or ramified in K/Q.
One can derive by Lemma 6.1 that

(K : K] = hK(pz_é)pZ(nil) > hK(32_1)Z’21'01 > 2hg  if p is inert in K/Q
T hi(3-1)3%171

M . > 2hg if p is ramified in K/Q.

Y

Thus f = NOy satisfies the condition (6.3) and hence we are able to apply Corollary 6.4
for such N.
(ii) Suppose, in general

n
f=NOk = szk with n > 2.
k=1

Then it follows from Lemma 6.1 that the condition (6.3) is equivalent to

1 ~ 1

Z s = 6.7)

2 ; o) (
Therefore one can also apply Corollary 6.4 under the assumption (6.7).
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