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Abstract

This paper proposes effective partial differential equation(PDE)-based denoising tech-
niques for magnetic resonance electrical impedance tomography (MREIT). MREIT is an
imaging tool which provides cross-sectional conductivity images of a target object. If
we inject currents to a target object, MREIT measures the induced magnetic flux den-
sity Bz and reconstructs conductivity images. Due to the fact that this tool utilizes the
Laplacian of Bz, the data quality is significant in the reconstruction. However in in vivo
experiments and medical applications to humans, the measured Bz has low SNR since we
cannot use high magnitude currents. Furthermore, the Bz data has salt-pepper type noise
in outer layers of bones and gas-filled organs. Hence the reconstructed conductivity will
not be reliable without the effective denoising. We propose modifications of the Hahn-Lee
method [1] for denoising Bz. The Hahn-Lee method is remarkable in its ability to remove
noise from normal images, however, modifications are necessary for applications to Bz due
to the data properties; the data is microscale and the ramp structure is very weak. The
proposed modifications enable us to magnify the effects of ramp-strength and to perform
isotropic smoothing in salt-pepper type noisy regions which are identified through eigen-
value analysis while we use anisotropic smoothing for preserving ramp structure in the
other regions. We show that the modified Hahn-Lee method performs effectively in noise
removal from Bz through evaluations using three different noisy data sets: a simulated
phantom, an experimental phantom, and a post-mortem canine brain.

Key words: conductivity image, MREIT, PDE-based ramp preserving denoising.

1 Introduction

In recent years, numerous studies have attempted to develop algorithms which recon-
struct cross sectional conductivity images from magnetic resonance electrical impedance
tomography (MREIT). Among the developed algorithms, the harmonic Bz algorithm gives
the most remarkable conductivity images from MREIT data in phantom, post-mortem
and in vivo animal experiments as studied in [2, 3, 4, 5]. In addition, it is more prac-
tical than other algorithms. Generally, all three components of magnetic flux density
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B = (Bx, By, Bz) are necessary to reconstruct conductivity images and it leads to re-
peat experiments three times with rotating a target object. In contrast, the harmonic
Bz algorithm reconstructs conductivity images solely by the main magnetic directional
component Bz. Thus it reduces the number of experiments by one third, and becomes
applicable to human experiments in the view of the present MR-technology which does
not provide rotations.

For medical MREIT applications to humans, it is necessary to use low magnitude
currents due to safety regulations. However, manipulation with low magnitude currents
brings about low SNR of Bz. Low SNR is problematic since the Laplacian of Bz is required
in the reconstruction process. The noise effect is amplified significantly in differentiating
Bz, and it deteriorates the quality of results. Hence the reconstructed conductivity will
not be reliable without effective removal of noise.

To remove noise from Bz, Lee et al. [6] proposed the harmonic decomposition method.
By the harmonic decomposition, the Bz data is divided into smooth harmonic and peak-
structural parts. The main idea of this method is reforming the refracted Bz structure
to peak-structure by extracting the harmonic part of Bz and denoising only the peak-
structural part. In addition, this method utilizes the MR magnitude image which is
obtained spontaneously in MREIT experiments. However, this method does not provide
accurate Laplacian information of Bz since it is one of edge preserving denoising schemes
based on the Perona-Malik method [7]. It is required to denoise Bz with ramp preserving
denoising scheme for the accurate Laplacian information.

Gilboa et al. [8] suggested the complex diffusion method. It is a ramp preserving
denoising method with a new scheme of representing the second derivative information
of a target image using complex valued coefficient. However this method has no tools to
handle salt-pepper type noise which is originated from animals and human body especially
in outer layers of bones and gas-filled organs. In these parts, the magnitude of MR signal
is extremely low, thus we are not able to obtain Bz robustly and it results in salt-pepper
type noise.

Hahn and Lee [1] proposed another ramp preserving denoising method which utilizes
a structure tensor. In this paper, we present a scheme of finding exact location of salt-
pepper type noise through eigenvalue analysis of the structure tensor. To resolve two main
problems, ramp preserving and removing both normal random noise and salt-pepper type
noise, we propose a modified ramp preserving Hahn-Lee method using the eigenvalue
analysis scheme.

This paper is organized as follows. The modifications of the ramp preserving Hahn-
Lee method are presented in Section 2. The performance evaluation of the proposed
method with three different data sets and comparison with other methods are presented
in Section 3. The paper is concluded with a summary in Section 4.

2 Methodology

2.1 Ramp preserving Hahn-Lee Method

The structure tensor U of data I is defined by

U = ∇I(x, t)∇I(x, t)T .

This matrix has orthonormal eigenvectors vΛ and vλ with vΛ parallel to ∇I and the
corresponding eigenvalues are given by

Λ = |∇I|2 and λ = 0.

From the geometric point of view, U is a metric tensor of I. The eigenvectors vΛ and vλ
are the directions in which maximum and minimum changes of I occur, respectively. Also
the corresponding eigenvalues Λ and λ denote the amount of changes.
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Hahn and Lee [1] proposed a denoising method based on nonlinear partial differential
equations (PDEs) with a structure tensor. The proposed model denoises the image I with
the PDEs of the form:

∂I

∂t
(x, t) = ∇ · (g(U)∇I(x, t)) in Ω× (0, T1],

(g(U)∇I(x, t)) · n = 0 on ∂Ω× (0, T1],
I(x, 0) = I0(x) on Ω,

(2.1)

with
∂uij
∂τ

(x, τ) = ∇ · (g(U)∇uij(x, τ)) in Ω× (0, T2],

(g(Uσ)∇uij(x, τ)) · n = 0 on ∂Ω× (0, T2],

uij(x, 0) =
(
∇I(x, t)∇I(x, t)T

)
ij

on Ω,

(2.2)

and
g(U) =

1√
1 + Λ

vΛv
T
Λ +

1√
1 + λ

vλv
T
λ , (2.3)

where uij = (U)ij and Λ and λ are maximum and minimum eigenvalues of U , respectively,
and vΛ and vλ are corresponding eigenvectors.

Note that each time step of numerical implementation of the Hahn-Lee method consists
of three parts: construction of the structure tensor U , regularization of the tensor U with
PDE (2.2), and denoising of the image I with PDE (2.1). The remarkable point is that
this method is robust to the tensor regularization time T2. This property is useful since
measuring the level of noise is a difficult problem in practice.

In the sense that the diffusivity matrix (2.3) in the Hahn-Lee method uses Λ = |∇I|2,
it is a natural extension of the diffusivity coefficient in the Perona-Malik method. The
notable point in the Hahn-Lee method is that the same diffusivity matrix is used for
image denoising (2.1) and tensor regularization (2.2). In general, the first derivatives of
a target image are used in diffusion coefficient or diffusivity matrix to keep edges. For
that reason, in tensor regularization, the second derivatives of a target image is commonly
used. However, for instance, in a one-dimensional image, the absolute values of the second
derivatives have a local minimum at edges, and then the tensor information easily smears
out near edges. Hence, in order to preserve edges, it is more suitable to use the first
derivative information of a target data in tensor regularization also. See [1] for more
details.

In the present paper we will denoise the magnetic flux density Bz obtained from
MREIT experiments and utilize the Laplacian of Bz in the conductivity reconstruction
process. To reconstruct reliable conductivity images, we need to apply adequate denoising
method on Bz before the reconstruction procedure. If we apply edge-preserving type de-
noising methods such as the Perona-Malik method, however, these methods only preserve
the positions where |∇Bz| has its local maxima and lose the information of the ramp’s
end points. Thus the positions where the Laplacian of Bz has its local maxima will be
located inaccurately. To preserve the endpoints of the ramp, that is, the ramp structure,
we adopt the tensor

uij(x, 0) =

(
2∑
k=1

∇wk(x, t)∇wk(x, t)T
)
ij

,

where (w1(x, t), w2(x, t))T = ∇Is instead of

uij(x, 0) =
(
∇Is(x, t)∇Is(x, t)T

)
ij
.
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Hahn and Lee [1] modified the original Hahn-Lee method to the following ramp preserving
denoising scheme:

∂I

∂t
(x, t) = ∇ · (g(U)∇I(x, t)) in Ω× (0, T1],

(g(U)∇I(x, t)) · n = 0 on ∂Ω× (0, T1],
I(x, 0) = I0(x) on Ω,

with
∂uij
∂τ

(x, τ) = ∇ · (g(Us)∇uij(x, τ)) in Ω× (0, T2],

(g(Us)∇uij(x, τ)) · n = 0 on ∂Ω× (0, T2],

uij(x, 0) =

(
2∑
k=1

∇wk(x, t)∇wk(x, t)T
)
ij

on Ω,

and
g(U) =

1√
1 + Λ

vΛv
T
Λ +

1√
1 + λ

vλv
T
λ .

We call this scheme as the ramp preserving Hahn-Lee method, abbreviated as the HL
method. The only difference with the original Hahn-Lee method is an initial condition
of tensor denoising. The HL method preserves high fluctuated ramp structure well as
evaluated in [1].

2.2 Modified Hahn-Lee Method

The Bz data has very low fluctuated ramp structure, and thus the HL method does not
work successfully for denoising the Bz data. To adjust the HL method to MREIT, we
propose two modifications of the HL method. The first is to magnify data scale and the
second is to scale the diffusivity matrix g(U).

The magnitude of Bz is about 10−9∼10−6. Too small magnitude of the data can
cause more numerical round-off errors. Also it follows that structure tensor has small
magnitude, and then the eigenvalues becomes very small. Hence the diffusivity matrix
does not have the anisotropic denoising properties. To overcome this trouble we scale Bz
to the normal image scale such as [0, 255] and then re-scale it after completing denoising.

The next modification is on the diffusivity matrix g(U). We add a scale factor h(λ)
in g(U) as

g(U) =
1√

1 + h(λ)Λ
vΛv

T
Λ +

1√
1 + h(λ)λ

vλv
T
λ ,

where h(λ) is defined in two manners depending on the noise state of the Bz data, which
can be anticipated from MR images. When noise is randomly distributed, h(λ) is set to
be

h(λ) = α,

where α is the constant larger than 1 so that it magnifies effects of the diffusivity matrix.
As we take larger α, this method recognizes the strength of ramp structure stronger than
the original strength.

If the Bz data is collected from MRI scanning of humans or in vivo animals, Bz
partially has salt-pepper type noise near outer layers of bones and gas-filled organs. If
we keep deonising process until this noise disappears, the ramp structure which should
be preserved also disappears. Hence it is more efficient to treat this noise separately.
The second proposed scale factor allows to conduct isotropic smoothing in salt-pepper
type noisy regions and ramp preserving denoising in the other regions based on minimum
eigenvalues λ of U .
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The formula of the second scale factor is given by

h(λ) =
{

0 if λ ≥ λ̂,
α otherwise,

with
λ̂ = µ+ βσ,

where µ and σ are the average and the standard deviation of {λ(x)}x∈Ω, respectively. The
constant β in the degrading limit λ̂ is an increasing value depending on denoising time as

β = [γ · (Denoising time)] ,

where [x] refers to a maximum integer not exceeding x and γ is the constant depending
on the level of salt-pepper type noise.

The scale factor describes that we find noisy regions where λ ≥ λ̂ and set h(λ) = 0
for these regions. If h(λ) = 0, then denoising occurs in both eigenvector directions with
the same amount, so the denoising procedure becomes isotropic smoothing. Hence we
can smooth the noisy regions fast and preserve ramp structure with this scale factor.
The remaining problem is to figure out the noisy regions with λ. As mentioned above,
the eigenvector corresponding to a minimum eigenvalue implies the minimal changing
direction at the point, and the minimum eigenvalue implies the amount of change in the
corresponding eigenvector direction. The large minimum eigenvalues imply that there are
large scale of changes in both eigenvector directions, vΛ and vλ. This situation occurs
near a corner or noisy regions. Because there is no corner in the Bz data, it is reasonable
to consider the region having the large minimum eigenvalue as a noisy region. The one
last thing to consider is how to set the degrading limit which is the criterion of noisy
regions. Since the amount of noise decreases over time, the degrading limit is defined
with the increasing factor β which is proportional to denoising time. The constant γ is
selected around 3 ∼ 5 depending on the level of salt-pepper type noise.

3 Numerical Experiments

In this section, we will illustrate denoising results with three different data sets. To
evaluate the proposed method, we will also give denoising results with other denoising
methods: the isotropic smoothing, the Perona-Malik (PM) method [7], the harmonic
decomposition method [6], and the complex diffusion method [8]. To show the effect of
denoising procedure, we will give the results as the reconstructed conductivity image.
We use CoReHA(Conductivity Reconstructor using Harmonic Algorithms) [9] for the
conductivity reconstruction procedure. Notice that CoReHA gives scaled conductivity.

3.1 Simulated data from the simulated phantom

3.1.1 Generating Bz for the simulated phantom

For a test of the proposed denoising techniques, we generate the magnetic flux density Bz
from the simulated phantom which is a modification of the Shepp-Logan head phantom
as in Figure 1(a). We define the conductivities as the values in this figure. First, we
compute electric potential, and then obtain the magnetic flux density.

The relation between electric potential and conductivity is given by the following
equation:

∇ · (σ∇ui) = 0 in Ω for i = 1, 2 (3.1)
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(a) (b)

Figure 1: The simulated phantom: (a) conductivity settings, (b) electrode positions.

where σ is the conductivity and ui’s are the electric potential. Since two magnetic flux
densities are required on the harmonic Bz algorithm, two different boundary conditions
are given:  u1 = 1 if x ∈ E2,

u1 = −1 if x ∈ E4,
∇u1 · n = 0 otherwise,

(3.2)

and  u2 = 1 if x ∈ E1,
u2 = −1 if x ∈ E3,
∇u2 · n = 0 otherwise,

(3.3)

where n is a normal vector to ∂Ω and Ei’s are the regions of electrodes as in Fig-
ure 1(b). We obtain electric potentials by solving (3.1) twice with these two boundary
conditions (3.2) and (3.3). Commonly the Bz data produced by the horizontal and ver-
tical electric potential difference (i.e., boundary conditions (3.2) and (3.3)) are denoted
by B1

z and B2
z , respectively.

The next procedure is computing Bz with the Ampere’s Law

∇×B = µ0J, (3.4)

where J is the electrical current density and µ0 is the permeability of free space. A simple
calculation leads the following equations:

−4Biz = µ0∇σ · (∇ui)⊥ in Ω,

∇Biz · n = µ0J
⊥
i · n on ∂Ω.

The generated Bz by the above equations is shown in Figures 2(a) and 2(b).
To examine the performance of denoising techniques, we generate Gaussian random

noise which has zero mean and the realistic standard deviation. The realistic standard
deviation σ with respect to the signal to noise ratio of MR (SNRmr) is given in [10] as

σ =
1

2γTcSNRmr
, (3.5)

where the constant γ is the gyromagnetic ratio of hydrogen (42.57×106Hz/T), the constant
Tc is the effective current application time per excitation (24× 10−3A), and the SNRmr
is given by

SNRmr =
mean of MR on P

standard deviation of MR on P
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(a) (b)

(c) (d)

Figure 2: The simulated phantom: (a) simulated clean B1
z , (b) simulated clean B2

z , (c) simu-
lated noisy B1

z , and (d) simulated noisy B2
z .

where the region P ⊂ Ω is selected to contain relatively flat MR data to other regions.
Since we are using the simulated data, we do not have MR information. Thus we

assume SNRmr value as 90 which is used in [6], and then compute the standard deviation
σ from (3.5). After generating Gaussian random noise whose mean is zero and standard
deviation is σ, we add the noise to the generated Bz. Figures 2(c) and 2(d) illustrate
the simulated noisy Bz which are scaled to [0, 255]. Figures 3(a) and 3(b) illustrate the
reconstructed conductivities by the harmonic Bz algorithm from the simulated Bz and
the simulated noisy Bz, respectively.

3.1.2 Analysis of the Result

We compare the modified HL method with the isotropic smoothing, the PM method,
and the complex diffusion method. Since we added Gaussian random noise to Bz, in the

Denoising method Denoising time (Coefficient regularization time) SNR Rel.H1

Without denoising 0.56 3.137
Isotropic smoothing 1.5 8.97 0.303

PM 2.0 (0.1) 10.78 0.262
Complex diffusion 1.4 10.61 0.264

Modified HL 4.0 (2.0) 11.28 0.244

Table 1: The simulated phantom: Denoising time (Coefficient regularization time) and image
quality analysis based on SNR and Rel.H1
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(a) (b) (c)

(d) (e) (f)

Figure 3: The simulated phantom: reconstructed conductivities in X-Y view. (a) from the
simulated clean Bz, (b) from the simulated noisy Bz without denoising, (c) from the simulated
noisy Bz with denoising by the isotropic smoothing, (d) the PM method, (e) the complex
diffusion method, and (f) the modified HL method.

modified HL method, we utilize the first scale factor

h(λ) = 10. (3.6)

Figure 3(b) shows that there are extreme peaks at the four corners produced while
reconstruction procedure. Since the reconstruction algorithm is very sensitive in corners,
if the data in corner contains small amount of noise, it results in extreme peaks in recon-
structed results. The denoising times of each methods are described in Table 1. In the
complex diffusion method and the modified HL method, we terminate denoising processes
when the measures defined below have the best values. In the isotropic smoothing and the
PM method, when the results have the best quality in the manner of the same measures,
they still contain too much noise to distinguish inside features from noise. Thus we also
considered whether inside features are distinguishable in determining denoising time for
the isotropic smoothing and the PM method.

We evaluate reconstructed results with the signal to noise ratio (SNR) and the relative
H1 norm error (Rel.H1). The two measures are given by

SNR = 10 log10

V (Ir)
V (Ir − Io)

,

Rel.H1 =
‖ Ir − Io ‖H1

‖ Io ‖H1

,

where Ir is the result, Io is the original data, V (I) is the variance of I, and ‖ · ‖H1 is
defined as

‖ I ‖2H1=
∫

Ω

I2 +
∫

Ω

|∇I|2.
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In this analysis, Io is the original conductivity settings as in Figure 1(a), and Ir is a
reconstructed conductivity. It is difficult to compare results with denoised Bz due to the
weak ramp structure of Bz. Also, our goal is reconstructing reliable conductivity images.
Thus, we use conductivity images for the comparisons instead of denoised Bz. If we set
Ir to the reconstructed conductivity in Figure 3(a) obtained from the simulated clean
Bz, SNR is 15.39 and Rel.H1 is 0.164. These quantities are the maximal possible SNR
and the minimal possible Rel.H1. The SNR and Rel.H1 of reconstructed conductivities
from denoised Bz are presented in Table 1. The comparison from Table 1 shows that the
results of the modified HL method have the largest SNR and the smallest Rel.H1, so it
possesses the closest qualities to the reconstructed conductivity from the simulated clean
Bz.

Figures 3(c), 3(d), 3(e), and 3(f) illustrates images of reconstructed conductivities
from denoised Bz. In the figures, we set data ranges equal in order to compare clearly.
If there are values which are not in the fixed data range, they are presented as the same
color with the maximum or minimum value in 2-D view or they are chopped off in 3-D
view. Compared to the other methods, the results from the modified HL method produces
sharp edges, and also it preserves the area of each portions almost exactly. This successful
result comes from that we preserve the ramp structure of Bz effectively by magnifying
the strength of ramp structure using the scale factor.

3.2 MREIT experimental data from the agar phantom

We now compare the denoising techniques using MREIT experimental data. The exper-
iment was conducted with the agar phantom as shown in Figure 4. The three different
objects made of agar are placed in saline solution. The conductivity of upper and lower
right objects is fourteen times that of saline water and the conductivity of lower left object
is eight times that of saline water.

3.2.1 Preprocess for denoising procedure

Let Ω be the measuring region and S be the target denoising region as in Figure 4(b).
The main purpose is removal of noise inside S, however, it leads cumbersome works
to set the computing domain to be S. Thus it is desirable to maintain the computing
domain to be Ω, but the data on surrounding regions contain a large amount of noise
(Figures 5(a) and 5(b)). Because these noises come into S while denoising, it is required
to remove them in advance. Degrading the data of Sc to 0 may cause numerical problems
due to discontinuities, therefore, we extend the data from ∂S to Sc harmonically, that is,

Denoising time (Coefficient regularization time)
Denoising method Agar phantom Post-mortem canine brain

Isotropic smoothing 1.0 0.4
PM 1.0 (0.1) 0.4 (1.0)

Harmonic decomposition 4.75 1.2
Complex diffusion 1.1 3.2

Modified HL 2.7 (2.0) 1.5 (2.0)

Table 2: The agar phantom and the post-mortem canine brain: Denoising time (Coefficient
regularization time)
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(a) (b)

Figure 4: The agar phantom: (a) picture of phantom, (b) illustration.

we solve the following equation

4Bz = 0 in Sc,

∇Bz · n = 0 on ∂Ω,
Bz = Bz|∂S on ∂S.

The Bz on the region of Sc becomes smooth after the extension as in Figures 5(c) and 5(d),
while the original Bz is rugged as in Figures 5(a) and 5(b).

3.2.2 Analysis of the Result

Figures 6, 7, and 8 illustrate reconstructed results using denoised Bz with five denoising
methods: the isotropic smoothing, the PM method, the harmonic decomposition method,
the complex diffusion method, and the modified HL method. In the modified HL method,
we utilize the first scale factor of

h(λ) = 100,

since the noise in the measured Bz (Figures 5(c) and 5(d)) has the similar feature with
randomly distributed noise. Furthermore, since the ramp structure in Bz data from the
agar phantom is weaker than that from the simulated phantom in Section 3.1, we utilize
the ten times larger scale factor than (3.6). Table 2 describes denoising times of each
methods. We terminate each denoising method when each of the five methods produces
its best result and the data distribution in background of reconstructed conductivity are
in [0.8, 1.2]. Since the boundary conductivity is set to be 1 in the harmonic Bz algorithm,
we choose the criterion to be [0.8, 1.2] for the background error tolerance. Since the
harmonic decomposition method needs long denoising time in denoising the background
noise, the local features are also smoothed a lot as shown in Figures 6(d) and 7(d).

In Figure 6, we see that the results except from the harmonic decomposition method
seem to have similar features. In Figure 7, the amplitudes of results are similar to each
other, however, the remarkable contrast is detected from ramp structure. Let us focus
on the left-hand side ramp of the middle object of the phantom in magnified views Fig-
ure 8. While the result without denoising (Figure 8(a)) possesses sharply breaking curve,
there is no breaking region in the ramps of the results from the isotropic smoothing, the
PM method and the harmonic decomposition method (Figures 8(b), 8(c), and 8(d)). In
contrast to the other results, the ramps of the results from the complex diffusion method
and the modified HL method (Figures 8(e) and 8(f)) retain the same structure as in Fig-
ure 8(a). Comparing the results between the complex diffusion method and the modified
HL method, more detailed features are found in the modified HL method. In this aspect,
it is clear that the modified HL method removes noise with preserving ramp structure
most successfully.
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(a) (b) (c)

(d) (e) (f)

Figure 5: The agar phantom: (a) raw B1
z , (b) raw B2

z , (c) extended B1
z , (d) extended B2

z ,
(e) reconstructed conductivity with raw Bz, and (f) MR image.

(a) (b) (c)

(d) (e) (f)

Figure 6: The agar phantom: reconstructed conductivities in X-Y view. (a) without denoising,
and with denoising by (b) the isotropic smoothing, (c) the PM method (d) the harmonic
decomposition method, (e) the complex diffusion method, and (f) the modified HL method.
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(a) (b) (c)

(d) (e) (f)

Figure 7: The agar phantom: reconstructed conductivities in X-Z view. (a) without denoising,
and with denoising by (b) the isotropic smoothing, (c) the PM method, (d) the harmonic
decomposition method, (e) the complex diffusion method, and (f) the modified HL method.

(a) (b) (c)

(d) (e) (f)

Figure 8: The agar phantom: magnified views of Figure 7. (a) without denoising and with
denoising by (b) the isotropic smoothing, (c) the PM method, (d) the harmonic decomposition
method, (e) the complex diffusion method, and (f) the modified HL method.
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3.3 MREIT experimental data from the post-mortem canine brain

In this section, MREIT data from the post-mortem canine brain will be examined. In
animal experiments, one of the most problematic issues is salt-pepper type noise produced
in outer layers of bones and gas-filled organs. Our Bz data also contain salt-pepper type
noise around a skull of canine head. Looking at the MR image in Figure 9(f), we notice
that the upper middle portion is a brain. In this portion, a black region is a skull, M-shape
gray region is white matter, and the region between the skull and the white matter is gray
matter. Let us focus on B1

z and B2
z data of the brain part. Figures 10(a) and 10(b) are

the magnified views of the brain part of Figures 9(c) and 9(d), respectively. As shown
in these figures, a skull causes extreme peaks around the brain part. Furthermore, these
peaks in Bz causes extreme peaks in the reconstructed conductivity. These peaks can be
found as discontinuous regions as shown in Figure 9(e). Because the state of noise in this
region is different from the other regions, it is reasonable that the denoising procedure is
treated separately.

3.3.1 Analysis of the Result

Figures 11 and 12 describe reconstructed results using denoised Bz with five denoising
methods: the isotropic smoothing, the PM method, the harmonic decomposition method,
the complex diffusion method, and the modified HL method. In the modified HL method,
since the measured Bz data contain salt-pepper type noise, we utilize the second scale
factor of

h(λ) =
{

0 if λ ≥ λ̂,
100 otherwise,

with
λ̂ = µ+ βσ,

β = [3 · (Denoising time)] ,
(3.7)

where µ and σ are the average and the standard deviation of {λ(x)}x∈S , respectively. Ta-
ble 2 describes denoising times of each methods. We continue each of denoising procedure
until extreme noise peaks disappear.

It is desired that we retain the conductivity information of brain in denoising proce-
dure. For better analysis, we magnify the brain portion of Figure 11 as shown in Figure 12.
In contrast to the other results, Figure 12(f) does not contain any noise peaks and it also
retains the information of the M-shape white matter distinctly. We also observe the
M-shape local features in the other results, however their structure is smooth while the
M-shape local features in Figures 12(a) and 12(f) have sharp structures. Furthermore,
if we continue denoising using the isotropic smoothing, the PM method, the harmonic
decomposition method, and the complex diffusion method until small noise peaks disap-
pear, then the ramp structures of white matter smear out, so we cannot distinguish the
white matter from the gray matter.

In the modified HL method, the successful denoising is possible since we are able to
identify the noisy regions from the proposed scale factor. The scale factor detects the
noisy regions using the minimum eigenvalue distribution of tensor computed from Bz.
If at some point the minimum eigenvalue is larger than the degrading limit in (3.7),
we execute isotropic smoothing at the point. Figure 10 presents Bz information before
denoising. There are salt-pepper type noisy regions in B1

z and B2
z . Comparing 2-D views,

we notice that the locations of the noisy regions of Figures 10(c) and 10(d) are identical
to the white parts of Figures 10(e) and 10(f). The white parts refer to the regions which
have a larger minimum eigenvalue than the degrading limits. Since we compute isotropic
smoothing for the white parts, i.e., salt-pepper type noisy regions, we are able to remove
the noise fast, while at the same time, preserving ramp structure surrounded by highly
oscillated noises.
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(a) (b) (c)

(d) (e) (f)

Figure 9: The post-mortem canine brain: (a) raw B1
z , (b) raw B2

z , (c) extended B1
z , (d) ex-

tended B2
z , (e) reconstructed conductivity with raw Bz, and (f) MR image.

(a) (b) (c)

(d) (e) (f)

Figure 10: The post-mortem canine brain: magnified views of the brain part before denoising.
(a) B1

z and (b) B2
z in 3-D view, (c) B1

z and (d) B2
z in 2-D view, (e) minimum eigenvalue

distribution of tensor from B1
z , and (f) minimum eigenvalue distribution of tensor from B2

z .
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(a) (b) (c)

(d) (e) (f)

Figure 11: The post-mortem canine brain: reconstructed conductivities in a X-Y view.
(a) without denoising, and with denoising by (b) the isotropic smoothing, (c) the PM method,
(d) the harmonic decomposition method, (e) the complex diffusion method, and (f) the mod-
ified HL method.

(a) (b) (c)

(d) (e) (f)

Figure 12: The post-mortem canine brain: 3-D magnified views of the brain part of Figure 11.
(a) without denoising, (b) the isotropic smoothing, (c) the PM method, (d) the harmonic
decomposition method, (e) the complex diffusion method, and (f) the modified HL method.

15



4 Conclusions

We proposed modifications of the HL method. The HL method is remarkable in its ability
to remove noise from normal images, however, for MREIT applications, modifications of
the diffusivity matrix are necessary. In MREIT imaging, the HL method performs sim-
ilarly to isotropic smoothing due to the fact that the data is microscale and the ramp
structure is very weak. Thus, we have proposed two noise-feature dependent scale factors
of the diffusivity matrix in the nonlinear PDE of the HL method, and confirmed their
effectiveness in retrieving information from noisy data: a simulated phantom, an exper-
imental phantom, and a post-mortem canine brain. A main reason for the success of
the proposed method is that the scale factor magnifies the effects of ramp-strength and
identifies salt-pepper type noisy regions through eigenvalue analysis, thus the method
effectively denoises the target by isotropically smoothing salt-pepper type noise while
preserving ramp structure.

For broader MREIT applications, it is compulsory that the Bz data is denoised through
preprocessing. In in vivo experiments, we cannot use high magnitude currents, and this
increases the magnitude of noise in Bz. Since the Laplacian of Bz is required in the
reconstruction procedure, the results will not be reliable without effective denoising. From
the evaluation given in this paper, we are convinced that the modified HL method which
identifies noisy regions will perform effectively in in vivo experiments.
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