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Abstract

For positive integers N, M ∈ N, let gn, g̃n ∈ L2(R) with supp(Dbgn)∪supp(Dbg̃n) ⊂ [0,M ],
where Dbg(t) := b−1/2g(t/b), b > 0 and n = 1, 2, ..., N . We give another set of necessary
and sufficient conditions for the multiwindow Gabor system (GN ; a, b) := {gn;k,l(t) := gn(t−
ka)e2πilbt}n=1,...,N ; k,l∈Z and the corresponding Gabor system (G̃N ; a, b) to form a pair of dual
frames for the rational sampling ab = P/Q with P,Q ∈ N, in addition to the Zibulski-Zeevi and
Janssen conditions. The conditions come from the back transform of Zibulski-Zeevi condition
to the time domain but are more informative for the applications. As applications, we show
that a multiwindow Gabor system (GN ; 1, 1) forms an orthonormal basis if and only if N = 1
and |g1(t)| =

∑M−1
m=0 χm+Em(t) a.e. where {Em}m=0,...,M−1 forms a Lebesgue measurable

partition of the unit interval [0, 1). Our criteria also provide a rich family of multiwindow
dual Gabor frames and multiwindow tight Gabor frames for L2(R) for the particular choices
of P, Q, N, M ∈ N.

1 Introduction

We are concerned with multiwindow Gabor systems with compact support of rational sampling
in L2(R). Throughout the paper we assume ab = P/Q, P, Q ∈ N, gcd(P,Q) = 1, and N, M ∈ N.
Let GN := {gn ∈ L2(R) | n = 1, ..., N}, G̃N := {g̃n ∈ L2(R) | n = 1, ..., N} and consider
the multiwindow Gabor system (GN ; a, b) := {gn;k,l(t) := gn(t − ka)e2πilbt | k, l ∈ Z} and the
corresponding multiwindow Gabor system (G̃N ; a, b). We recall that the Gabor systems (GN ; a, b)
and (G̃N ; a, b) form a pair of dual frames if and only if they are Bessel sequences and

< f, h >=
∑

k,l∈Z

N∑

n=1

< f, g̃n;ka,lb >< gn;ka,lb, h >, ∀f,∀ h ∈ L2(R), (1.1)

and that the Gabor system (GN ; a, b) is a tight frame with bound B if and only if

∑

k,l∈Z

N∑

n=1

|< f, gn;ka,lb >|2 = B||f ||2, ∀f ∈ L2(R). (1.2)

We only consider compactly supported generators in order to avoid cumbersome infinite di-
mensional matrices and to construct concrete examples of Gabor frames with compact support.
We also restrict ourselves to the rational sampling because we rely on the characterizations of

1



2

Zibulski-Zeevi [15] in terms of Zak transform, which is only applicable to the rational sampling.
The Zak transform is defined as

Zg(t, w) :=
∑

k∈Z
g (t + k) e−2πikw. (1.3)

For functions f ∈ Cc(R), it is defined pointwise, but for general functions in L2(R), the series
defining Zf converges in L2(I2) where I := [0, 1) for all f ∈ L2(R). It is well known that the
Zak transform Z is a unitary operator from L2(R) onto L2(I2). For the basic facts about the Zak
transform we refer to [4, 10, 15]. We define the dilation operator Dcf(t) := c−1/2f(t/c), c > 0,
which is also a unitary operator on L2(R).

The main interest in the Gabor system has been to find the criteria on a single window Gabor
system or a multiwindow Gabor system to form a tight frame [8, 9, 10, 11, 12, 14, 15], and to
construct dual pairs of Gabor systems [5, 6, 7].

In this paper, we derive another set of necessary and sufficient conditions (Theorem 2.1) for
the Gabor systems (GN ; a, b) and (G̃N ; a, b) to form a pair of dual frames in addition to the
Zibulski-Zeevi condition and Janssen condition. Our criteria have many interesting consequences
and provide a rich family of multiwindow dual Gabor frames and multiwindow tight frames
(Examples 4.1 ∼ 4.4) In Section 2, we state the main theorem and its consequences. The proof
of the main theorem will be given in Section 3. The illustrations and examples will be given in
Section 4.

2 Main result and consequences

In this section, we transform back the characterization of Zibulski-Zeevi in the Zak transform
domain to the time domain and obtain the following main theorem, whose proof will be given in
Section 3. Before stating the main theorem, we note from Proposition 8.2.4 in [4] that the multi-
window Gabor systems (GN ; a, b) and (G̃N ; a, b) are dual to each other if and only if the dilated
systems (DcGN ; ac, b

c) and (DcG̃N ; ac, b
c) are dual to each other, where DcGN := {Dcgn | gn ∈ GN}

for a given c > 0.

Theorem 2.1 Let ab = P/Q, P, Q ∈ N, gcd(P,Q) = 1 and let gn, g̃n ∈ L2(R) with supp(Dbgn)∪
supp(D̃bgn) ⊂ [0,M ], n = 1, 2, ..., N . Then the followings are equivalent.
(a) The Gabor systems (GN ; a, b) and (G̃N ; a, b) are dual to each other.
(b) (Zibulski-Zeevi condition [15]) For p̃, p ∈ {0, ..., P − 1},

1
P

N∑

n=1

Q−1∑

q=0

ZDbg̃n

(
t− qP

Q
,w +

p̃

P

)
ZDbgn

(
t− qP

Q
,w +

p

P

)
= δp̃,p, (2.1)

for a.e (t, w) ∈ I × 1
P I.

(c) For p̃, p ∈ {0, ..., P − 1} and for m ∈ {0,±1,±2, ...,±M̌} with M̌ := bM + (Q− 1)P/Qc,
1
P

∑

k−j=m

ap̃,p
k,j(t) = δp̃,pδ0,m, a.e. t ∈ I, (2.2)
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where

[
ap̃,p

k,j(t)
]
k,j=1,..,M̌+1

:=
Q−1∑

q=0

M̃
∗
p̃ Mp

(
t− qP

Q

)
, for p̃, p = 0, ..., P − 1, (2.3)

Mp :=
(
gb(t),gb(t + 1)e−2πi p

P , ...,gb(t + M̌)e−2πiM̌ p
P

)
N×M̌

,

gb(t) := (Dbg1(t), ..., DbgN (t))T ,

and M̃p̃ is defined in the same way with g̃b(t) = (Dbg̃1(t), ..., Dbg̃N (t))T .
(d) For p ∈ {0, ..., P − 1}, m ∈ {0,±1, ...,±M̌},

bM̌/P c∑

µ=0

Q−1∑

q=0

g̃b

(
t− qP

Q
+ (µP + p + m)

)
· gb

(
t− qP

Q
+ (µP + p)

)
= δm,0, (2.4)

for a.e. t ∈ I.
(e) For p ∈ {0, ..., P − 1}, m ∈ {0,±1, ...,±M̌},

bM̌/P c∑

µ=0

Q−1∑

q=0

g̃b

(
t +

p

Q
+

qP

Q
+ µP + m

)
· gb

(
t +

p

Q
+

qP

Q
+ µP

)
= δm,0, (2.5)

for a.e. t ∈ 1
QI.

(f) (Jassen condition [3])

1
b

N∑

n=1

∑

k∈Z
g̃n

(
t +

m

b
+ ka

)
· gn (t + ka) = δm,0 a.e. t ∈ R. (2.6)

Remark 2.2 The condition (b) is the dual form of the Zibulski-Zeevi condition for the tight
Gabor system in [15]. The condition (c) means, in the block matirx




Q−1∑

q=0

M̃∗
p̃ Mp




p̃,p=0,...,P−1

, (2.7)

that the diagonal blocks have the trace P and off-diagonals sum to 0 and that the off-diagonal
blocks have on-and-off diagonals sum to 0. Condition (d) and (e) mean the biorthogonality of
certain “block” vectors. Condition(e) is not a restriction of condition (d) in a short interval and
is very useful to construct examples (See section 4). The Janssen condition (f) is true even for
irrational sampling rate ab < 1.

Some particular cases of Theorem 2.1 are also of interest and will be stated as corollaries
without proof, where the corresponding conditions for (c) and (e) of Theorem 2.1 are given.

Corollary 2.3 (Q = 1) Let ab = P ∈ N. Then the followings are equivalent.
(a) (GN ; a, b) and (G̃N ; a, b) are dual to each other.
(b) For p̃, p ∈ {0, ..., P − 1} and for m ∈ {0,±1,±2, ...,±M},

1
P

∑

k−j=m

ap̃,p
k,j(t) = δp̃,pδ0,m a.e. t ∈ I (2.8)
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with corresponding notation as in Theorem 2.1.
(c) For p ∈ {0, ..., P − 1}, m ∈ {0,±1,±2, ...,±M},

bM/P c∑

µ=0

g̃b (t + p + µP + m) · gb (t + p + µP ) = δm,0, a.e. t ∈ I.

Corollary 2.4 (P = 1) Let ab = 1/Q with Q ∈ N. Then the followings are equivalent.
(a) (GN ; a, b) and (G̃N ; a, b) are dual to each other.
(b) For m ∈ {0,±1,±2, ...,±M},

∑

k−j=m

ak,j(t) = δ0,m a.e. t ∈ I. (2.9)

with the matrix
[
ai,j(t) := a0,0

i,j (t)
]
(M+1)×(M+1)

as in Theorem 2.1.

(c) For m ∈ {0,±1, ...,±M},
M∑

µ=0

Q−1∑

q=0

g̃b

(
t +

q

Q
+ µ + m

)
· gb

(
t +

q

Q
+ µ

)
= δm,0, a.e. t ∈ 1

Q
I.

Corollary 2.5 (Tight frame) Let ab = P/Q with P,Q ∈ N, and gcd(P, Q) = 1. Then the
followings are equivalent.
(a) (GN ; a, b) is a tight frame for L2(R) with bound B.
(b) For p̃, p ∈ {0, ..., P − 1} and for m ∈ {0,±1,±2, ...,±M̌},

1
P

∑

k−j=m

ap̃,p
k,j(t) = Bδp̃,pδ0,m a.e. t ∈ I (2.10)

with corresponding notation as in Theorem 2.1.
(c) For p ∈ {0, ..., P − 1}, m ∈ {0,±1, ...,±M̌},

bM̌/P c∑

µ=0

Q−1∑

q=0

gb

(
t +

p

Q
+

qP

Q
+ µP + m

)
· gb

(
t +

p

Q
+

qP

Q
+ µP

)
= Bδm,0,

for a.e. t ∈ 1
QI.

Corollary 2.6 (Tight frame for the case a=b=1) The followings are equivalent.
(a) (GN ; 1, 1) is a tight frame for L2(R) with bound B.
(b) For m ∈ {0,±1,±2, ...,±(M − 1)},

∑

k−j=m

ak,j(t) = Bδ0,m a.e. t ∈ I (2.11)

with the matrix
[
ak,j(t) := a0,0

k,j(t) = M∗
0 M0 (t)

]
M×M

as in Theorem 2.1.

(c) For m ∈ {0,±1,±2, ...,±(M − 1)},
M−1∑

µ=0

g (t + µ + m) · g (t + µ) = Bδm,0, a.e. t ∈ I.

where g := g1.
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As an application of Corollary 2.6, we completely determine when a multiwindow Gabor
system (GN ; 1, 1) forms an orthonormal basis for L2(R).

Theorem 2.7 (Orthonormal basis for the case a=b=1) Let gn ∈ L2(R) with supp(gn) ⊂ [0,M ]
for n = 1, ..., N . Then Gabor system (GN ; 1, 1) is an orthonormal basis for L2(R) if and only
if N = 1 and |g1(t)| =

∑M−1
m=0 χm+Em(t) a.e. where {Em}m=0,...,M−1 is a Lebesgue measurable

partition of [0, 1].

Proof. Suppose {gn;k,l := gn(t−k)e2πilt}n=1,...,N ; k,l∈Z is an orthonormal basis for L2(R). Then, in
addition to the condition (2.11), we need two more conditions; ||gn||L2(R) = 1 for all n = 1, ..., N

and the frame bound B = 1. Setting k − j = 0 in (2.11), we have for a.e. t ∈ I,

1 = B =
∑

k−j=0

ak,j(t) =
M−1∑

m′=0

||g(t + m′)||2 =
N∑

n=1

M−1∑

m′=0

|gn(t + m′)|2, (2.12)

which implies

1 =
∫ 1

0

N∑

n=1

M−1∑

m′=0

|gn(t + m′)|2dt =
N∑

n=1

∫ M

0
|gn(t)|2dt = N.

Since P = Q = 1 and N = 1, the matrix in (2.11) has the form



g(t)
g(t + 1)

...
g(t + M − 1)




(
g(t), g(t + 1), · · · , g(t + M − 1)

)
(2.13)

with ∑

k−j=m′
ak,j(t) = Bδ0,m′ for a.e. t ∈ I.

First, we take m′ = 1−M then

a1,M = g(t)g(t + M − 1) = 0 for a.e. t ∈ I,

which is equivalent to |E0 ∩ EM−1| = 0, where Em := supp(g) ∩ [m,m + 1) −m and | · | denote
the Lebesgue measure. Next, we take m′ = 2−M then

a1,M−1 + a2,M = g(t)g(t + M − 2) + g(t + 1)g(t + M − 1) = 0 for a.e. t ∈ I,

which, together with |E0 ∩ EM−1| = 0, implies |E0 ∩ EM−2| = 0 and |E1 ∩ EM−1| = 0. By
continuing this process until m′ = −1, we see

|Em ∩ Em̃| = 0, if m 6= m̃. (2.14)

Now, we take m′ = 0 (i.e., k = j) then

M−1∑

k=0

ak,k =
M−1∑

k=0

|g(t + k)|2 = B, a.e. t ∈ I, (2.15)
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which means
M−1∑

m=0

|g(t + m)|2 χEm(t) = BχI(t), a.e. t ∈ I. (2.16)

Hence
∣∣∣∣∣
M−1⋃

m=0

Em 4 I

∣∣∣∣∣ = 0, (2.17)

where A4B is the symmetric difference. From (2.14) and (2.17), we see {Em}m=0,...,M−1 forms a
Lebesgue measurable partition of [0, 1]. Therefore, (2.16) means that

|g(t)| =
√

B

M−1∑

m=0

χm+Em(t) a.e. t ∈ I.

where {Em}m=0,...,M−1 a Lebesgue measurable partition of [0, 1].
The converse is trivial.

3 Proof of the main theorem

For the proof of the main theorem, we need several lemmas which are of interest in itself.

Lemma 3.1 Let 2 ≤ P ∈ N and ω := e2πi/P be the P -th primitive root of unity. For the
Vandemonde matrix

A :=




1 1 1 · · · 1
1 ω ω2 · · · ω(P−1)

1 ω2 ω4 · · · ω2(P−1)

...
1 ω(P−1) ω2(P−1) · · · ω(P−1)·(P−1)




P×P

,

let Al,k be the (P − 1)× (P − 1) matrix obtained from A by removing l-th row and k-th column.
Then

det (Al,k) = (−1)(l−l′)+(k−k′) ω(l−l′)+(k−k′)−(lk−l′k′) det
(
Al′,k′

)
.

Proof. It suffice to show that

det (Al,k) = (−1)(l+k) ω(l+k)−lkdet (AP−1,P−1) , ∀l, ∀k. (3.1)

The determinant det (Al,k) has the form

det (Al,k) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1
1 ω ω(k−2) ωk ω(P−1)

...
...

...
...

...
1 ω(l−2) . . . ω(k−2)(l−2) ωk(l−2) . . . ω(P−1)(l−2)

1 ωl ω(k−2)l ωkl ω(P−1)l

...
...

...
...

...
1 ω(P−1) ω(k−2)(P−1) ωk(P−1) ω(P−1)(P−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (3.2)
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We factor out all the factors in the k-th column of Al,k to have ~1 in the column and then replace
all negative powers to the equivalent positive powers of ω to have det(Al,k) =

ω
(P−1)P

2
k−(l−1)k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1
ωP−k ω(P−k+1) ωP−2 1 ω(P−k−1)

...
...

...
...

...
ω(P−k)(l−2) ω(P−k+1)(l−2) . . . ω(P−2)(l−2) 1 . . . ω(P−k−1)(l−2)

ω(P−k)l ω(P−k+1)l ω(P−2)l 1 ω(P−k−1)l

...
...

...
...

...
ω(P−k)(P−1) ω(P−k+1)(P−1) ω(P−2)(P−1) 1 ω(P−k−1)(P−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(3.3)

By interchanging columns to have increasing powers of ω in each row, (3.3) can be made to be

(−1)(k−1)(P−k) ω
(P−1)P

2
k−(l−1)k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1
1 ω ω(P−2)

...
...

...
1 ω(l−2) . . . ω(P−2)(l−2)

1 ωl ω(P−2)l

...
...

...
1 ω(P−1) ω(P−2)(P−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (3.4)

We repeat the process with rows as in columns to have

det (Al,k) = (−1)(k−1)(P−k) ω
(P−1)P

2
k−(l−1)k × (−1)(l−1)(P−l) ω

(P−2)(P−1)
2

ldet (AP−1,P−1)

=
(
(−1)P (l+k) ω

(P−1)P
2

(k+l)
)

ω(k+l)−lkdet (AP−1,P−1) . (3.5)

We observe that if P is odd then ωP (P−1)/2 = 1; hence

(−1)P (l+k) ω
(P−1)P

2
(k+l) = (−1)P (l+k) = (−1)(l+k).

and if P is even then ω(P/2)(P−1) = (−1)P−1 = −1; hence

(−1)P (l+k) ω
(P−1)P

2
(k+l) = (−1)(l+k).

Therefore we have

det (Al,k) = (−1)(l+k) ω(k+l)−lkdet (AP−1,P−1) . (3.6)

Lemma 3.2 Let P ∈ N, rp ∈ R for p = 0, ..., P − 1, and let ω be the P -th primitive root of unity.
If

P−1∑

p=0

rp = c ∈ R,

P−1∑

p=0

rpω
p = 0, · · · ,

P−1∑

p=0

rpω
p(P−1) = 0.

then r0 = r1 = · · · = rP−1 = c
P .
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Proof. We can rewrite the given condition in the matrix form as follows.



1 1 1 · · · 1
1 ω ω2 · · · ω(P−1)

...
1 ω(P−1) ω2(P−1) · · · ω(P−1)·(P−1)







r0

r1
...

rP−1


 =




c
0
...
0




By the Cramer’s rule and Lemma 3.1, for k = 1, ..., P − 1,

rk = c(−1)1+k+1det (A1,k+1) /det (A)

= c(−1)1+k+1 · (−1) det (A1,k) /det (A)

= c(−1)1+k det (A1,k) /det (A)

= rk−1,

where A and Al,k are defined as in Theorem 3.1. Since
∑P−1

p=0 rp = c, the conclusion follows.

Lemma 3.3 Let P,Q ∈ N, gcd(P, Q) = 1. For t ∈ [0, P/Q) ∩ I, define τ := t% 1
Q and tp :=

(t + p)%P
Q for p = 0, ..., P − 1, where α%β := α− bα

β cβ for α, β > 0. Then

(a)
∣∣tp1 − tp2

∣∣% 1
Q

= 0,

(b) tp1 6= tp2 if p1 6= p2, and

(c) {tp : p = 0, ..., P − 1} =
{

p

Q
+ τ : p = 0, ..., P − 1

}
.

Proof. We note τ ∈ [0, 1/Q) and tp ∈ [0, P/Q). For (a), we observe that

tp%
1
Q

=
{

(t + p)%
P

Q

}
%

1
Q

= (t + p)%
1
Q

= τ, ∀p = 0, ..., P − 1.

This implies that there exists n1, n2 ∈ {0, ..., P − 1} such that

tp1 =
n1

Q
+ τ and tp2 =

n2

Q
+ τ.

Therefore,

∣∣tp1 − tp2

∣∣% 1
Q

=
∣∣∣∣
n1

Q
− n2

Q

∣∣∣∣%
1
Q

= 0.

For (b), suppose tp1 = tp2 for some p1 6= p2. Then we have

0 =
∣∣t + p1 − t− p2

∣∣%P

Q
=

∣∣p1 − p2

∣∣%P

Q
,

and this is equivalent to

0 =
∣∣p1 − p2

∣∣Q%P.
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That is, |p1 − p2|Q is a multiple of P . Since gcd(P, Q) = 1, |p1 − p2| is a multiple of P . This
contradicts to |p1 − p2| < P . The contradiction shows (b). Then (c) follows from (a) and (b).

Now we present the proof of Theorem 2.1.

Proof of Theorem 2.1.
(a) ⇐⇒ (b) is the dual form of the Zibulski-Zeevi characterization for the tight Gabor frame with
rational sampling given in [15].
(b) =⇒ (c) : We observe that for a.e. t ∈ I and q ∈ {0, ..., Q− 1},

Dbg̃n

(
t− qP

Q
+ m

)
= 0 = Dbgn

(
t− qP

Q
+ m

)
if m /∈ {0, ..., M̌}, (3.7)

where M̌ = bM + (Q− 1)P/Qc.
For a.e. (t, w) ∈ I × 1

P I,

Pδp̃,p =
N∑

n=1

Q−1∑
q=0

ZDbg̃n

(
t− qP

Q
,w +

p̃

P

)
ZDbgn

(
t− qP

Q
,w +

p

P

)
(3.8)

=
N∑

n=1

Q−1∑
q=0




M̌∑

k̃=0

Dbg̃n

(
t− qP

Q
+ k̃

)
e−2πik̃(w+ p̃

P )







M̌∑

k=0

Dbgn

(
t− qP

Q
+ k

)
e−2πik(w+ p

P )




=
N∑

n=1

Q−1∑
q=0

M̌∑

k̃=0

M̌∑

k=0

(
Dbg̃n

(
t− qP

Q
+ k̃

)
Dbgn

(
t− qP

Q
+ k

))
e2πi

(k̃p̃−kp)
P e−2πi(k−k̃)w

=
Q−1∑
q=0

M̌∑

k̃=0

M̌−k̃∑

m=−k̃

(
N∑

n=1

Dbg̃n

(
t− qP

Q
+ k̃

)
Dbgn

(
t− qP

Q
+ (k̃ + m)

))
e2πi

(k̃p̃−(k̃+m)p)
P e−2πimw

=
Q−1∑
q=0

M̌∑

k̃=0

M̌∑

m=−M̌

(
N∑

n=1

Dbg̃n

(
t− qP

Q
+ k̃

)
Dbgn

(
t− qP

Q
+ (k̃ + m)

))
e2πi

(k̃p̃−(k̃+m)p)
P e−2πimw

=
M̌∑

m=−M̌

M̌∑

k̃=0

(
Q−1∑
q=0

g̃b

(
t− qP

Q
+ k̃

)
e2πik̃ p̃

P · gb

(
t− qP

Q
+ (k̃ + m)

)
e−2πi

(k̃+m)p
P

)
e−2πimw. (3.9)

For the second last equality, we use (3.7). We observe that

M̃∗
p̃Mp (t) =




g̃b(t)
T

g̃b(t + 1)
T
e2πi p̃

P

...

g̃b(t + M̌)
T
e2πiM̌ p̃

P




(
gb(t) gb(t + 1)e−2πi p

P · · · gb(t + M̌)e−2πiM̌ p
P

)
,

and that

ap̃,p
k,j(t) =




Q−1∑

q=0

M̃∗
p̃Mp

(
t− qP

Q

)


k,j

, k, j ∈ {1, ..., M̌ + 1}.
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Defining ap̃,p
k,j(t) = 0 for k, j 6∈ {1, ..., M̌ + 1}, (3.9) becomes

M̌∑

m=−M̌

M̌+1∑

k=1




Q−1∑

q=0

M̃∗
p̃Mp

(
t− qP

Q

)


k,k+m

e−2πimw

=
∑

m∈Z


 ∑

j−k=m

ap̃,p
k,j(t)


 e−2πimw. (3.10)

Combining (3.10) and the left hand side of (3.8), we have

Pδp̃,p =
∑

m∈Z


 ∑

j−k=m

ap̃,p
k,j(t)


 e−2πimw.

Therefore, by the uniqueness of Fourier series expansion,

Pδp̃,pδm,0 =
∑

j−k=m

ap̃,p
k,j(t).

(c) =⇒ (d) : The (p1, p2)-th block of (2.7) is the the following matrix with trace Pδp1,p2 and
off-diagonal sum 0.




g̃ · g(0, 0) g̃ · g(0, 1) e2πi(−p2)/P · · · g̃ · g(0, M̌) e2πi(−M̌p2)/P

g̃ · g(1, 0) e2πi
p1
P g̃ · g(1, 1) e2πi

(p1−p2)
P · · · g̃ · g(1, M̌) e2πi

(p1−M̌p2)
P

...
. . .

...

g̃ · g(M̌, 0) e2πiM̌p1/P g̃ · g(M̌, 1) e2πi(M̌p1−p2)/P · · · g̃ · g(M̌, M̌) e2πi
M̌(p1−p2)

P




(3.11)

where g̃ · g(m1,m2) :=
∑Q−1

q=0 g̃b

(
t− qP

Q + m1

)
· gb(t− qP

Q + m2).
First, the trace (i.e., m1 = m2) of each block is

M̌∑

m=0

g̃ · g(m,m)e2πimp′/P = Pδ0,p′ , p′ = 0,±1...,±(P − 1), (3.12)

where p′ = p1 − p2. We note that we may assume p′ ∈ {0, ..., P − 1} in (3.12).
We write m = µP + p where µ := bm/P c and p := m%P , and then rearrange the summation to
have

P−1∑

p=0

bM̌/P c∑

µ=0

g̃ · g(µP + p, µP + p)e2πip·p′/P = Pδ0,p′ , p′ = 0, .., P − 1. (3.13)

We define

rp :=
bM̌/P c∑

µ=0

g̃ · g(µP + p, µP + p) and ω := e2πi 1
P ,
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for each p ∈ {0, ..., P − 1}, then (3.13) reduces to

P−1∑

p=0

rpω
p·p′ = Pδ0,p′ , p′ = 0, .., P − 1.

By Lemma 3.2 with c = P , we have for p = 0, ..., P − 1,

1 = rp =
bM̌/P c∑

µ=0

g̃ · g(µP + p, µP + p)

=
bM̌/P c∑

µ=0

Q−1∑

q=0

g̃b

(
t− qP

Q
+ (µP + p)

)
· gb(t− qP

Q
+ (µP + p)). (3.14)

Now, let us consider the off-diagonal (i.e., m1 6= m2) sum of each block. We define m′ :=
m1 −m2 and then choose m′ and fix it. Since

g̃ · g(m1,m2) = 0, if m1 or m2 6∈ {0, ..., M̌},

we can write the m′-th off diagonal sum of each (p1, p2)-th block as

0 =
∑

m1−m2=m′
g̃ · g(m1,m2)e2πi(m1p1−m2p2)/P

=
M̌∑

m2=0

g̃ · g(m2 + m′, m2)e2πi((m2+m′)(p2+p′)−m2p2)/P

=
M̌∑

m2=0

g̃ · g(m2 + m′, m2)e2πi(m2p′+m′(p2+p′))/P , p′ = 0,±1, ...,±(P − 1),

which is equivalent to

0 =
M̌∑

m=0

g̃ · g(m + m′,m)e2πimp′/P , p′ = 0,±1...,±(P − 1). (3.15)

Again, we note that we may assume p′ ∈ {0, ..., P −1} in (3.15). Using the similar argument used
in the diagonal case, we write m = µP + p and rearrange the summation to have

P−1∑

p=0

bM̌/P c∑

µ=0

g̃ · g(µP + p + m′, µP + p)e2πip·p′/P = 0, (3.16)

for p′ = 0, ..., P − 1. We redefine

rp :=
bM̌/P c∑

µ=0

g̃ · g(µP + p + m′, µP + p) and ω := e2πi 1
P .
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for each p ∈ {0, ..., P − 1}. Then (3.16) reduces to

P−1∑

p=0

rpw
p·p′ = 0, p′ = 0, .., P − 1.

By Lemma 3.2 again with c = 0, we have

0 = rp =
bM̌/P c∑

µ=0

g̃ · g(µP + p + m′, µP + p)

=
bM̌/P c∑

µ=0

Q−1∑

q=0

g̃b

(
t− qP

Q
+ (µP + p + m′)

)
· gb

(
t− qP

Q
+ (µP + p)

)
, (3.17)

for p = 0, ..., P − 1, and m′ = ±1, ...,±M̌ . In fact, (3.17) holds for all |m′| 6= 0 since

g̃ · g(m1, m2) = 0, if |m1 −m2 = m′| > M̌.

Therefore, the condition (d) follows from (3.14) and (3.17).
(d) =⇒ (e) : For t ∈ I and p ∈ {0, 1, ..., P − 1}, we can write

t + p = q0
P

Q
+ tp

where q0 := b(t + p)/P
Qc and tp := (t + p)%P

Q . We define a P -periodic discrete set Ω(t) :=
{t + µP | µ ∈ Z} and observe that

Q−1⋃

q=0

Ω
(

t + p− qP

Q

)

=
q0⋃

q=0

Ω
(

t + p− qP

Q

)
∪

Q−(q0+1)⋃

q=1

Ω
(

t + p +
qP

Q

)

=
q0⋃

q=0

Ω
(

tp +
qP

Q

)
∪

Q−1⋃

q=q0+1

Ω
(

tp +
qP

Q

)

=
Q−1⋃

q=0

Ω
(

tp +
qP

Q

)
.

We recall from Lemma 3.3 (c), defining τ := t% 1
Q ,

{
tp +

qP

Q
; p = 0, ..., P − 1

}
=

{
τ +

p

Q
+

qP

Q
; p = 0, ..., P − 1

}
.

Hence

P−1⋃

p=0

Q−1⋃

q=0

Ω
(

tp +
qP

Q

)
=

P−1⋃

p=0

Q−1⋃

q=0

Ω
(

τ +
p

Q
+

qP

Q

)
. (3.18)
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Summing according to the above partition in the following, we see, for t ∈ I satisfying the
condition (d),

δm,0 =
bM̌/P c∑

µ=0

Q−1∑

q=0

g̃b

(
t + p− qP

Q
+ µP + m

)
· gb

(
t + p− qP

Q
+ µP

)

=
∑

µ∈Z

q0∑

q=0

g̃b

(
t + p− qP

Q
+ µP + m

)
· gb

(
t + p− qP

Q
+ µP

)

+
∑

µ∈Z

Q−(q0+1)∑

q=1

g̃b

(
t + p +

qP

Q
+ (µ− 1)P + m

)
· gb

(
t + p +

qP

Q
+ (µ− 1)P

)

=
∑

µ∈Z

q0∑

q=0

g̃b

(
tp +

qP

Q
+ µP + m

)
· gb

(
tp +

qP

Q
+ µP

)

+
∑

µ∈Z

Q−1∑

q=q0+1

g̃b

(
tp +

qP

Q
+ µP + m

)
· gb

(
tp +

qP

Q
+ µP

)

=
bM̌/P c∑

µ=0

Q−1∑

q=0

g̃b

(
tp +

qP

Q
+ µP + m

)
· gb

(
tp +

qP

Q
+ µP

)
. (3.19)

By the same reasoning with (3.18), we see (3.19) for whole 0 ≤ p ≤ P − 1 with tp ∈ [0, P/Q), is
equivalent to the following (3.20) for whole 0 ≤ p ≤ P − 1 with τ ∈ [0, 1/Q).

δm,0 =
bM̌/P c∑

µ=0

Q−1∑

q=0

g̃b

(
τ +

p

Q
+

qP

Q
+ µP + m

)
· gb

(
τ +

p

Q
+

qP

Q
+ µP

)
(3.20)

which is the condition (e).
(e) =⇒ (f) : We define t := τ + p/Q for each τ ∈ [0, 1/Q) and p satisfying the condition (e);

δm,0 =
bM̌/P c∑

µ=0

Q−1∑

q=0

g̃b

(
τ +

p

Q
+

qP

Q
+ µP + m

)
· gb

(
τ +

p

Q
+

qP

Q
+ µP

)
.
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Then t is defined for a.e. [0, P/Q) and satisfies the following

δm,0 =
bM̌/P c∑

µ=0

Q−1∑

q=0

g̃b

(
t +

qP

Q
+ µP + m

)
· gb

(
t +

qP

Q
+ µP

)
, a.e. t ∈

[
0,

P

Q

)
,

=
∑

k∈Z
g̃b

(
t + k

P

Q
+ m

)
· gb

(
t + k

P

Q

)
, a.e. t ∈

[
0,

P

Q

)
,

=
∑

k∈Z
g̃b

(
t + k

P

Q
+ m

)
· gb

(
t + k

P

Q

)
, a.e. t ∈ R,

=
1
b

N∑

n=1

∑

k∈Z
g̃n

(
t

b
+

m

b
+ k

P

Qb

)
· gn

(
t

b
+ k

P

Qb

)
, a.e. t ∈ R,

=
1
b

N∑

n=1

∑

k∈Z
g̃n

(
t +

m

b
+ ka

)
· gn (t + ka) , a.e. t ∈ R, where ab =

P

Q
,

which is the condition (f).
(f) ⇐⇒ (a) : The condition (f) is the dual form of Theorem 3.2 in [3] with ab ∈ Q, which is a
characterization for the tight Gabor frame.

4 Illustrations and examples

We illustrate the use of Theorem 2.1 for the construction of multiwindow dual Gabor frames
in Example 4.1 and give more examples for the particular choices of P,Q, N and M . We only
consider real window functions and the case b = 1 for simplicity. First, we exploit the condition
(2.5) in Theorem 2.1.

Example 4.1 (Tight or dual pair, P=2,Q=3,M=2, and N=2) We consider tight Gabor frame

(a) g1 (b) g2

Figure 1: g1 and g2 in (4.2). (G2, 2/3, 1) forms a tight Gabor frame with bound 1.
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(a) g1 (b) g̃1

(c) g2 (d) g̃2

Figure 2: g1, g̃1 in (4.3) with α = 1/4, and g2, g̃2 in (4.4). (G2, 2/3, 1) and (G̃2, 2/3, 1) form dual
Gabor frames.

(a) g1 (b) g2

Figure 3: g1,g2 in (4.5),(4.6). (G2, 2/3, 1) forms a tight Gabor frame with bound 1.

with bound 1. In this case, the condition (2.5) means that, for a.e. t ∈ [0, 1/3),

‖g (t)‖2 +
∥∥∥∥g

(
t +

2
3

)∥∥∥∥
2

+
∥∥∥∥g

(
t +

4
3

)∥∥∥∥
2

= 1,

∥∥∥∥g
(

t +
1
3

)∥∥∥∥
2

+ ‖g (t + 1)‖2 +
∥∥∥∥g

(
t +

5
3

)∥∥∥∥
2

= 1,

g (t + 1) · g(t) + g
(

t +
5
3

)
· g

(
t +

2
3

)
= 0,

g
(

t +
4
3

)
· g

(
t +

1
3

)
= 0.

Therefore, any G2 = {g1, g2} satisfying the following two conditions forms a tight Gabor frame
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(G2; 2/3, 1) with bound 1.

2∑

q=0

∣∣∣g1

(
t +

q

3

)∣∣∣
2

=
1
2
, t ∈

[
0,

1
3

)
, (4.1)

g2(t) = g1(t− 1).

For example, we can take

g1(t) =

√
1
2
B3(3t) and g2(t) = g1(t− 1), (4.2)

where B3 is the B-spline of order 3 with support [0, 3]. Then (G2, 2/3, 1) forms a tight Gabor
frame with bound 1 (Figure 1). By splitting the B-spline function as a product of two function
g1 and g̃1 as

g1(t) =
(

1
2B3(3t)

)α and g̃1(t) =
(

1
2B3(3t)

)1−α
, (4.3)

where α ∈ (0, 1), and taking g2 and g̃2 as

g2(t) = g1(t− 1) and g̃2(t) = g̃1(t− 1), (4.4)

we get a dual pair of Gabor frames (G2; 2/3, 1) and (G̃2; 2/3, 1) (Figure 2). This kind of construc-
tion can be easily extended to the cases with general P, Q.
For another example of g1 and g2 satisfying (4.1), we can take

g1(t) =

√
3
2
tχ[0, 1

3)
(t) +

1
2
χ[ 1

3
, 2
3)

(t) +
(

3
2
− 3t

2

)
χ[ 2

3
,1)(t) and (4.5)

g2(t) = g1(t− 1), (4.6)

so that (G2, 2/3, 1) forms a tight Gabor frame with bound 1 (Figure 3).

In the following examples, we consider tight Gabor frames (GN ;P/Q, 1) in the cases (P, Q) ∈
{(2, 1), (1, 1), (1, 2)}. We note M̌ = M in these cases. We use the following notation for the block
matrix

([
ap̃,p

i,j (t)
]
N1

)

N2

:=
([

ap̃,p
i,j (t)

]
i,j=1,...,N1

)

p,p̃=1,...,N2

.

Example 4.2 (M=1) For P = 2 and Q = 1, the block matrix in (2.10) has the form

([
ap̃,p

i,j (t)
]
2

)
2

= ‖g(t)‖2




[
1 0
0 0

] [
1 0
0 0

]

[
1 0
0 0

] [
1 0
0 0

]


 . (4.7)

Hence the condition (2.10) can never be satisfied. This result reveals that there is no tight Gabor
frame (GN ; 2, 1) with supp(gn) ⊂ [0, 1].
For P = 1 and Q = 1, the matrix in (2.11) has the form

(
[ai,j(t)]1

)
1

= ‖g(t)‖2 .
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Hence the condition (2.11) is satisfied if and only if

N∑

n=1

|gn(t)|2 = B for a.e. t ∈ I.

For example, we can take

gn(t) :=

√(
N

n

)
(cosαπt)N−n(sinαπt)nχ[0,1)(t),

for n = 0, ..., N with real α 6= 0, then (2.10) is satisfied with B = 1 since

M∗M =
N∑

n=0

(
N

n

)
(cos2απt)N−n(sin2απt)nχ[0,1)(t)

= (cos2απt + sin2απt)Nχ[0,1)(t) = 1.

Therefore, (GN+1; 1, 1) forms a tight Gabor frame with bound 1.
For P = 1 and Q = 2, the matrix in (2.10) has the form

(
[ai,j(t)]2

)
1

=

([
‖g(t)‖2 +

∥∥g(t− 1
2)

∥∥2 0
0 ‖g(t + 1)‖2 +

∥∥g(t + 1
2)

∥∥2

])
.

Hence (2.10) is satisfied if and only if

∥∥∥∥g(t− 1
2
)
∥∥∥∥

2

+ ‖g(t)‖2 +
∥∥∥∥g(t +

1
2
)
∥∥∥∥

2

= B, a.e. t ∈ I.

Or equivalently,

‖g(t)‖2 +
∥∥∥∥g

(
t +

1
2

)∥∥∥∥
2

= B, a.e. t ∈
[
0,

1
2

)
.

For example, we can take

gn(t) :=

√(
2N

n

)
(cosπt)2N−n(sinπt)nχ[0,1)(t), n = 0, ..., N − 1,

and take

gN (t) :=

√
1
2

(
2N

N

)
(cosπt)N (sinπt)Nχ[0,1)(t),

so that (2.10) is satisfied with B = 1. Then (GN+1; 1/2, 1) forms a tight Gabor frame with bound
1.

Example 4.3 (N = 2 and M = 2) For P = 2 and Q = 1, the block matrix in (2.10) has the
form



18

([
ap̃,p

i,j (t)
]
3

)
2

=







‖g(t)‖2 g(t) · g(t + 1) 0
g(t) · g(t + 1) ‖g(t + 1)‖2 0

0 0 0







‖g(t)‖2 −g(t) · g(t + 1) 0
g(t) · g(t + 1) −‖g(t + 1)‖2 0

0 0 0







‖g(t)‖2 g(t) · g(t + 1) 0
−g(t) · g(t + 1) −‖g(t + 1)‖2 0

0 0 0







‖g(t)‖2 −g(t) · g(t + 1) 0
−g(t) · g(t + 1) ‖g(t + 1)‖2 0

0 0 0







.

Hence (2.10) is satisfied if and only if, for a.e. t ∈ I,

‖g(t)‖2 = ‖g(t + 1)‖2 = B, and

g(t) · g(t + 1) = 0.

For example, we can take

g1(t) = cos
π

2
tχ[0,2)(t), and

g2(t) = sin
π

2
tχ[0,2)(t)

so that (2.10) is satisfied with B = 2. Then (G2; 2, 1) forms a tight Gabor frame with bound 2.
For P = 1 and Q = 1, the matrix in (2.11) has the form

(
[ai,j(t)]2

)
1

=
([ ‖g(t)‖2 g(t) · g(t + 1)

g(t) · g(t + 1) ‖g(t + 1)‖2

])
.

Hence the condition (2.11) is satisfied if and only if, for a.e. t ∈ I,

‖g(t)‖2 + ‖g(t + 1)‖2 = B, and

g(t) · g(t + 1) = 0.

For example, we can take

g1(t) = α1cos
π

2
tχ[0,2)(t), and

g2(t) = α2sin
π

2
tχ[0,2)(t),

with real α1 6= 0 6= α2, so that (2.10) is satisfied with B = α2
1 + α2

2. Then (G2; 1, 1) forms a tight
Gabor frame with bound α2

1 + α2
2.

For P = 1 and Q = 2, then the matrix in (2.10) has the form(
[ai,j(t)]3

)
1

=






‖g (
t− 1

2

) ‖2 + ‖g (t) ‖2 , g
(
t− 1

2

) · g (
t + 1

2

)
+ g (t) · g (t + 1) , 0

g
(
t + 1

2

) · g (
t− 1

2

)
+ g (t + 1) · g (t) , ‖g (

t + 1
2

) ‖2 + ‖g (t + 1) ‖2 , g
(
t + 1

2

) · g (
t + 3

2

)
0 , g

(
t + 3

2

) · g (
t + 1

2

)
, ‖g (

t + 3
2

) ‖2





 .

Hence (2.10) is satisfied if and only if, for a.e. t ∈ [0, 1/2),

‖g(t)‖2 +
∥∥∥∥g

(
t +

1
2

)∥∥∥∥
2

+ ‖g(t + 1)‖2 +
∥∥∥∥g

(
t +

3
2

)∥∥∥∥
2

= B,

g(t) · g(t + 1) + g
(

t +
1
2

)
· g

(
t +

3
2

)
= 0.
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The second condition means the orthogonality of two vectors
(
g(t),g

(
t + 1

2

))T and
(
g(t + 1),g

(
t + 3

2

))T .
Hence we can take

g1(t) = cosπtχ[0, 3
2
)(t)− cosπtχ[ 3

2
,2)(t), and

g2(t) = sinπtχ[0, 3
2
)(t)− sinπtχ[ 3

2
,2)(t),

so that (2.10) is satisfied with B = 4. Then (G2; 1/2, 1) forms a tight Gabor frame with bound 4.

(a) g0 (b) g1

(c) g2 (d) g3

Figure 4: UEP type example; gn =
√(

3
n

)
(cosπt)3−n(sinπt)nχ[0,2)(t), n = 0, ..., 3. (G4, 1, 1) forms

a tight Gabor frame with bound 2.

The following example is interesting since the masks satisfying the condition for unitary ex-
tension principle(UEP) generates a tight Gabor system [13].

Example 4.4 (M = 2) Suppose m0(t), ..., mN (t) are 2π-periodic L∞ functions satisfying the
following UEP condition ([13], Chapter 14 in [4]):

(
m0(t) m2(t) · · · mN (t)

m0(t + π) m2(t + π) · · · mN (t + π)

)



m0(t) m0(t + π)
m1(t) m1(t + π)

...
...

mN (t) mN (t + π)


 =

(
1 0
0 1

)
.

Then multiwindow Gabor system (GN+1; 1, 1) with

gn(t) := mn(πt)χ[0,2)(t), n = 0, ..., N,

forms a tight Gabor frame with bound 2. For example, we can take

gn(t) :=

√(
N

n

)
(cosπt)N−n(sinπt)nχ[0,2)(t), n = 0, ..., N.
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