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Abstract

We consider solutions to the Helmholtz equations in two dimensions. The aim of this
paper is to advance the development of high-order terms in the asymptotic expansions
of the boundary perturbations of currents caused by small perturbations of the shape
of an inhomogeneity with C2-boundary. Our derivation is rigorous derived by the field
expansion (FE) method (formal derivation) and proved by layer potential techniques. It
extends those already derived for small volume inhomogeneities for developing effective
algorithms for determining certain properties of the shape of an inhomogeneity based
on boundary measurements.
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1 Introduction

The field of inverse shape problems has been an active research area for several decades.
Several related problems belong to the electromagnetic field and are governed by Helmholtz
equations, which are further subdivided by assumptions on the underlying media and on
the boundary conditions. The main objective of this paper is to present a schematic way to
derive high-order asymptotic expansions for boundary perturbations in the currents of the
Helmholtz equations resulting from small perturbations of the shape of an inhomogeneity
with C2-boundary. We adopt the field expansion (FE) method to derive formal asymptotic
expansions and thanks to layer potential techniques we prove rigorously those asymptotic
expansions. We then use these formulae to design algorithms to recover certain properties
on the perturbations of the shape.

Suppose that an electromagnetic medium occupies a bounded domain Ω in R2, with a
connected Lipschitz boundary ∂Ω. Let µ0 and ε0 denote the permeability and the permittiv-
ity of the background medium Ω, and assume that µ0 > 0 and ε0 > 0 are positive constants.
Consider a bounded domain D ⊂⊂ Ω with C2-boundary, a permeability 0 < µ 6= µ0 < ∞,
and a permittivity 0 < ε 6= ε0 < ∞. Let µ∗ and ε∗ be the constitutive parameters of the

∗This work was supported by the second stage of the Brain Korea 21 Project.
†Department of Mathematical Sciences, KAIST, Daejeon 305-701, Korea ( zribi@cmapx.polytechnique.fr)
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inhomogeneity defined by µ∗ := µχD + µ0χΩ\D and ε∗ := εχD + ε0χΩ\D, where χD is the
indicator function of D. Let u denote the solution to the Helmholtz equation ∇ ·

(
1

µ∗
∇u

)
+ ω2ε∗u = 0 in Ω,

u|∂Ω = f ∈W 2
1
2
(∂Ω),

(1.1)

where ω > 0 is a given frequency.
Suppose Dα is an α-perturbation of D, i.e., there is a function h ∈ C1(∂D), such that

∂Dα = {x̃ : x̃ = x+ αh(x)ν(x)|x ∈ ∂D, 0 < α << 1},

Let uα be the solution to the Helmholtz equation in the presence of Dα{
∇ ·

(
1

µα
∇uα

)
+ ω2εαuα = 0 in Ω,

uα|∂Ω = f,
(1.2)

where the piecewise-constant magnetic permeability µα is given by

µα(x) =
{
µ0, x ∈ Ω\Dα,
µ, x ∈ Dα,

and the function εα(x) is defined analogously.
In order to ensure well-posedness we shall assume that ω2µ0ε0 is not an eigenvalue for

the operator −∆ in L2(Ω) with the Dirichlet boundary condition.
To the best of our knowledge, this is the first work to rigorously investigate Helmholtz

interface problem in two dimensional and derive high-order terms in the asymptotic expan-
sion of (∂uα

∂ν − ∂u
∂ν )|∂Ω when α→ 0. However, by the same method, one can derive asymptotic

formula for the Neumann problem as well. In this paper, assuming that the unknown Dα

boundary is a small perturbation of a circle, we determine a relationship between Fourier
coefficients of the perturbation of the shape and boundary measurements. Our formula may
also be extended those already derived for small volume inhomogeneities in [2, 3] for develop-
ing effective algorithms for determining certain properties of the shape of an inhomogeneity
based on boundary measurements. In connection with this, we refer to recent works in the
context of interface problems [1, 4, 5, 8, 10, 12, 15, 17].

Our general approach can be extended to other equations such as the anisotropic con-
ductivity problem, Stokes, the Maxwell and the Lamé systems.

This paper is organized as follows. In the next section we introduce some notations for
small perturbations of an interface of C2, review some basic facts on the layer potentials
and give representation formulas. In section 3, we derive formal asymptotic expansion for
currents by using FE method. In the section 4, we prove that formal expansion by layer
potentials techniques. In the last section we present reconstruction formula of the shape
deformation h from measurements on ∂Ω based on the expansion.

2 Definitions and Preliminary results

2.1 Small perturbation of an interface

Let a, b ∈ R, with a < b, and let X(t) : [a, b] → R2 be the arclength parametrization of ∂D,
namely, X is a C2-function satisfying |X ′(t)| = 1 for all t ∈ [a, b] and

∂D := {x = X(t), t ∈ [a, b]}.
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Then the outward unit normal to ∂D, ν(x), is given by ν(x) = R−π
2
X ′(t), where R−π

2
is

the rotation by −π/2, the tangential vector at x, T (x) = X ′(t), and X ′(t) ⊥ X ′′(t). Set the
curvature τ(x) to be defined by

X ′′(t) = τ(x)ν(x).

We will sometimes use h(t) for h(X(t)) and h′(t) for the tangential derivative of h(x).
Then, x̃ = X̃(t) = X(t) + αh(t)ν(x) = X(t) + αh(t)R−π

2
X ′(t) is a parametrization of

∂Dα. By ν̃(x) := ν(x̃), we denote the outward unit normal to ∂Dα at x̃. Then, it is proved
in [4] that

ν̃(x) =
R−π

2
X̃ ′(t)

|X̃ ′(t)|

=

(
1− αh(t)τ(x)

)
ν(x)− αh′(t)X ′(t)√

α2h′(t)2 +
(
1− αh(t)τ(x)

)2

=

(
1− αh(t)τ(x)

)
ν(x)− αh′(t)T (x)√

α2h′(t)2 +
(
1− αh(t)τ(x)

)2
,

and hence ν̃(x) can be expanded uniformly as

ν̃(x) =
∞∑

n=0

αnνn(x), x ∈ ∂D, (2.1)

where the vector-valued functions νn are uniformly bounded regardless of n. In particular,

ν0(x) = ν(x), ν1(x) = −h′(t)T (x), x ∈ ∂D. (2.2)

Likewise, denote by dσ̃(x) := dσ(x̃) the length element to ∂Dα at x̃ which has an uniformly
expansion [4]

dσ̃(x) = |X̃ ′(t)|dt =
√

(1− ατ(t)h(t))2 + α2h′2(t)dt =
∞∑

n=0

αnσn(x)dσ(x), x ∈ ∂D, (2.3)

where σn are functions bounded regardless of n, with

σ0(x) = 1, σ1(x) = −τ(x)h(x), x ∈ ∂D. (2.4)

Denote by d
dt the tangential derivative in the direction of T (x) = X ′(t). Let x ∈ ∂D and

φ(x) ∈ C2([a, b]), we have

dφ

dt
(x) = ∇φ(x) ·X ′(t) =

∂φ

∂T
(x),

and ( d

dt

)2

φ(x) =
d

dt

(
∇φ(x) ·X ′(t)

)
= 〈D2φ(x)X ′(t), X ′(t)〉+∇φ(x) ·X ′′(t)

=
∂2φ

∂T 2
(x) + τ

∂φ

∂ν
(x).
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As consequence, the Laplacian in the local coordinates can be expressed as follows

∆ =
∂2

∂ν2
+

∂2

∂T 2
=

∂2

∂ν2
− τ

∂

∂ν
+

( d

dt

)2

on ∂D. (2.5)

2.2 Representation of solutions

We start to review some basic facts in the theory of layer potentials. Denote k0 := ω
√
µ0ε0

and k := ω
√
µε. Let Γk(x) be the fundamental solution for ∆ + k2 in R2, that is for x 6= 0,

Γk(x) = − i
4
H1

0 (k|x|),

where H1
0 is the Hankel function of the first kind of order 0. We have

− i
4
H1

0 (k|x|) =
1
2π

+∞∑
n=0

(−1)n k2n

22n(n!)2
|x|2n

(
ln(|x|) + ln(kγ)−

n∑
j=1

1
j

)
as |x| → 0, (2.6)

where 2γ = eγ̃−iπ/2, and γ̃ is Euler’s constant.
For a bounded domain D in R2 and k > 0 let Sk

D and Dk
D be the single and double layer

potentials defined by Γk, that is,

Sk
Dφ(x) :=

∫
∂D

Γk(x− y)φ(y)dσ(y), x ∈ R2, (2.7)

Dk
Dφ(x) :=

∫
∂D

∂Γk(x− y)
∂ν(y)

φ(y)dσ(y), x ∈ R2 \ ∂D, (2.8)

for φ ∈ L2(∂D). The proof of the following traces formulas can be found in [6]

∂(Sk
Dφ)
∂ν

∣∣∣
±

(x) =
(
±1

2
I + (Kk

D)∗
)
φ(x), x ∈ ∂D, (2.9)

(Dk
Dφ)

∣∣∣
±

=
(
∓1

2
I +Kk

D

)
φ(x), x ∈ ∂D, (2.10)

where Kk
D is the operator defined by

Kk
Dφ(x) = p.v.

∫
∂D

∂Γk(x− y)
∂ν(y)

φ(y)dσ(y),

and (Kk
D)∗ is the L2-adjoint of Kk

D. Here p.v. denotes the cauchy principal value. The
operator Kk

D is known to be bounded on L2(∂D) [8].
Recall that W 2

1 (∂D) = {φ : φ ∈ L2(∂D), ∂φ
∂T ∈ L2(∂D)}. The following theorem is of

importance to us. For proof, see [2].

Theorem 2.1 Suppose that k2
0 is not a Dirichlet eigenvalue for −∆ on D. For each (F,G) ∈

W 2
1 (∂D) × L2(∂D), there exists a unique solution (ξ, ζ) ∈ L2(∂D) × L2(∂D) to the system

of integral equations 
Sk

Dξ − Sk0
D ζ = F on ∂D,

1
µ

∂(Sk
Dξ)
∂ν

∣∣
− −

1
µ0

∂(Sk0
D ζ)
∂ν

∣∣
+

= G on ∂D.
(2.11)
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There exists a constant C independent of F and G such that

‖ξ‖L2(∂D) + ‖ζ‖L2(∂D) ≤ C
(
‖F‖W 2

1 (∂D) + ‖G‖L2(∂D)

)
. (2.12)

For more details on the following representations of solutions, see [3, 2]. Suppose that
k2
0 is not a Dirichlet eigenvalue for −∆ on Dα. Define

Hα(x) := −Sk0
Ω

(∂uα

∂ν

∣∣
∂Ω

)
(x) +Dk0

Ω

(
f
)
(x), x ∈ R2\∂Ω, (2.13)

and (ϕα, ψα) ∈ L2(∂Dα)× L2(∂Dα) be the unique solution of
Sk

Dα
ϕα − Sk0

Dα
ψα = Hα on ∂Dα,

1
µ

∂Sk
Dα
ϕα

∂ν

∣∣∣
−
− 1
µ0

∂Sk0
Dα
ψα

∂ν

∣∣∣
+

=
1
µ0

∂Hα

∂ν
on ∂Dα.

(2.14)

Then uα solution to (1.2) can be represented as

uα(x) =

{
Hα(x) + Sk0

Dα
ψα(x), x ∈ Ω\Dα,

Sk
Dα
ϕα(x), x ∈ Dα.

(2.15)

Similarly, suppose that k2
0 is not a Dirichlet eigenvalue for −∆ on D. Define

H(x) := −Sk0
Ω

(∂u
∂ν

∣∣
∂Ω

)
(x) +Dk0

Ω

(
f
)
(x), x ∈ R2\∂Ω, (2.16)

and (ϕ,ψ) ∈ L2(∂D)× L2(∂D) be the unique solution of
Sk

Dϕ− Sk0
D ψ = H on ∂D,

1
µ

∂Sk
Dϕ

∂ν

∣∣∣
−
− 1
µ0

∂Sk0
D ψ

∂ν

∣∣∣
+

=
1
µ0

∂H

∂ν
on ∂D.

(2.17)

Then u solution to (1.1) has the following representation

u(x) =

{
H(x) + Sk0

D ψ(x), x ∈ Ω\D,

Sk
Dϕ(x), x ∈ D.

(2.18)

Let Gk0(x, y) be the Dirichlet Green’s function for ∆ + k2
0 in Ω, i.e., for each y ∈ Ω, G

is the solution of {
(∆ + k2

0)Gk0(x, y) = δy(x), x ∈ Ω,

Gk0(x, y) = 0, x ∈ ∂Ω.
(2.19)

Let Gk0
D be defined by

Gk0
D φ(x) :=

∫
∂D

Gk0(x, y)φ(y)dσ(y), x ∈ Ω,

for φ ∈ L2(∂D). The following identity holds∫
∂Ω

Γk0(x− y)
∂Gk0(z, y)
∂ν(y)

∣∣∣
∂Ω
dσ(y) = Γk0(x− z), x ∈ R2\Ω, z ∈ Ω. (2.20)
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As a consequence of (2.20), it follows from (2.9) that(1
2
I + (Kk0

Ω )∗
)(∂Gk0(z, ·)

∂ν(·)

∣∣∣
∂Ω

)
(x) =

∂Γk0(x− z)
∂ν(x)

, x ∈ ∂Ω, z ∈ Ω. (2.21)

The following lemma holds, see [6, 2].

Lemma 2.2 If k2
0 is not a Dirichlet eigenvalue for −∆ on Ω, then 1

2I+(Kk0
Ω )∗ : L2(∂Ω) →

L2(∂Ω) is injective.

Define the background voltage potential, U , to be the unique solution to{
(∆ + k2

0)U = 0 in Ω,

U = f on ∂Ω.

Let uα be the solution to (1.2). The following representation can be proved easily from
(2.21) and Lemma 2.2, see also [2].

∂uα

∂ν
(x) =

∂U

∂ν
(x) +

∂(Gk0
Dα
ψα)

∂ν
(x), x ∈ ∂Ω, (2.22)

where ψα ∈ L2(∂Dα) is the solution to (2.15).
Likewise, the solution u to (1.1) has the following representation

∂u

∂ν
(x) =

∂U

∂ν
(x) +

∂(Gk0
D ψ)
∂ν

(x), x ∈ ∂Ω, (2.23)

where ψ ∈ L2(∂D) is the solution of (2.18). Subtracting (2.23) from (2.22), we get

∂uα

∂ν
(x)− ∂u

∂ν
(x) =

∂(Gk0
Dα
ψα)

∂ν
(x)−

∂(Gk0
D ψ)
∂ν

(x), x ∈ ∂Ω. (2.24)

The integral equation (2.24) will be investigated by layer potential techniques to prove formal
high-order terms in the asymptotic expansions of (∂uα

∂ν − ∂u
∂ν )|∂Ω as α tends to 0, derived by

the field expansion (FE) method.

3 Formal derivations: field expansion (FE) method

Recall that uα is the solution to the following problem

(∆ + ω2ε0µ0)uα = 0 in Ω\Dα, (3.1)

(∆ + ω2εµ)uα = 0 in Dα, (3.2)

1
µ0

∂uα

∂ν

∣∣∣
+
− 1
µ

∂uα

∂ν

∣∣∣
−

= 0 on ∂Dα, (3.3)

uα|+ − uα|− = 0 on ∂Dα, (3.4)

uα = f on ∂Ω. (3.5)
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To derive the formal asymptotic formula of uα to order an integer N , we apply the field
expansion (FE) method, see [8, 12]. Firstly, we expand uα in powers of α, i.e.

uα(x) = u0(x) + αu1(x) + α2u2(x) + · · ·+ αNuN (x) +O(αN+1), x ∈ Ω,

where un is well defined in Ω\∂D and

(∆ + ω2ε0µ0)un = 0 in Ω\D, (∆ + ω2εµ)un = 0 in D, un = fδ0n on ∂Ω, (3.6)

for n = 0, · · · , N . Here δ0n is the Kronecker symbol.
Let x ∈ ∂D, then x̃ = x+ αh(x)ν(x) ∈ ∂Dα. By Taylor expansion, we get

∇uα(x̃) · ν(x̃)
∣∣∣
±

=
N∑

n=0

αn
n∑

m=0

m∑
s=0

∑
|i|=s

(h(x))s

i!
∂i∇um−s(x)(ν(x))i · νn−m(x)

∣∣∣
±

+O(αN+1).

(3.7)

If we substitute the expansions in (3.7) into (3.3), we formally get

1
µ0

∂un

∂ν

∣∣∣
+
− 1
µ

∂un

∂ν

∣∣∣
−

=
n−1∑
m=0

m∑
s=0

∑
|i|=s

hs

i!

( 1
µ
∂i∇um−sν

i · νn−m

∣∣∣
−
− 1
µ0
∂i∇um−sν

i · νn−m

∣∣∣
+

)

+
n∑

s=1

∑
|i|=s

hs

i!

( 1
µ
∂i∇un−sν

i · ν0
∣∣∣
−
− 1
µ0
∂i∇un−sν

i · ν0
∣∣∣
+

)
on ∂D.

(3.8)

In particular
1
µ0

∂u0

∂ν

∣∣∣
+
− 1
µ

∂u0

∂ν

∣∣∣
−

= 0 on ∂D,

1
µ0

∂u1

∂ν

∣∣∣
+
− 1
µ

∂u1

∂ν

∣∣∣
−

= h
( 1
µ

∂2u0

∂ν2

∣∣∣
−
− 1
µ0

∂2u0

∂ν2

∣∣∣
+

)
+

( 1
µ
∇u0 · ν1

∣∣
− −

1
µ0
∇u0 · ν1

∣∣
+

)
= (

1
µ0

− 1
µ

)
d

dt

(
h
du0

dt

)
+ hω2(ε0 − ε)u0 on ∂D. (3.9)

The last equality in (3.9) is proved by using the representation of Laplacian in the local
coordinates in (2.5) and (2.2).

For x̃ = x+ αh(x)ν(x) ∈ ∂Dα, we write

uα(x̃)
∣∣∣
±

=
N∑

n=0

αn
n∑

m=0

∑
|i|=m

(h(x))m

i!
∂iun−m(x)

(
ν(x)

)i
∣∣∣
±

+O(αN+1). (3.10)

Inserting the expansions in (3.10) into (3.4), formally leads to

un|+ − un|− =
n∑

m=1

∑
|i|=m

hm

i!

(
∂iun−mν

i|− − ∂iun−mν
i|+

)
on ∂D. (3.11)
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In particular
u0|+ − u0|− = 0 on ∂D,

and
u1|+ − u1|− = h

(∂u0

∂ν

∣∣∣
−
− ∂u0

∂ν

∣∣∣
+

)
= h

(
1− µ0

µ

)∂u0

∂ν

∣∣∣
−

on ∂D.

Note that u0 = u.
One can see easily that O(αN+1) depends on N , Ω, dist(D, ∂Ω), k0, k, C1-norm of h, and

C2-norm of X. We formally obtain the following theorem and give the proof in Subsection
4.2.

Theorem 3.1 The following asymptotic formula formally holds

∂uα

∂ν
(x) =

∂u

∂ν
(x) +

N∑
n=1

αn ∂un

∂ν
(x) +O(αN+1), x ∈ ∂Ω, (3.12)

where un, n = 1, · · · , N, can be determined uniquely by (3.6), (3.8), and (3.11), and the
remainder O(αN+1) depends on N , Ω, k0, k, the C2-norm of X, the C1-norm of h, and
dist(D, ∂Ω).

4 Layer potential techniques method

4.1 Asymptotic formulas of layer potentials

Let x̃, ỹ ∈ ∂Dα, that is,

x̃ = x+ αh(x)ν(x), ỹ = y + αh(y)ν(y).

Hence

|x̃− ỹ|2 = |x− y|2
(
1 + 2α

〈x− y, h(x)ν(x)− h(y)ν(y)〉
|x− y|2

+ α2 |h(x)ν(x)− h(y)ν(y)|2

|x− y|2
)
.

Denote by

F (x, y) :=
〈x− y, h(x)ν(x)− h(y)ν(y)〉

|x− y|2
, G(x, y) :=

|h(x)ν(x)− h(y)ν(y)|2

|x− y|2
.

Since ∂D is of class C2. One can easily see that

|F (x, y)|+ |G(x, y)| 12 ≤ C‖X‖C2(∂D)‖h‖C1(∂D) for all x, y ∈ ∂D,

and hence

|x̃− ỹ| = |x− y|
√

1 + 2αF (x, y) + α2G(x, y) := |x− y|
∞∑

n=0

αnLn(x, y), (4.1)

where the series converges absolutely and uniformly. In particular, we can see that

L0(x, y) = 1, L1(x, y) = F (x, y).
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According to Leibniz’s rule, the p’th derivative of r2nln(r) is given by

(r2nln(r))(p) =
p∑

l=0

Cl
p(r

2n)(l)(ln(r))(p−l) = (r2n)(p)ln(r) +
p−1∑
l=0

Cl
p(r

2n)(l)
(1
r

)(p−l−1)
,

where Cl
p is a binomial coefficient, and then, it follows from (2.6) that

− ik
p

4
H1

0
(p)

(kr)rp is continuous at zero for p > 0. (4.2)

From (4.1), (4.2), Taylor expansion of − i
4H

1
0 (k|x̃− ỹ|) at k|x− y|, and (2.3), we write

− i
4
H1

0 (k|x̃− ỹ|)dσ(ỹ) =− i

4

N∑
n=0

αn
(
H1

0 (k|x− y|)σn(y) + Rn(x, y)
)
dσ(y)

+O(αN+1)
(
H1

0 (k|x− y|) + 1
)
,

with
|Rn(x, y)| ≤ C‖X‖C2(∂D)‖h‖C1(∂D) for all x, y ∈ ∂D.

In particular

R0(x, y) = 0, R1(x, y) = kH1
0

′

(k|x− y|) 〈x− y, h(x)ν(x)− h(y)ν(y)〉
|x− y|

.

Introduce a sequence of integral operators (Sk,n
D )n∈N, defined for any φ ∈ L2(∂D) by:

Sk,n
D φ(x) = − i

4

∫
∂D

(
H1

0 (k|x− y|)σn(y) + Rn(x, y)
)
φ(y)dσ(y) for n ≥ 0,

where Sk,0
D = Sk

D and

Sk,1
D φ(x)|± = −Sk

D(τhφ)(x) + h(Kk
D)∗(φ)(x) +Kk

D(hφ)(x)

= −Sk
D(τhφ)(x) +

(
h
∂(Sk

Dφ)
∂ν

+Dk
D(hφ)

)∣∣∣
±

(x), x ∈ ∂D. (4.3)

It is easily to check by using the celebrated theorem of Coifman-McIntosh-Meyer, see [7],

that the operators Sk,n
D and ∂Sk,n

D

∂T are bounded in L2(∂D) for n ≥ 0.
Now let us investigate the following term(

kH1
0

′

(k|x̃− ỹ|)|x̃− ỹ|
) 〈x̃− ỹ, ν(x̃)〉

|x̃− ỹ|2
dσ(ỹ).

It is proved in [4] that

〈x̃− ỹ, ν(x̃)〉
|x̃− ỹ|2

dσ(ỹ) =
∞∑

n=0

αnMn(x, y)dσ(y),

9



where the series converges absolutely and uniformly. In particular

M0(x, y) =
〈x− y, ν(x)〉
|x− y|2

,

and

M1(x, y) =
(
−2

〈x− y, h(x)ν(x)− h(y)ν(y)〉
|x− y|2

+ τ(x)h(x)− τ(y)h(y)
)
〈x− y, ν(x)〉
|x− y|2

+
〈h(x)ν(x)− h(y)ν(y), ν(x)〉

|x− y|2
− 〈x− y, τ(x)h(x)ν(x) + h′(t)T (x)〉

|x− y|2
.

In other hand, by Taylor expansion, we write

kH1
0

′

(k|x̃− ỹ|)|x̃− ỹ| =
∞∑

n=0

αnHn(x, y), (4.4)

According to (4.2), the series in (4.4) converges absolutely and uniformly. Note that

H0(x, y) = kH1
0

′

(k|x− y|)|x− y|,

and

H1(x, y) =
[
k2H1

0

′′

(k|x− y|)|x− y|+ kH1
0

′

(k|x− y|)
] 〈x− y, h(x)ν(x)− h(y)ν(y)〉

|x− y|
.

Finally, we get

kH1
0

′

(k|x̃− ỹ|) 〈x̃− ỹ, ν(x̃)〉
|x̃− ỹ|

dσ(ỹ) =
∞∑

n=0

αn
n∑

m=0

Mm(x, y)Hn−m(x, y)︸ ︷︷ ︸
:=kn(x,y)

dσ(y),

with

k0(x, y) = kH1
0

′

(k|x− y|)| 〈x− y, ν(x)〉
|x− y|

,

and

k1(x, y) =k
[(
τ(x)h(x)− τ(y)h(y)

) 〈x− y, ν(x)〉
|x− y|

− 〈x− y, h(x)ν(x)− h(y)ν(y)〉〈x− y, ν(x)〉
|x− y|3

+
〈h(x)ν(x)− h(y)ν(y), ν(x)〉

|x− y|
− 〈x− y, τh(x)ν(x) + h′(t)T (x)〉

|x− y|

]
H1

0

′

(k|x− y|)

+ k2H1
0

′′

(k|x− y|) 〈x− y, h(x)ν(x)− h(y)ν(y)〉〈x− y, ν(x)〉
|x− y|2

.

Introduce a sequence of integral operators (Kk,n
D )n∈N, defined for any φ ∈ L2(∂D) by:

Kk,n
D φ(x) = − i

4

∫
∂D

kn(x, y)φ(y)dσ(y) for n ≥ 0.

10



Note that Kk,0
D = (Kk

D)∗. It is easily to prove that the operator Kk,n
D for n ≥ 0 is bounded

in L2(∂D). In fact, it is an immediate consequence of the celebrate theorem of Coifman-
McIntosh-Meyer, see [7]. In particular

Kk,1
D φ(x) = τ(x)h(x)(Kk

D)∗(φ)(x)− (Kk
D)∗(τhφ)(x)

+
ik

4

[
h(x)

∫
∂D

H1
0

′

(k|x− y|)| (〈x− y, ν(x)〉)2

|x− y|3
φ(y)dσ(y)− h(x)

∫
∂D

H1
0

′

(k|x− y|)| φ(y)
|x− y|

dσ(y)

+
∫

∂D

H1
0

′

(k|x− y|)| 〈x− y, τ(x)h(x)ν(x) + h′(t)T (x)〉
|x− y|

φ(y)dσ(y)

− kh(x)
∫

∂D

H1
0

′′

(k|x− y|)| (〈x− y, ν(x)〉)2

|x− y|2
φ(y)dσ(y)

]
− ik

4

[ ∫
∂D

H1
0

′

(k|x− y|)| 〈x− y, ν(x)〉〈x− y, ν(y)〉
|x− y|3

h(y)φ(y)dσ(y)

−
∫

∂D

H1
0

′

(k|x− y|)| 〈ν(x), ν(y)〉
|x− y|

h(y)φ(y)dσ(y)

− k

∫
∂D

H1
0

′′

(k|x− y|)| 〈x− y, ν(x)〉〈x− y, ν(y)〉
|x− y|2

h(y)φ(y)dσ(y)
]

= τ(x)h(x)(Kk
D)∗(φ)(x)− (Kk

D)∗(τhφ)(x)

+
∂Dk

D(hφ)
∂ν

(x) + h(x)
[∂2Sk

D(φ)
∂ν2

(x)− τ
∂Sk

D(φ)
∂ν

(x)
]
− h′(t)

dSk
D(φ)
dt

(x), x ∈ ∂D.

Recall that ∂2Sk
D(φ)

∂ν2 and ∂Sk
D(φ)
∂ν are not continuous on ∂D, but ∂2Sk

D(φ)
∂ν2 − τ ∂Sk

D(φ)
∂ν is contin-

uous and given by

∂2Sk
D(φ)
∂ν2

− τ
∂Sk

D(φ)
∂ν

= −
( d

dt

)2

Sk
D(φ)− k2Sk

D(φ) on ∂D.

To justify the last equality, we use the Laplacian in the local coordinates in (2.5)

0 = ∆ + k2 =
∂2

∂ν2
− τ

∂

∂ν
+

( d

dt

)2

+ k2 on ∂D.

Since

Kk,1
D φ(x) = τ(x)h(x)(Kk

D)∗(φ)(x)− (Kk
D)∗(τhφ)(x)

+
∂Dk

D(hφ)
∂ν

(x)− d

dt

(
h
dSk

D(φ)
dt

)
(x)− k2h(x)Sk

D(φ)(x)

=
(
τh
∂(Sk

Dφ)
∂ν

−
∂
(
Sk

D(τhφ)
)

∂ν

)∣∣∣
±

(x) +
∂Dk

D(hφ)
∂ν

(x)

− d

dt

(
h
dSk

D(φ)
dt

)
(x)− k2h(x)Sk

D(φ)(x), x ∈ ∂D. (4.5)

Let Ψα be the diffeomorphism from ∂D to ∂Dα given by Ψα(x) = x+ αh(t)ν(x), where
x = X(t). The following theorem holds.
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Theorem 4.1 Let N ∈ N. There exists C depending only on N, k, ‖X‖C2 , and ‖h‖C1 such
that for any φ ∈ L2(∂Dα), we have

∥∥∥Sk
Dα

[φ]oΨα − Sk
D[φ̃]−

N∑
n=1

αnSk,n
D [φ̃]

∥∥∥
L2(∂D)

≤ CαN+1‖φ̃‖L2(∂D), (4.6)

and ∥∥∥(Kk
Dα

)∗[φ]oΨα − (Kk
D)∗[φ̃]−

N∑
n=1

αnKk,n
D [φ̃]

∥∥∥
L2(∂D)

≤ CαN+1‖φ̃‖L2(∂D), (4.7)

where φ̃ := φoΨα.

We need the following lemma.

Lemma 4.2 Suppose that k2
0 is not a Dirichlet eigenvalue for −∆ on D. For each (F,G) ∈

W 2
1 (∂D)×L2(∂D) and for α small enough, there exists a unique solution (ξ, ζ) ∈ L2(∂D)×

L2(∂D) to the system of integral equations

N∑
n=0

αnSk,n
D ξ −

N∑
n=0

αnSk0,n
D ζ = F on ∂D,

1
µ

N∑
n=0

αn
(
− δ0n

2
I +Kk,n

D

)
ξ − 1

µ0

N∑
n=0

αn
(δ0n

2
I +Kk0,n

D

)
ζ = G on ∂D.

(4.8)

Furthermore, there exists a constant C independent of α, F , and G such that

‖ξ‖L2(∂D) + ‖ζ‖L2(∂D) ≤ C
(
‖F‖W 2

1 (∂D) + ‖G‖L2(∂D)

)
. (4.9)

Proof. Let X := L2(∂D) × L2(∂D) and Y := W 2
1 (∂D) × L2(∂D). For n ∈ N, define the

operator Tn : X → Y by

Tn(f, g) :=
(
Sk,n

D ξ − Sk0,n
D ζ,

1
µ

(
− δ0n

2
I +Kk,n

D

)
ξ − 1

µ0

(δ0n

2
I +Kk0,n

D

)
ζ
)
.

Since Tn is bounded. In Particular

T0(ξ, ζ) :=
(
Sk

Dξ − Sk0
D ζ,

1
µ

∂(Sk
Dξ)
∂ν

∣∣∣
−
− 1
µ0

∂(Sk0
D ζ)
∂ν

∣∣∣
+

)
.

Define the operator TN by

TN = T0 +
N∑

n=1

αnTn.

It is proved in [3] that if k2
0 is not a Dirichlet eigenvalue for −∆ on D, then T0 is invertible.

For α small enough, it follows from Theorem 1.16, section 4 of [11], that the operator
TN is invertible. This completes the proof of solvability of (4.8). The estimate (4.9) is a
consequence of solvability and the closed graph theorem. �

12



4.2 Proof of Theorem 3.1

Fix an integer N and write

Hα(x)−H(x) = −Sk0
Ω

(∂uα

∂ν

∣∣
∂Ω
− ∂u

∂ν

∣∣
∂Ω

)
(x) :=

N∑
n=1

αnHn(x)+O(αN+1), x ∈ R2, (4.10)

with Hn|− −Hn|+ = 0 on ∂Ω, (∆ + k2
0)Hn = 0 in R2\∂Ω, and

∣∣|∂i
(
Hα −H −

N∑
n=1

αnHn

)∣∣|Cl(Ω′) ≤ CαN+1, i ∈ N2, l ∈ N,

for any D ⊂ Ω′ ⊂⊂ Ω, where C depends only on dist(Ω′, ∂Ω),Ω, N, i, and l.
Denote H0 := H. By Taylor expansion, we have

Hα(x+ αh(x)ν(x)) =
N∑

n=0

αn
n∑

m=0

∑
|i|=m

(h(x))m

i!
∂iHn−m(x)ν(x)i +O(αN+1)

:=
N∑

n=0

αnFn(x) +O(αN+1), x ∈ ∂D, (4.11)

where
F0(x) = H(x), F1(x) = H1(x) + h(x)

∂H

∂ν
(x), x ∈ ∂D.

Similarly, by Taylor expansion and (2.1), we obtain

∇Hα(x̃) · ν(x̃) =
N∑

n=0

αn
n∑

m=0

m∑
s=0

∑
|i|=s

(h(x))s

i!
∂i∇Hm−s(x)(ν(x))i · νn−m(x) +O(αN+1)

:=
N∑

n=0

αnGn(x) +O(αN+1), x ∈ ∂D, (4.12)

where

G0(x) =
∂H

∂ν
(x), G1(x) =

∂H1

∂ν
(x) + h(x)

∂2H

∂ν2
(x)− h′(t)

∂H

∂T
(x), x ∈ ∂D.

Define (ϕ(n), ψ(n)) as solution of the following system

Sk
Dϕ

(n) − Sk0
D ψ(n) = Fn +

n−1∑
m=0

Sk0,n−m
D ψ(m) − Sk,n−m

D ϕ(m) on ∂D,

(4.13)

1
µ

∂(Sk
Dϕ

(n))
∂ν

∣∣∣
−
− 1
µ0

∂(Sk0
D ψ(n))
∂ν

∣∣∣
+

=
1
µ0
Gn +

n−1∑
m=0

1
µ0
Kk0,n−m

D ψ(m) − 1
µ
Kk,n−m

D ϕ(m) on ∂D.

(4.14)

Thanks to Theorem 2.1, one can see recursively the existence and the uniqueness of (ϕ(n), ψ(n)).
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Define

ϕN :=
N∑

n=0

αnϕ(n), ψN :=
N∑

n=0

αnψ(n), FN :=
N∑

n=0

αnFn, GN :=
N∑

n=0

αnGn on ∂D.

It follows from the theorem 4.1, (4.13), and (4.14) that

N∑
n=0

αnSk,n
D

(
ϕ̃− ϕN

)
−

N∑
n=0

αnSk0,n
D

(
ψ̃ − ψN

)
= HαoΨα − FN +O(αN+1) on ∂D,

N∑
n=0

αn 1
µ

(
− δ0n

2
I +Kk,n

D

)(
ϕ̃− ϕN

)
−

N∑
n=0

αn 1
µ0

(δ0n

2
I +Kk0,n

D

)(
ψ̃ − ψN

)
=

1
µ0

∂Hα

∂ν
oΨα −

1
µ0
GN +O(αN+1) on ∂D,

where ϕ̃ = ϕαoΨα and ψ̃ = ψαoΨα.
The following lemma follows immediately from (4.11), (4.12), and the estimate in (4.9).

Lemma 4.3 Let N ∈ N. For α small enough, there exists C depending only on N, k, k0,
the C2-norm of X, and the C1-norm of h such that

∥∥∥ϕαoΨα −
N∑

n=0

αnϕ(n)
∥∥∥

L2(∂D)
+

∥∥∥ψαoΨα −
N∑

n=0

αnψ(n)
∥∥∥

L2(∂D)
≤ CαN+1,

where (φ(n), ψ(n)) is defined by recursive relations (4.13) and (4.14).

Recall that the domain D is separated apart from the boundary ∂Ω, then

sup
x∈∂Ω,y∈∂D

∣∣∣∂iGk0(x, y)
∣∣∣ ≤ C, i ∈ N2.

For some constant C depending on dist(D, ∂Ω). Let x ∈ ∂Ω, we get

∂(Gk0
Dα
ψα)

∂ν
(x) =

∫
∂D

( N∑
n=0

∑
|i|=n

αnh(y)
n

i!
∂∂iGk0(x, y)

∂ν(x)
νi(y)

)
(4.15)

×
( N∑

n=0

αnψ(n)(y)
)( N∑

n=0

αnσn(y)
)
dσ(y) +O(αN+1).

For n,m ∈ N and x ∈ ∂Ω. Define

Gk0,n
D,mψ

(n−m)(x) :=
m∑

s=0

∑
|i|=s

∫
∂D

h(y)s

i!
∂iGk0(x, y)ν

i(y)σm−s(y)ψ(n−m)(y)dσ(y). (4.16)

Note that Gk0,0
D,0ψ

(0) = Gk0
D ψ. In view of (4.15), we obtain the following theorem.
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Theorem 4.4 For α small enough. The following formula holds uniformly for x ∈ ∂Ω :

∂(Gk0
Dα
ψα)

∂ν
(x) =

∂(Gk0
D ψ)
∂ν

(x) +
N∑

n=1

αn
n∑

m=0

∂(Gk0,n
D,mψ

(n−m))
∂ν

(x) +O(αN+1), (4.17)

where Gk0,n
D,mψ

(n−m)is defined by (4.16). The remainder O(αN+1) depends on N , Ω, k0, k,
the C2-norm of X, the C1-norm of h, and dist(D, ∂Ω).

As a consequence of (4.17), it follows from (2.24) and (4.10) that

Hn(x) = −
n∑

m=0

Sk0
Ω

(∂(Gk0,n
D,mψ

(n−m))
∂ν

∣∣∣
∂Ω

)
(x), x ∈ R2.

Now to prove Theorem 3.1. Define the operator Sk0,n
D,m as the Gk0,n

D,m, only we replace the
kernel Gk0 by Γk0 . Thanks to (4.13) and (4.14), one can check that un given by

un(x) =


Hn(x) +

n∑
m=0

Sk0,n
D,mψ

(n−m)(x), x ∈ Ω\D,

n∑
m=0

Sk,n
D,mϕ

(n−m)(x), x ∈ D.
(4.18)

satisfies (3.6), (3.11), and (3.8). Therefore, it follows from lemma 2.2 that

∂un

∂ν
(x) =

n∑
m=0

∂(Gk0,n
D,mψ

(n−m))
∂ν

(x), x ∈ ∂Ω,

for n = 1, · · · , N , and then, Theorem 3.1 can be proved from (2.24) and Theorem 4.4, as
desired.

In particular

u1(x) =

{
H1(x) + Sk0

D ψ(1)(x)− Sk0
D (τhψ(0))(x) +Dk0

D (hψ(0))(x), x ∈ Ω\D,

Sk
Dϕ

(1)(x)− Sk
D(τhϕ(0))(x) +Dk

D(hϕ(0))(x), x ∈ D.
(4.19)

In fact, it follows from (4.3) and (4.13) that

u1|− − u1|+ =h
∂H

∂ν
+

(
Sk0,1

D ψ(0) − Sk,1
D ϕ(0)

)
+ Sk0

D (τhψ(0))− Sk
D(τhϕ(0))

+Dk
D(hϕ(0))|− −Dk0

D (hψ(0))|+

=h
(∂H
∂ν

+
∂(Sk0

D ψ(0))
∂ν

∣∣∣
+

)
− h

∂(Sk0
D ϕ(0))
∂ν

∣∣∣
−

=h
(µ0

µ
− 1

)∂u
∂ν

∣∣∣
−

on ∂D.
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By using (4.14), we have

1
µ

∂u1

∂ν

∣∣∣
−
− 1
µ0

∂u1

∂ν

∣∣∣
+

=
1
µ0
Kk0,1

D ψ(0)
∣∣∣
+
− 1
µ
Kk,1

D ϕ(0)
∣∣∣
−

+
1
µ0

(
h
∂2H

∂ν2
− h′

∂H

∂T

)
+

( 1
µ0

∂Sk0
D (τhψ(0))
∂ν

∣∣∣
+
− 1
µ

∂Sk
D(τhϕ(0))
∂ν

∣∣∣
−

)
+

( 1
µ

∂Dk
D(hϕ(0))
∂ν

∣∣∣
−
− 1
µ0

∂Dk0
D (hψ(0))
∂ν

∣∣∣
+

)
on ∂D.

Since (∆ + k2
0)H = 0 in Ω. According to (2.5), we have

h
∂2H

∂ν2
− h′

∂H

∂T
= τh

∂H

∂ν
− d

dt

(
h
dH

dt

)
− hk2

0H on ∂D.

It then follows from (4.5) that u1 satisfies (3.9).
In order to prove the boundary condition u1 = 0 on ∂Ω. Let

w(x) := H1(x) + Sk0
D ψ(1)(x)− Sk0

D (τhψ(0))(x) +Dk0
D (hψ(0))(x), x ∈ R2\Ω.

Since w satisfies 

(∆ + k2
0)w = 0 in R2\Ω,∣∣∣ ∂w

∂|x|
− ik0w

∣∣∣ = O(|x|− 3
2 ), |x| → ∞,

∂w

∂ν

∣∣∣
∂Ω

= 0,

(4.20)

and hence w ≡ 0 in R2\Ω (see [3], pp. 187). This completes the proof.

5 Reconstruction of the interface deformation

Let v be the solution of the following problem ∇ ·
(

1
µ∗
∇v

)
+ ω2ε∗v = 0 in Ω,

v|∂Ω = g ∈W 2
1
2
(∂Ω),

(5.1)

Integrating by parts over ∂Ω yields∫
∂Ω

g
(∂uα

∂ν
− ∂u

∂ν

)
dσ = α

∫
∂Ω

g
∂u1

∂ν
dσ +O(α2) (5.2)

= α

∫
∂D

h

[(µ0

µ
− 1

)( ∂v
∂T

∂u

∂T
+
µ0

µ

∂v

∂ν

∣∣∣
−

∂u

∂ν

∣∣∣
−

)
+ k2

0

(
1− ε

ε0

)
vu

]
dσ +O(α2).

Our goal is to use the formula (5.2) to determine the Fourier coefficients hp from a finite
number of measurements provided that the order of magnitude of hp is much larger than α.

To illustrate this, we consider Ω to be the unit disk centered at the origin, and D to be
the disk centered at the origin with radius ρ. Set f(θ) = eipθ, then

u(r, θ) =


(
apJ|p|(k0r) + bpY|p|(k0r)

)
eipθ, ρ ≤ r ≤ 1,

cpJ|p|(kr)eipθ, 0 ≤ r ≤ ρ.
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where J|p| and Y|p| are the Bessel functions of the first and second kind, respectively, and
ap, bp and cp are constants and can be computed from the following system

apJ|p|(k0) + bpY|p|(k0) = 1,

apJ|p|(k0ρ) + bpY|p|(k0ρ)− cpJ|p|(kρ) = 0,

apJ
′
|p|(k0ρ) + bpY

′
|p|(k0ρ)− cp

√
µ0ε
µε0

J ′|p|(kρ) = 0.

Let g(θ) = eiqθ. Define

Cp,q := cpcq

(
ρk2µ0

µ
(
µ0

µ
− 1)J ′|p|(kρ)J

′
|q|(kρ) + J|p|(kρ)J|q|(kρ)

[
ρk2

0(1−
ε

ε0
)− (

µ0

µ
− 1)

pq

ρ

])
.

It follows from (5.2) that∫
∂Ω

g
(∂uα

∂ν
− ∂u

∂ν

)
dσ = αCp,q

∫
∂D

hei(p+q)θdθ + (α2). (5.3)

The formula (5.3) implies that the Fourier coefficients hp can be determined from mea-
surements of

(
∂uα

∂ν − ∂u
∂ν

)
on ∂Ω provided that the order of magnitude of hp is much larger

than α. To reconstruct Fourier coefficients more accurately the first ones, the high-order
asymptotic expansions should be used.
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