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Abstract

We introduce the pseudo-Butterworth refinable functions with order (n; m, `) which is
defined by the pseudo-Butterworth masks

Mn;m,`(w) :=
cos2nm(w/2)

(∑`
j=0

(
m+`

j

)
sin2nj(w/2) cos2n(`−j)(w/2)

)

(cos2n(w/2) + sin2n(w/2))m+`

with positive integers n, m and nonnegative integer ` ≤ m − 1. This family contains pseudo-
splines (when n = 1) and provide a rich family of refinable functions. The pseudo-Butterworth
refinable functions are not compactly supported (if n > 1) but have exponential decay to
compensate for the lack of compact support. This paper gives a comprehensive analysis of the
pseudo-Butterworth refinable functions, such as regularity, asymptotic analysis, approximation
order, asymptotic behavior as a parameter grows to the infinity and wavelet constructions,
etc, comparable to the analysis of pseudo-splines of Dong and Shen [8] and to the asymptotic
behavior of Battle-Lemarie refinable function of Kim, Kim and Ku [12].

1 Introduction

Pseudo-Butterworth refinable functions will be defined as an extension of pseudo-splines. Starting
from the simple identity,

1 =
(

cos2n(w/2) + sin2n(w/2)
cos2n(w/2) + sin2n(w/2)

)m+`

, (1.1)

the pseudo-Butterworth masks with order (n; m, `) for given positive integers n,m and nonnegative
integer ` ≤ m − 1, are defined by the sum of the first ` + 1 terms of the binomial expansion of
numerator of (1.1) for the numerator of the mask as follows:

Mn;m,`(w) :=
cos2nm(w/2)

(∑`
j=0

(
m+`

j

)
sin2nj(w/2) cos2n(`−j)(w/2)

)

(cos2n(w/2) + sin2n(w/2))m+`
. (1.2)

It reduces to the mask of pseudo-spline of type II [8] when n = 1 and to the Butterworth mask
when m = 1. The case ` = 0 was used in [13] to construct tight wavelet frames by the unitary
extension principle. The pseudo-Butterworth refinable function Φn;m,` with order (n;m, `) is
defined, via Fourier transform, as

Φ̂n;m,`(w) :=
∞∏

j=1

Mn;m,`(w/2j),
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and can be regarded as an extension of pseudo-spline of type II (n = 1) with order (m, l).
Pseudo-splines are first introduced in [5, 8] in order to construct tight framelets with required
approximation order of the truncated frame series. They are refinable and compactly supported
and provide large flexibilities in wavelet and framelet constructions and filter designs. The sys-
tematic analysis of pseudo-splines is given in [8]. Pseudo-Butterworth refinable functions provide
more variety by introducing one more parameter in wavelet constructions, framelet constructions
and filter designs. The lack of compact support of pseudo-Butterworth refinable functions can
be compensated by the exponential decay. We remark that Φn;1,0 is the Butterworth refinable
function corresponding to the Butterworth mask Mn;1,0 and Φn;m,0 is the mth convolution of
the Butterworth refinable function Φn;1,0, which becomes to the B-spline Bm of order m when
n = 1. We also remark that Φn;m,m−1 is an interpolatory refinable function which reduces to the
D-D(Deslauriers-Dubuc) interpolatory refinable function of order m when n = 1 [6, 14].

In this paper, we make a comprehensive analysis of the pseudo-Butterworth refinable functions,
such as regularity, asymptotic analysis, approximation order, asymptotic behavior as a parameter
grows to the infinity and wavelet constructions, etc, comparable to the analysis of pseudo-splines
of Dong and Shen [8] and to the asymptotic behavior of Battle-Lemarie refinable functions of
Kim, Kim and Ku [12]. In section 2, the technical lemmas are collected for the subsequent
computations. In section 3, the Sobolev exponent s∞(Φn;m,`) is computed in terms of parameters
and its dependance on the parameters are analyzed (Theorem 3.3 and Proposition 3.4). The
asymptotic analysis of the Sobolev exponent s∞(Φn;m,`) as n → ∞ or as m → ∞ are given in
Section 4 (Theorem 4.1 ∼ 4.3). In section 5, we show that the pseudo-Butterworth refinable
function Φn;m,` can generate a Riesz wavelet Ψn;m,` whose dilation and translation forms a Riesz
basis for L2(R) (Theorem 5.3) and compute its approximation order for the proper projection
(Theorem 5.5). In section 6, we show that Φn;m,` converges to Shannon refinable function in
Lq(R)(2 ≤ q ≤ ∞) as n → ∞ or as m → ∞ with ` = m − 1 (Theorem 6.5). Finally, in
section 7, we consider another class of pseudo-Butterworth refinable function coming from the
Riesz factorization of pseudo-Butterworth masks and give some relevant examples of pseudo-
Butterworth refinable functions and their graphs.

2 Technical Lemmas

For the notational simplicity we will use the following notations throughout the paper:

Pn;m,`(y) :=


∑̀

j=0

(
m + `

j

)
ynj(1− y)n(`−j)




/
((1− y)n + yn)` ,

M̃n;m,`(y) := (1− y)nmPn;m,`(y)/ ((1− y)n + yn)m = Mn;m,`(w),

with y = sin2(w/2). We also introduce an auxiliary function

Λ(y) := Λn(y) :=
yn

(1− y)n + yn
.

and note that

Pn;m,`(y) =
∑̀

j=0

(
m + `

j

)
Λj(y)Λ`−j(1− y), (2.1)
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and
M̃n;m,`(y) = Λm(1− y)Pn;m,`(y) (2.2)

The computations here are more complicated by the additional parameter n but are analoguous
to those in [8] with Λ(y) in place of y and Λ(1− y) in place of 1− y.

Lemma 2.1 For given positive integer m and nonnegative integers j, `, we have:

(1)
(
m+1

j

)
=

(
m
j

)
+

(
m

j−1

)
for j ≥ 1 and (j + 1)

(
m+j
j+1

)
= (m + j)

(
m−1+j

j

)
.

(2) 2(m + 1)
∑`−1

j=0

(
m+`

j

)− `
∑`

j=0

(
m+`

j

) ≥ 0 for m ≥ 1 and 1 ≤ ` ≤ m− 1.

(3) 22`
(
m+`

`

) ≤
(∑`

j=0

(
m+`

j

))2
for all m ≥ 1 and 0 ≤ ` ≤ m− 1.

Proof. [8, Lemma 2.1]. ¤

Lemma 2.2 For positive integers n,m and nonnegative integer ` ≤ m − 1, let Pn;m,` be the
rational function defined in (2.1). Then

(1) Pn;m,`+1(y) = Pn;m,`(y) +
(
m+`
`+1

)
Λ`+1(y) for 0 ≤ ` ≤ m− 2.

(2) Pn;m,`(y) =
∑`

j=0

(
m−1+j

j

)
Λj(y).

(3) M̃ ′
n;m,`(y) = −(m + `)

(
m+`−1

`

)
Λ`(y)Λm−1(1− y)Λ′(y).

(4) For T (y) := (1− y)n + yn,

min
y∈[0,1]

T (y) = T

(
1
2

)
= 21−n.

(5) For S(y) := M̃2
n;m,`(y) + M̃2

n;m,`(1− y),

min
y∈[0,1]

S(y) = S

(
1
2

)
= 21−2m−2`


∑̀

j=0

(
m + `

j

)


2

.
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Proof. (1): By use of Lemma 2.1 (1), we note that

Pn;m,`+1(y) =
`+1∑

j=0

(
m + ` + 1

j

)
Λj(y)Λ`+1−j(1− y)

=Λ`+1(1− y) +
`+1∑

j=1

(
m + ` + 1

j

)
Λj(y)Λ`+1−j(1− y)

=Λ`+1(1− y)

+
`+1∑

j=1

(
m + `

j

)
Λj(y)Λ`+1−j(1− y) +

∑̀

j=0

(
m + `

j

)
Λj+1(y)Λ`−j(1− y)

=Λ(1− y)Pn;m,`(y) +
(

m + `

` + 1

)
Λ`+1(y) + Λ(y)Pn;m,`(y)

=Pn;m,`(y) +
(

m + `

` + 1

)
Λ`+1(y).

(2): We induct on `. It is obviously true for ` = 0. Assume that (2) holds for ` = `0. Then (1)
with induction hypothesis for ` = `0 implies

Pn;m,`0+1 =
`0∑

j=0

(
m− 1 + j

j

)
Λj(y) +

(
m + `0

`0 + 1

)
Λ`0+1(y)

=
`0+1∑

j=0

(
m− 1 + j

j

)
Λj(y).

(3): We induct on ` again. It is obviously true for ` = 0. Assume that (3) holds for ` = `0, i.e.,

M̃ ′
n;m,`0(y) = −(m + `0)

(
m + `0 − 1

`0

)
Λ`0(y)Λm−1(1− y)Λ′(y),

and consider the case ` = `0 + 1 ≤ m− 1. Using (1) and the definition of M̃n;m,`(y) in (2.2), we
have

M̃n;m,`0+1(y) = Λm(1− y)Pn;m,`0+1(y)

= Λm(1− y)
(

Pn;m,`0(y) +
(

m + `0

`0 + 1

)
Λ`0+1(y)

)

= M̃n;m,`0(y) +
(

m + `0

`0 + 1

)
Λ`0+1(y)Λm(1− y).
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Since Λ′(1− y) = Λ′(y), we have

M̃ ′
n;m,`0+1(y) =− (m + `0)

(
m + `0 − 1

`0

)
Λ`0(y)Λm−1(1− y)Λ′(y)

+
(

m + `0

`0 + 1

)
(`0 + 1)Λ`0(y)Λm(1− y)Λ′(y)

−
(

m + `0

`0 + 1

)
mΛ`0+1(y)Λm−1(1− y)Λ′(y)

=Λ`0(y)Λm−1(1− y)Λ′(y)
(
−(m + `0)

(
m + `0 − 1

`0

)

+(`0 + 1)
(

m + `0

`0 + 1

)
Λ(1− y)−m

(
m + `0

`0 + 1

)
Λ(y)

)
.

Since Λ(1− y) = 1− Λ(y), by using Lemma 2.1 (1), we obtain

M̃ ′
n;m,`0+1(y) = −(m + `0 + 1)

(
m + `0

`0 + 1

)
Λ`0+1(y)Λm−1(1− y)Λ′(y).

(4): Since T ′(y) = n(yn−1 − (1 − y)n−1), T ′(y) ≤ 0 on [0, 1
2 ] and T ′(y) ≥ 0 on [12 , 1]. Therefore,

T (y) attains its minimum value at the point y = 1
2 . That is,

min
y∈[0,1]

T (y) = T

(
1
2

)
= 21−n.

(5): We compute S′(y):

S′(y) = 2M̃n;m,`(y)M̃ ′
n;m,`(y) + 2M̃n;m,`(1− y)(M̃n;m,`(1− y))′.

Using the identities

M̃n;m,`(y) = Λm(1− y)Pn;m,`(y),

M̃ ′
n;m,`(y) = −(m + `)

(
m + `− 1

`

)
Λ`(y)Λm−1(1− y)Λ′(y)

and

(M̃n;m,`(1− y))′ = (m + `)
(

m + `− 1
`

)
Λm−1(y)Λ`(1− y)Λ′(y),

we obtain

S′(y)
2(m + `)

(
m+`−1

`

)

=
∑̀

j=0

(
m− 1 + j

j

)(
Λ2m−1−`−j(y)− Λ2m−1−`−j(1− y)

)
Λ`+j(y)Λ`+j(1− y)Λ′(y).

For each 0 ≤ j ≤ ` ≤ m− 1, we note

(Λ(y))2m−1−`−j ≤ (Λ(1− y))2m−1−`−j for y ∈
[
0,

1
2

]
,

(Λ(y))2m−1−`−j ≥ (Λ(1− y))2m−1−`−j for y ∈
[
1
2
, 1

]
.
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Therefore, S′(y) ≤ 0 on [0, 1
2 ] and S′(y) ≥ 0 on [12 , 1], and so S(y) attains its minimum value at

the point y = 1
2 . That is,

min
y∈[0,1]

S(y) = S

(
1
2

)
= 2M̃2

n;m,`

(
1
2

)
= 21−2m−2`


∑̀

j=0

(
m + `

j

)


2

.

¤

3 Regularity

The regularity of a function ϕ ∈ L2(R) can be measured by the Sobolev exponent defined by

s∞(ϕ) := sup{s : sup
w
|ϕ̂(w)|(1 + |w|)s < ∞}.

For example, it gives the regularity of ϕ ∈ Cs for any s < s∞(ϕ)− 1. The following proposition
is [4, Lemma 7.1.7] adapted for our purpose and is used to compute the Sobolev exponents.

Proposition 3.1 Let ϕ be the refinable function with the refinement mask m(w) of the form

|m(w)| := cos2N (w/2)|P (sin2(w/2))|, w ∈ T := [−π, π],

for P ∈ C1(R). Suppose that

(1) |P (y)| ≤ |P (3/4)| for 0 ≤ y ≤ 3/4;

(2) |P (y)P (4y(1− y))| ≤ |P (3/4)|2 for 3/4 ≤ y ≤ 1.

Then s∞(ϕ) = 2N − κ with κ = log2(|P (3/4)|). Consequently, ϕ ∈ C2N−κ−1−ε for any ε > 0.

In this section, we compute the Sobolev exponent s∞(Φn;m,`) of the pseudo-Butterworth re-
finable function Φn;m,` and investigate its dependance on the parameters n,m and `. The compu-
tational technique is largely the same as in [8] but more complicated because of three parameters
instead of two.

Lemma 3.2 Let Pn;m,` be defined as in (2.2), where n,m are positive integers and ` is nonnegative
integer ≤ m− 1. Then

(1) Pn;m,`(y) ≤ Pn;m,`(3/4) for y ∈ [0, 3/4];

(2) Pn;m,`(y)Pn;m,`(4y(1− y)) ≤ (Pn;m,`(3/4))2 for y ∈ [3/4, 1].
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Proof. From Lemma 2.2 (2), Pn;m,`(y) is positive and monotonically increasing on [0, 1]. Hence (1)
is satisfied. Next, fix n,m ∈ N. For the proof of (2), we will show that, for any ` = 0, . . . , m− 2,

Wn;m,`+1(y)−Wn;m,`(y) ≤ 0, y ∈ [3/4, 1], (3.1)

where
Wn;m,`(y) := Pn;m,`(y)Pn;m,`(4y(1− y))− (Pn;m,`(3/4))2 . (3.2)

Note that Pn;m,0(y) ≡ 1, and hence Wn;m,0(y) ≡ 0. Then (2) follows immediately from (3.1). Let
us observe from (3.2) and Lemma 2.2 (1) that

Wn;m,`+1(y)−Wn;m,`(y)

=
(

Pn;m,`(y) +
(

m + `

` + 1

)
Λ`+1(y)

)
Pn;m,`+1(4y(1− y))

− Pn;m,`(y)Pn;m,`(4y(1− y))− (Pn;m,`+1(3/4))2 + (Pn;m,`(3/4))2

=Pn;m,`(y) (Pn;m,`+1(4y(1− y))− Pn;m,`(4y(1− y)))

+
(

m + `

` + 1

)
Λ`+1(y)Pn;m,`+1(4y(1− y))

− (Pn;m,`+1(3/4))2 + (Pn;m,`(3/4))2

=
(

m + `

` + 1

)(
Λ`+1(4y(1− y))Pn;m,`(y) + Λ`+1(y)Pn;m,`+1(4y(1− y))

)

− (Pn;m,`+1(3/4))2 + (Pn;m,`(3/4))2.

Since Wn;m,`+1(3/4) − Wn;m,`(3/4) = 0, in order to show the relation (3.1), it suffices to show
that Wn;m,`+1(y) −Wn;m,`(y) decreases monotonically on [3/4, 1]. Since Pn;m,`+1(y) ≥ Pn;m,`(y)
for any y ∈ [0, 1], it suffices to show that

G(y) := Λ`+1(4y(1− y))Pn;m,`(y) + Λ`+1(y)Pn;m,`+1(4y(1− y))

decreases monotonically on [3/4, 1], i.e., G′(y) ≤ 0, y ∈ [3/4, 1]. We compute G′:

G′(y) =(` + 1)(4− 8y)Λ`(4y(1− y))Λ′(4y(1− y))Pn;m,`(y)

+ Λ`+1(4y(1− y))P ′
n;m,`(y)

+ (` + 1)Λ`(y)Λ′(y)Pn;m,`+1(4y(1− y))

+ Λ`+1(y)(4− 8y)P ′
n;m,`+1(4y(1− y)).

From Lemma 2.2 (1), we have the identity

P ′
n;m,`(y) = P ′

n;m,`+1(y)−
(

m + `

` + 1

)
(` + 1)Λ`(y)Λ′(y).

This together with Lemma 2.2 (1) implies that

G′(y) =(` + 1)(4− 8y)Λ`(4y(1− y))Λ′(4y(1− y))Pn;m,`(y)

+ Λ`+1(4y(1− y))P ′
n;m,`+1(y)

+ (` + 1)Λ`(y)Λ′(y)Pn;m,`(4y(1− y))

+ Λ`+1(y)(4− 8y)P ′
n;m,`+1(4y(1− y)).
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Using (2.1) and Lemma 2.1 (1), we have

G′(y) =
∑̀

j=0

(
m− 1 + j

j

)
Λj(y)Λj(4y(1− y))

(
(` + 1)(4− 8y)Λ`−j(4y(1− y))Λ′(4y(1− y))

+ (m + j)Λ`+1−j(4y(1− y))Λ′(y) + (` + 1)Λ`−j(y)Λ′(y)

+(m + j)(4− 8y)Λ`+1−j(y)Λ′(4y(1− y))
)

.

For 0 ≤ j ≤ ` ≤ m− 2, consider

g`,j(y) :=(` + 1)(4− 8y)Λ`−j(4y(1− y))Λ′(4y(1− y))

+ (m + j)Λ`+1−j(4y(1− y))Λ′(y) + (` + 1)Λ`−j(y)Λ′(y)

+ (m + j)(4− 8y)Λ`+1−j(y)Λ′(4y(1− y))

=(` + 1)Λ`−j(4y(1− y))h1(y) + (` + 1)Λ`−j(y)h2(y) + (m + j − (` + 1))h3(y),

where h1, h2 and h3 are given by

h1(y) := −(8y − 4)Λ′(4y(1− y)) + Λ(4y(1− y))Λ′(y);
h2(y) := Λ′(y)− (8y − 4)Λ(y)Λ′(4y(1− y));

h3(y) := Λ`+1−j(4y(1− y))Λ′(y)− (8y − 4)Λ`+1−j(y)Λ′(4y(1− y)).

Since 3/4 ≤ Λ(y) ≤ 1, 2 ≤ 8y− 4 for y ∈ [3/4, 1] and Λ(y) ≥ 0, Λ′(y) ≥ 0 for y ∈ [0, 1], we obtain

h1(y) ≤ −2Λ′(4y(1− y)) + Λ′(y);

h2(y) ≤ Λ′(y)− 2Λ(y)Λ′(4y(1− y)) ≤ Λ′(y)− 3
2
Λ′(4y(1− y));

h3(y) ≤ Λ`+1−j(y)Λ′(y)− 2Λ`+1−j(y)Λ′(4y(1− y)) = Λ`+1−j(y)
(
Λ′(y)− 2Λ′(4y(1− y)

)
.

Hence, in order to show G′(y) ≤ 0, we prove

Λ′(4y(1− y)) ≥ Λ′(y), y ∈ [3/4, 1].

A direct calculation shows that

Λ′(y) =
nyn−1(1− y)n−1

(yn + (1− y)n)2
(3.3)

increases on [0, 1/2] and decreases on [1/2, 1]. If y ≥ 3/4 and 4y(1 − y) ≥ 1/2, i.e., 3/4 ≤ y ≤
(2+

√
2)/4, then Λ′(4y(1−y)) ≥ Λ′(y) since 1/2 ≤ 4y(1−y) ≤ y. If y ≥ 3/4 and 4y(1−y) ≤ 1/2,

i.e., (2 +
√

2)/4 ≤ y ≤ 1, then Λ′(y) ≤ Λ′(4y(1 − y)) since 1 − y ≤ 4y(1 − y) ≤ 1/2 and
Λ′(y) = Λ′(1− y) by (3.3). This completes the proof. ¤

The following main theorem in this section now follows from Proposition 3.1 , Lemma 3.2 and
[11, Theorem 3]. The case n = 1 was given in [8, Theorem 3.4] and the case m = 1 was given in
[11, Thoerem 3].
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Theorem 3.3 Let Φn;m,` be the pseudo-Butterworth refinable function with order (n; m, `). Then
s∞(Φn;m,`) = m log2(1 + 3n)− log2 Pn;m,`(3/4).

Proof. The pseudo-Butterworth mask with order (n; m, `) is

Mn;m,`(w) = cos2nm(w/2)
(
Ln(sin2(w/2)

)m
Pn;m,`(sin2(w/2)),

where Ln(y) := 1/ ((1− y)n + yn). By Proposition 3.1, Lemma 3.2 and [11, Theorem 3], the
Sobolev exponent s∞(Φn;m,`) is

s∞(Φn;m,`) = 2nm− log2 |Ln(3/4)|m − log2 |Pn;m,`(3/4)|
= log2(1 + 3n)m − log2 Pn;m,`(3/4).

¤

We now analyze the dependance of the Sobolev exponent s∞(Φn;m,`) of pseudo-Butterworth
refinable functions Φn;m,` on parameters n,m and ` in the following proposition. (1)∼(3) in the
following for the case n = 1 was given in [8, Proposition 3.5].

Proposition 3.4 Let βn;m,` := s∞(Φn;m,`). Then

(1) For fixed n,m, βn;m,` decreases as ` increases.

(2) For fixed n, `, βn;m,` increases as m increases.

(3) For fixed n, when ` = m− 1, βn;m,` increases as m increases.

(4) For fixed m, `, βn;m,` increases as n increases.

Proof. (1) follows directly from Lemma 2.2 (2), which shows that Pn;m,`(3/4) increases as `
increases for fixed n, m.
(2): Note that

βn;m,` = log2(1 + 3n)m − log2(Pn;m,`(3/4)), i.e.,

2βn;m,` =
(1 + 3n)m

Pn;m,`(3
4)

=
1

(1 + 3n)−mPn;m,`(3
4)

.

(2) is equivalent to the claim that

Im := (1 + 3n)−mPn;m,`

(
3
4

)

decreases as m increases for fixed n, `, which is again equivalent to the claim that for fixed
0 ≤ ` ≤ m− 1,

Im+1 − Im < 0. (3.4)

Note that

Im+1 − Im = (1 + 3n)−m−1Pn;m+1,`

(
3
4

)
− (1 + 3n)−mPn;m,`

(
3
4

)

= (1 + 3n)−m−1
∑̀

j=0

((
m + j

j

)
− (1 + 3n)

(
m− 1 + j

j

))(
3n

1 + 3n

)j

.
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Inequality (3.4) follows from the fact that for 0 ≤ j ≤ m− 1, n ≥ 1,
(

m + j

j

)
=

m + j

m

(
m− 1 + j

j

)
=

(
1 +

j

m

)(
m− 1 + j

j

)

< 2
(

m− 1 + j

j

)
< (1 + 3n)

(
m− 1 + j

j

)
.

This completes the proof of (2).
(3): Using a similar argument as in the proof of (2), (3) follows if we show that

Jm := (1 + 3n)−mPn;m,m−1

(
3
4

)

decreases as m increases for fixed n, which is equivalent to showing that for fixed n ≥ 1,

Jm+1 − Jm < 0. (3.5)

Note that, similarly to the proof of (2), we have

Jm+1 − Jm = (1 + 3n)−m−1M,

where

M :=
m∑

j=0

(
m + j

j

)(
3n

1 + 3n

)j

− (1 + 3n)
m−1∑

j=0

(
m− 1 + j

j

)(
3n

1 + 3n

)j

(3.6)

=
m−1∑

j=0

(
m + j

j

)(
3n

1 + 3n

)j

+
(

2m

m

)(
3n

1 + 3n

)m

− (1 + 3n)
m−1∑

j=0

(
m− 1 + j

j

) (
3n

1 + 3n

)j

=
m−1∑

j=1

(
m− 1 + j

j − 1

)(
3n

1 + 3n

)j

− 3n
m−1∑

j=0

(
m− 1 + j

j

)(
3n

1 + 3n

)j

+
(

2m

m

)(
3n

1 + 3n

)m

,

where the last identity follows from Lemma 2.1 (1). Now, (3.5) is equivalent to M < 0 for m ≥ 1.
It is easy to check that M < 0 for m = 1. We now consider the case m ≥ 2. Substituting j for
j − 1 in the first term of the last expression in (3.6), one obtains that

M =
3n

1 + 3n

m−2∑

j=0

(
m + j

j

)(
3n

1 + 3n

)j

− 3n
m−1∑

j=0

(
m− 1 + j

j

) (
3n

1 + 3n

)j

(3.7)

+
(

2m

m

) (
3n

1 + 3n

)m

.

Splitting the second term in (3.7), one obtains

M =
3n

1 + 3n

m−2∑

j=0

(
m + j

j

)(
3n

1 + 3n

)j

− 3n
m−2∑

j=0

(
m− 1 + j

j

) (
3n

1 + 3n

)j

(3.8)

+
(

2m

m

) (
3n

1 + 3n

)m

− 3n

(
2m− 2
m− 1

)(
3n

1 + 3n

)m−1

.
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For the last two terms of (3.8), we have
(

2m

m

)(
3n

1 + 3n

)m

− 3n

(
2m− 2
m− 1

)(
3n

1 + 3n

)m−1

=
(

3n

1 + 3n

)m ((
2m

m

)
− (1 + 3n)

(
2m− 2
m− 1

))

=
(

3n

1 + 3n

)m ((
4− 2

m

)(
2m− 2
m− 1

)
− (1 + 3n)

(
2m− 2
m− 1

))

< 0.

Therefore,

M <
3n

1 + 3n

m−2∑

j=0

(
m + j

j

)(
3n

1 + 3n

)j

− 3n
m−2∑

j=0

(
m− 1 + j

j

) (
3n

1 + 3n

)j

<

m−2∑

j=0

(
m + j

j

)(
3n

1 + 3n

)j

− 3n
m−2∑

j=0

(
m− 1 + j

j

)(
3n

1 + 3n

)j

<
m−2∑

j=0

((
m + j

j

)
− 3n

(
m− 1 + j

j

))(
3n

1 + 3n

)j

.

Inequality (3.5) now follows from the fact that, for 0 ≤ j ≤ m− 2 and n ≥ 1,
(

m + j

j

)
=

m + j

m

(
m− 1 + j

j

)
=

(
1 +

j

m

)(
m− 1 + j

j

)

< 2
(

m− 1 + j

j

)
< 3n

(
m− 1 + j

j

)

This completes the proof of (3).
(4) follows if we show that

Kn := (1 + 3n)−mPn;m,`

(
3
4

)
= (1 + 3n)−m

∑̀

j=0

(
m− 1 + j

j

)(
3n

1 + 3n

)j

decreases as n increases for fixed m, `. Define

f(x) := (1 + 3x)−m
∑̀

j=0

(
m− 1 + j

j

) (
3x

1 + 3x

)j

,

for x > 0. Note that

f ′(x) = (1 + 3x)−m−1 log 3


∑̀

j=1

(
m− 1 + j

j

)
(j −m3x)

(
3x

1 + 3x

)j

−m3x


 .

Since j − m3x < 0 for x > 0, f ′(x) < 0 for x > 0. Hence, f(x) is decreasing for x > 0, which
shows that Kn decreases as n increases for fixed m, `. This completes the proof of (4). ¤
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4 Asymptotic analysis of Sobolev exponents

In this section, we give an asymptotic analysis of the Sobolev exponent s∞(Φn;m,`) of pseudo-
Butterworth refinable function Φn;m,` as m → ∞ or as n → ∞. The case n = 1 of the following
theorem is given in [8, theorem 3.6]. We follow the technique in [8] but we include the proof for
the sake of completeness.

Theorem 4.1 Let Φn;m,` be the pseudo-Butterworth refinable function with order (n; m, `). For
0 ≤ λ ≤ 1, let ` = bλmc, the largest integer smaller than or equal to λm. Then

lim
m→∞

s∞(Φn;m,`)
m

= µn,λ := log2

(
1 + 3n

1 + λ

)λ+1 (
λ

3n

)λ

.

This implies that Φ̂n;m,` has the optimal decay |Φ̂n;m,`(w)| ≤ C(1 + |w|)−µn,λm.

Proof. We first note that, for 0 < x ≤ y ≤ 1,

Λ−`(x)Pn;m,`(x) ≥ Λ−`(y)Pn;m,`(y). (4.1)

In fact, the fact Λ(x) ≤ Λ(y) for 0 < x ≤ y ≤ 1 and Lemma 2.2 (2) imply that, for 0 < x ≤ y ≤ 1,

Λ−`(x)Pn;m,`(x) =
∑̀

j=0

(
m− 1 + j

j

)
Λj−`(x)

≥
∑̀

j=0

(
m− 1 + j

j

)
Λj−`(y) = Λ−`(y)Pn;m,`(y).

The key step to compute the asymptotic rate of s∞(Φn;m,`) is to estimate the upper and lower
bounds of Pn;m,`

(
3
4

)
in terms of n,m and `. Take x = 3

4 and y = 1 in (4.1) and note that Λ(1) = 1.
We have

Pn;m,`

(
3
4

)
≥ Λ`

(
3
4

)
Pn;m,`(1) = Λ`

(
3
4

) (
m + `

`

)
. (4.2)

With x = 1
2 and y = 3

4 in (4.1), we have

Pn;m,`

(
3
4

)
≤ Λ−`

(
1
2

)
Λ`

(
3
4

)
Pn;m,`

(
1
2

)
.

Since Λ
(

1
2

)
= 1

2 and

Pn;m,`

(
1
2

)
=

∑̀

j=0

(
m + `

j

)
Λj

(
1
2

)
Λ`−j

(
1
2

)
= 2−`

∑̀

j=0

(
m + `

j

)
,

we obtain

Pn;m,`

(
3
4

)
≤ Λ`

(
3
4

) ∑̀

j=0

(
m + `

j

)
≤ mΛ`

(
3
4

)(
m + `

`

)
, (4.3)
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since for ` ≤ m− 1
∑̀

j=0

(
m + `

j

)
≤ m

(
m + `

`

)
.

Putting (4.2) and (4.3) together, we obtain the following estimates of Pn;m,`

(
3
4

)
:

Λ`

(
3
4

)(
m + `

`

)
≤ Pn;m,`

(
3
4

)
≤ mΛ`

(
3
4

)(
m + `

`

)
. (4.4)

Next, we will use this estimate to compute the limit in the theorem. The upper bound of Pn;m,`

(
3
4

)
in (4.4) implies

log2(1 + 3n)m − log2 Pn;m,`

(
3
4

)
≥ log2(1 + 3n)m − log2

(
mΛ`

(
3
4

)(
m + `

`

))
.

Recall the Stirling’s formula, i.e., m! ∼ √
2πe(m+ 1

2
) log m−m [9], where am ∼ bm meaning am

bm
→ 1

as m →∞, or
log m! ∼ log

√
2πe(m+ 1

2
) log m−m ∼ m log m−m. (4.5)

Applying (4.5), we obtain

log
(

m + `

`

)
= log(m + `)!− log m!− log `!

∼ (m + `) log(m + `)− (m + `)− (m log m−m)− (` log `− `)
∼ (m + `) log(m + `)−m log m− ` log `,

or

log2

(
m + `

`

)
∼ (m + `) log2(m + `)−m log2 m− ` log2 `.

Therefore, we have

log2(1 + 3n)m − log2

(
mΛ`

(
3
4

)(
m + `

`

))
(4.6)

= m log2(1 + 3n)− log2 m− ` log2

(
3n

1 + 3n

)
− log2

(
m + `

`

)

∼ m

(
log2(1 + 3n)− `

m
log2

(
3n

1 + 3n

)
−

(
1 +

`

m

)
log2(m + `) + log2 m +

`

m
log2 `

)

∼ m

(
log2(1 + 3n)− λ log2

(
3n

1 + 3n

)
− log2(1 + λ)− λ log2

(
1
λ

+ 1
))

= m log2

(
1 + 3n

1 + λ

)λ+1 (
λ

3n

)λ

,

since `
m ∼ λ as m →∞. From (4.4) and (4.6), we have

lim inf
m→∞

log2(1 + 3n)m − log2 Pn;m,`

(
3
4

)

m
≥ lim

m→∞

log2(1 + 3n)m − log2

(
mΛ`

(
3
4

) (
m+`

`

))

m
(4.7)

= log2

(
1 + 3n

1 + λ

)λ+1 (
λ

3n

)λ

.
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By a similar argument as above we note

log2(1 + 3n)m − log2

(
Λ`

(
3
4

)(
m + `

`

))
(4.8)

∼ m

(
log2(1 + 3n)− `

m
log2

(
3n

1 + 3n

)
−

(
1 +

`

m

)
log2(m + `) + log2 m +

`

m
log2 `

)

∼ m log2

(
1 + 3n

1 + λ

)λ+1 (
λ

3n

)λ

.

From (4.4) and (4.8), we have

lim sup
m→∞

log2(1 + 3n)m − log2 Pn;m,`

(
3
4

)

m
≤ lim

m→∞

log2(1 + 3n)m − log2

(
Λ`

(
3
4

) (
m+`

`

))

m
(4.9)

= log2

(
1 + 3n

1 + λ

)λ+1 (
λ

3n

)λ

.

Combining (4.7) and (4.9), we conclude that

lim
m→∞

log2(1 + 3n)m − log2 Pn;m,`

(
3
4

)

m
= log2

(
1 + 3n

1 + λ

)λ+1 (
λ

3n

)λ

.

This complete the proof. ¤

We can expect that the asymptotic behavior of the Sobolev exponent s∞(Φn;m,`) as m →∞
for fixed n and ` must be the same as in Theorem 4.1 with λ = 0 and can prove that it is true in
the next theorem. The proof is a modification of that of Theorem 4.1 and is omitted.

Theorem 4.2 Let Φn;m,` be the pseudo-Butterworth refinable function with order (n;m, `). Fix
` ∈ N. Then

lim
m→∞

s∞(Φn;m,`)
m

= µn := log2(1 + 3n).

This implies that Φ̂n;m,` has the optimal decay |Φ̂n;m,`(w)| ≤ C(1 + |w|)−µnm.

The following theorem gives the asymptotic analysis of the Sobolev exponent s∞(Φn;m,`) as
n →∞ for fixed m and `. We remark that the limit does not depend on `.

Theorem 4.3 Let Φn;m,` be the pseudo-Butterworth refinable function with order (n; m, `). Then
for fixed m and `,

lim
n→∞

s∞(Φn;m,`)
n

= µm := m log2 3.

This implies that Φ̂n;m,` has the optimal decay |Φ̂n;m,`(w)| ≤ C(1 + |w|)−µmn.
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Proof. From the proof of Theorem 4.1, we have

log2(1 + 3n)m − log2

(
mΛ`

(
3
4

) (
m + `

`

))

≤ s∞(Φn;m,`) ≤ log2(1 + 3n)m − log2

(
Λ`

(
3
4

)(
m + `

`

))
.

Since
1
n

log2(1 + 3n)m =
m

n
log2(1 + 3n) → m log2 3 as n →∞

and

1
n

log2

(
Λ`

(
3
4

)(
m + `

`

))
=

`

n
log2

(
3n

1 + 3n

)
+

1
n

log2

(
m + `

`

)

= ` log2 3− `

n
log2(1 + 3n) +

1
n

log2

(
m + `

`

)
→ 0 as n →∞,

we obtain

lim sup
n→∞

s∞(Φn;m,`)
n

≤ m log2 3.

We also obtain

lim inf
n→∞

s∞(Φn;m,`)
n

≥ m log2 3,

since

1
n

log2

(
mΛ`

(
3
4

)(
m + `

`

))
=

1
n

log2 m +
1
n

log2

(
Λ`

(
3
4

)(
m + `

`

))

→ 0 as n →∞.

This completes the proof. ¤

5 Wavelet construction and approximation order

For a large class of refinable functions ϕ with mask m(w), we can associate a wavelet ψ, via

ψ̂(w) = e−iw/2m(w/2 + π)φ̂(w/2),

for which ψj,k(x) := 2j/2ψ(2jx − k), j, k ∈ Z form a Riesz basis for L2(R). In this section, we
can also associate the pseudo-Butterworth wavelet to the pseudo-Butterworth refinable function
(Theorem 5.3) and compute their approximation order (Theorem 5.5).

We first quote the following proposition which gives a sufficient condition for the associated
wavelet ψ to generate a Riesz basis for L2(R).
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Proposition 5.1 [10, Corollarty 3.3] Let m be a refinement mask of a refinable function ϕ ∈
L2(R) with m(0) = 1 and m(π) = 0, so that m can be factorized into the form

|m(w)| =
∣∣∣∣
(

1 + e−iw

2

)n

L(w)
∣∣∣∣ = cosn(w/2)|L(w)|, w ∈ [−π, π], (5.1)

where L has the Fourier series expansion of polynomial decay satisfying L(π) 6= 0. Suppose that

|m(w)|2 + |m(w + π)|2 6= 0, w ∈ [−π, π].

Define ψ ∈ L2(R) via
ψ̂(2w) := e−iwm(w + π)ϕ̂(w)

and let
L̃(w) :=

L(w)
|m(w)|2 + |m(w + π)|2 .

Assume that
‖L(w)‖L∞(R) < 2n− 1

2 and ‖L̃(w)‖L∞(R) < 2n− 1
2 .

Then ψ is a Riesz wavelet for L2(R), i.e., ψj,k, j, k ∈ Z generate a Riesz basis for L2(R).

Proof. A special case of [10, Corollary 3.3]. ¤

As we will show, the key step in the application of the above proposition is to estimate the
upper bounds of |L(w)| and |L̃(w)|. Recall that the refinement mask of pseudo-Butterworth
refinable function Φn;m,` is, for w ∈ [−π, π],

Mn;m,`(w) :=
cos2nm(w/2)

(∑`
j=0

(
m+`

j

)
sin2nj(w/2) cos2n(`−j)(w/2)

)

(cos2n(w/2) + sin2n(w/2))m+`
.

Hence, the corresponding L function in (5.1) for the pseudo-Butterworth refinable function Φn;m,`

is

L(w) : =

∑`
j=0

(
m+`

j

)
sin2nj(w/2) cos2n(`−j)(w/2)

(cos2n(w/2) + sin2n(w/2))m+`

= (Ln(y))m Pn;m,`(y),

with y = sin2(w/2) and Ln(y) = 1/ ((1− y)n + yn). We note the corresponding L̃(w) has the
form

L̃(w) =
(Ln(y))m Pn;m,`(y)

M̃2
n;m,`(y) + M̃2

n;m,`(1− y)
. (5.2)

Now we have following estimate of ‖L̃‖L∞(R):

Proposition 5.2 Let n,m be positive integers and let ` be a nonnegative integer ≤ m− 1 and L̃
be defined in (5.2). Then

‖L̃‖L∞(R) = sup
y∈[0,1]

(Ln(y))m Pn;m,`(y)
M̃2

n;m,`(y) + M̃2
n;m,`(1− y)

≤ 2nm+m−1.
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Proof. Note from Lemma 2.2 (2) that

Pn;m,`(y) =
∑̀

j=0

(
m + `

j

)
Λj(y)Λ`−j(1− y) =

∑̀

j=0

(
m− 1 + j

j

)
Λj(y), y ∈ [0, 1];

hence Pn;m,`(y) attains its maximum value Pn;m,`(1) =
(
m+`

`

)
on [0, 1] at y = 1. By (4) and (5) of

Lemma 2.2, we obtain

‖L̃‖L∞(R) = sup
y∈[0,1]

(Ln(y))m Pn;m,`(y)
M̃2

n;m,`(y) + M̃2
n;m,`(1− y)

≤
(

m + `

`

)
max

y∈[0,1]
(Ln(y))m max

y∈[0,1]

1
M̃2

n;m,`(y) + M̃2
n;m,`(1− y)

= 2nm+m+2`−1

(
m + `

`

)/
∑̀

j=0

(
m + `

j

)


2

≤ 2nm+m−1.

The last inequality follows from Lemma 2.1 (3). This completes the proof. ¤

Theorem 5.3 Let Φn;m,` be the pseudo-Butterworth refinable function with order (n; m, `). The
refinement mask Mn;m,` is given in (1.2). Define Ψn;m,` ∈ L2(R) via

Ψ̂n;m,`(2w) := e−iwMn;m,`(w + π)Φ̂(w).

Then Ψ is a Riesz wavelet for L2(R).

Proof. To apply Theorem 5.1, we first note that

|Mn;m,`(w)|2 + |Mn;m,`(w + π)|2 = M̃2
n;m,`(y) + M̃2

n;m,`(1− y) 6= 0

for all w ∈ [π, π] with y = sin2(w/2). Next, we need to check both

‖L‖L∞(R) < 22nm− 1
2 and ‖L̃‖L∞(R) < 22nm− 1

2 . (5.3)

The second inequality in (5.3) follows from Proposition 5.2. For the first inequality in (5.3), we
note that

|Mn;m,`(w)|2 + |Mn;m,`(w + π)|2 ≤ 1,

for all w ∈ R. Hence |L(w)| ≤ |L̃(w)| for all w ∈ R. This concludes the proof. ¤

Next, we consider two projection operators Pj and Qj from L2(R) onto Vj = span{Φj,k : k ∈
Z} = span{Ψ`,k : ` < j, k ∈ Z} via

Pjf =
∑

k∈Z
< f,Φj,k > Φj,k, (5.4)

and
Qjf =

∑

`<j,k∈Z
< f,Ψ`,k > Ψ`,k,
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where Φ = Φn;m,` and Ψ = Ψn;m,`. It is known that Pj = Qj (See [5, Lemma 2.4]).
We say that Pj provides approximation order µ, if for all f in the Sobolev space Wµ

2 (R),

‖f −Pjf‖L2(R) = O(2−jµ).

The following proposition is a special case of [5, Theorem 2.8] adapted for our purpose.

Proposition 5.4 Let Φn;m,` be a pseudo-Butterworth refinable function with order (n; m, `) and
Mn;m,` be its refinement mask. Let Pj be the operator as defined in (5.4) with Φn;m,` as the
underlying refinable function. Then the approximation order of the operator Pj is min{2nm,m1},
with m1 the order of the zero of 1− |Mn;m,`|2 at the origin.

The following theorem shows that the pseudo-Butterworth refinable function Φn;m,` provides
aproximation order 2n(` + 1) which is independent of m.

Theorem 5.5 Let n,m be positive integers and let ` be a nonnegative integer ≤ m − 1. Let
Φn;m,` be the pseudo-Butterworth refinable function with order (n; m, `). Then the corresponding
operator Pj provides approximation order 2n(` + 1).

Proof. We compute the order of zeros of 1− |Mn;m,`|2 at the origin. We rewrite 1− |Mn;m,`|2 as

1− |Mn;m,`|2 = 1− M̃2
n;m,`(y),

where M̃n;m,`(y) was defined in (2.2). It is obvious that 1− M̃2
n;m,`(y) = 0 for y = 0. Recall that

the derivative of M̃n;m,`(y) is given by Lemma 2.2 (3):

M̃ ′
n;m,`(y) = −(m + `)

(
m + `− 1

`

)
Λ`(y)Λm−1(1− y)Λ′(y). (5.5)

Applying (5.5) to take the first derivative 1− M̃2
n;m,`(y) with respect to y, we obtain

(1− M̃2
n;m,`(y))′ = −2M̃n;m,`(y)M̃ ′

n;m,`(y)

= 2M̃n;m,`(y)
(

(m + `)
(

m + `− 1
`

)
Λ`(y)Λm−1(1− y)Λ′(y)

)
.

Since both M̃n;m,`(y) and Λm−1(1 − y) are equal to 1 when y = 0, and since Λ`(y) has zero of
order n` at y = 0, and Λ′(y) has zero of order n− 1 at y = 0, we conclude that

1− |Mn;m,`(w)|2 = 1− M̃2
n;m,`(y) = O(|y|n(`+1)) = O(|w|2n(`+1)).

where y = sin2(w/2). Theorem 5.4 shows that the approximation order of Pj with Φn;m,` as
the underlying refinable function is min{2nm, 2n(` + 1)} = 2n(` + 1) for 0 ≤ ` ≤ m − 1. This
completes the proof. ¤
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6 Asymptotic behavior of Φn,m,`

For ` = m − 1, Φn;m,m−1 is an interpolatory refinable function, being the D-D interpolatory
refinable function of Deslauriers and Dubuc when n = 1 [6, 14]. In this section, we show that
Φn;m,m−1 converges in Lq(R)(2 ≤ q ≤ ∞), uniformly in particular, to the Shannon refinable
function ϕSH as m tends to the infinity, where

ϕ̂SH(w) := χ[−π,π](w).

In particular, the case n = 1 shows that the D-D interpolatory refinable function of order m tends
to the Shannon refinable function ϕSH in Lq(R)(2 ≤ q ≤ ∞) as m → ∞. We also show that for
fixed m and ` the pseudo-Butterworth refinable function Φn;m,` converges in Lq(R)(2 ≤ q ≤ ∞),
uniformly in particular, to the Shannon refinable function ϕSH as n tends to the infinity. The
idea of the proof also appears in [2, 12] for the asymptotic behaviors of the corresponding family
of refinable functions.

Lemma 6.1 For m ∈ N,

(1) Mn;m+1,m(w) ≥ Mn;m,m−1(w) for w ∈ [−π/2, π/2].

(2) Mn;m+1,m(w) ≤ Mn;m,m−1(w) for w ∈ [−π,−π/2] ∪ [π/2, π].

Proof. (1) follows from the following with 0 ≤ y ≤ 1/2:

M̃n;m+1,m(y) = Λm+1(1− y)Pn;m+1,m(y)

= Λm+1(1− y)




m∑

j=0

(
m + j

j

)
Λj(y)




= Λm(1− y)




m∑

j=0

(
m + j

j

)
Λj(y)−

m+1∑

j=1

(
m− 1 + j

j − 1

)
Λj(y)




= Λm(1− y)


1 +

m∑

j=1

((
m + j

j

)
−

(
m− 1 + j

j − 1

))
Λj(y)−

(
2m

m

)
Λm+1(y)




= Λm(1− y)




m∑

j=0

(
m− 1 + j

j

)
Λj(y)−

(
2m

m

)
Λm+1(y)




= Λm(1− y)




m−1∑

j=0

(
m− 1 + j

j

)
Λj(y) +

(
2m− 1

m

)
Λm(y)−

(
2m

m

)
Λm+1(y)




≥ Λm(1− y)




m−1∑

j=0

(
m− 1 + j

j

)
Λj(y)




= M̃n;m,m−1(y).
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(2) follows from (1), since M̃n;m,m−1(y) = 1− M̃n;m,m−1(1− y). ¤

For given positive integers n, m and nonnegative integer ` ≤ m − 1, we easily check that the
mask Mn;m,`(w) converges pointwise to the mask

mSH(w) =
{

1, |w| < π/2,
0, π/2 < |w| < π

of the Shannon refinable function ϕSH as n →∞.

Lemma 6.2 (1) Mn;m,m−1 → mSH as m →∞.

(2) Mn;m,`(w) → mSH as n →∞.

Proof. (1) follows from the following with 1/2 < y ≤ 1:

M̃n;m,m−1(y) = Λm(1− y)
m−1∑

j=0

(
m− 1 + j

j

)
Λj(y) ≤ Λm(1− y)

m−1∑

j=0

2m−1+jΛj(y)

= Λm(1− y)2m−1 (2Λ(y))m − 1
2Λ(y)− 1

≤ {Λ(1− y)2(2Λ(y))}m

2(2Λ(y)− 1)

=
(1− (2Λ(y)− 1)2)m

2(2Λ(y)− 1)
→ 0

as m →∞. For 0 ≤ y < 1/2, M̃n;m,m−1(y) = 1− M̃n;m,m−1(1− y) → 1 as m →∞.
(2) is trivial. ¤

Before the statement and proof of the main result, we define an auxiliary mask

maux(w) =
{

1, |w| ≤ π
2 ,

cos4(w/2)
(
2 + 4 sin2(w/2)

)
, π

2 ≤ |w| ≤ π,

for the domination of Mn;m,`(w). We need some technical lemmas.

Lemma 6.3 (1) Mn;m,m−1(w) ≤ maux(w), m ≥ 2.

(2) Mn;m,`(w) ≤ maux(w), m ≥ 2.

(3) ϕ̂aux(w) :=
∏

j∈Nmaux(w/2j) has the decay |ϕ̂aux(w)| ≤ C(1 + |w|)−3+log2 3.

(4) |Mn;m,m−1(w)− 1| ≤
{

1, all w,
2
π
|w|, |w| ≤ π/2.

(5) |Mm;n,`(w)− 1| ≤




1, all w,
2m+1

π
|w|, |w| ≤ π/2.
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Proof. (1): For |w| ≤ π
2 , we have

Mn;m,m−1(w) ≤ Mn;m,m−1(w) + Mn;m,m−1(w + π) = 1.

For π/2 ≤ |w| ≤ π and m ≥ 2, we have Mn;m,m−1(w) ≤ Mn;2,1(w) by Lemma 6.1 (2) and

Mn;2,1(w) = Λ2(1− y)(1 + 2Λ(y)).

Since Λ(y) ≤ 1 and for π/2 ≤ |w| ≤ π

Λ(1− y) =
1

(tan2(w/2))n + 1

≤ 1
(tan2(w/2)) + 1

= cos2(w/2),

we have

Mn;2,1(w) ≤ 3 cos4(w/2)

≤ cos4(w/2)
(
2 + 4 sin2(w/2)

)

= maux(w).

(2) follows from (1) and Lemma 2.2 (2).
(3): We note that maux(w) = cos4(w/2)Laux(w), where

Laux(w) =





1
cos4(w/2)

, |w| ≤ π
2 ,

2 + 4 sin2(w/2), π
2 ≤ |w| ≤ π,

and note that supw |Laux(w)| = 6. Therefore, the decay of ϕ̂aux(w) follows, for example, from [1,
Theorem 5.5].
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(4): For w ∈ R, we have |Mn;m,m−1(w)− 1| = |Mn;m,m−1(w + π)| ≤ 1. For |w| ≤ π/2, we have

|Mn;m,m−1(w)− 1| = |Mn;m,m−1(w + π)| = Λ(y)




m−1∑

j=0

(
2m− 1

j

)
Λj(1− y)Λ2m−2−j(y)




= Λ(y)




2m−1∑

j=m

(
2m− 1

j

)
Λ2m−1−j(1− y)Λj−1(y)




= Λ(y)




2m−2∑

j=m−1

(
2m− 1
j + 1

)
Λ2m−2−j(1− y)Λj(y)




≤ Λ(y)




2m−2∑

j=m−1

(
2m− 1

j

)
Λ2m−2−j(1− y)Λj(y)




=
(

y

1− y

)n

Λ(1− y)




2m−2∑

j=m−1

(
2m− 1

j

)
Λ2m−2−j(1− y)Λj(y)




= tan2n(w/2)




2m−2∑

j=m−1

(
2m− 1

j

)
Λ2m−1−j(1− y)Λj(y)




≤ tan2n(w/2) (Λ(1− y) + Λ(y))2m−1

= tan2n(w/2) ≤ | tan(w/2)| ≤ 2
π
|w|,

where we used the inequality
(
2m−1
j+1

) ≤ (
2m−1

j

)
for m− 1 ≤ j ≤ 2m− 2.

(5): Note that Mn;m,0(w) ≤ Mn;m,`(w) ≤ 1 by Lemma 2.2 (2). For w ∈ R, we have

|Mn;m,`(w)− 1| ≤ |Mn;m,0(w)− 1| ≤ 1,

furthermore for |w| ≤ π/2, we have

|Mn;m,`(w)− 1| ≤ |Mn;m,0(w)− 1| = 1− Λm(1− y)
= (((1− y)n + yn)m − (1− y)nm) /((1− y)n + yn)m

=




m∑

j=1

(
m

j

)
ynj(1− y)n(m−j)




/
((1− y)n + yn)m

≤



m∑

j=1

(
m

j

)
ynj(1− y)n(m−j)




/
(1− y)nm

=
m∑

j=1

(
m

j

)(
y

1− y

)nj

≤
(

y

1− y

)n m∑

j=1

(
m

j

)

≤ | tan(w/2)| 2m ≤ 2m+1

π
|w|.

¤
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Lemma 6.4 (1) For each fixed w, Φ̂n;m,m−1(w) =
∏∞

j=1 Mn;m,m−1(w/2j) converges uniformly
on m.

(2) Φ̂n;m,m−1(w) → ϕ̂SH(w) pointwise a.e. as m →∞.

(3) For each fixed w, Φ̂n;m,`(w) =
∏∞

j=1 Mn;m,`(w/2j) converges uniformly on n.

(4) Φ̂n;m,`(w) → ϕ̂SH(w) pointwise a.e. as n →∞.

Proof. (1): Fix w and choose j0 so that |w/2j0 | ≤ π/2. By Lemma 6.3 (4),

∞∑

j=1

∣∣∣Mn;m,m−1(
w

2j
)− 1

∣∣∣ =
j0∑

j=1

∣∣∣Mn;m,m−1(
w

2j
)− 1

∣∣∣ +
∞∑

j=j0+1

∣∣∣Mn;m,m−1(
w

2j
)− 1

∣∣∣

≤ j0 +
∞∑

j=j0+1

2
π

|w|
2j

= j0 +
2
π

|w|
2j0

,

uniformly on m. Therefore, the product Φ̂n;m,m−1(w) converges uniformly on m.
(2): Fix w /∈ ∪∞j=12

j(±π/2 + 2πZ) and let ε > 0. By (1), we can choose j1 (independent of m) so
that ∣∣∣∣Φ̂n;m,m−1(w)−

j1∏

j=1

Mn;m,m−1(
w

2j
)
∣∣∣∣ < ε,

and ∣∣∣∣ϕ̂SH(w)−
j1∏

j=1

mSH(
w

2j
)
∣∣∣∣ < ε.

Therefore, we have

|Φ̂n;m,m−1(w)− ϕ̂SH(w)| ≤
∣∣∣∣Φ̂n;m,m−1(w)−

j1∏

j=1

Mn;m,m−1(
w

2j
)
∣∣∣∣

+
∣∣∣∣

j1∏

j=1

Mn;m,m−1(
w

2j
)−

j1∏

j=1

mSH(
w

2j
)
∣∣∣∣ +

∣∣∣∣
j1∏

j=1

mSH(
w

2j
)− ϕ̂SH(w)

∣∣∣∣

< 2ε +
∣∣∣∣

j1∏

j=1

Mn;m,m−1(
w

2j
)−

j1∏

j=1

mSH(
w

2j
)
∣∣∣∣.

Note that w/2j /∈ ±π/2 + 2πZ for any j ≥ 1. Since Mn;m,m−1(w/2j) → mSH(w/2j) as m → ∞
for j = 1, 2, · · · , j1, we can choose m0 ∈ N so that

∣∣∣∣
j1∏

j=1

Mn;m,m−1(w/2j)−
j1∏

j=1

mSH(w/2j)
∣∣∣∣ < ε for m ≥ m0.

Therefore, Φ̂n;m,m−1(w) → ϕ̂SH(w) pointwise as n →∞ for w /∈ ∪∞j=12
j(±π/2 + 2πZ).

(3) and (4) can also be proved similarly. ¤

Now, we state and prove our main results in this section.
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Theorem 6.5 (1) For 1 ≤ p < ∞, ||Φ̂n;m,m−1 − ϕ̂SH ||Lp(R) → 0 as m →∞.

(2) For 2 ≤ q ≤ ∞, ||Φn;m,m−1 − ϕSH ||Lq(R) → 0 as m →∞.

(3) For 1 ≤ p < ∞, ||Φ̂n;m,` − ϕ̂SH ||Lp(R) → 0 as n →∞.

(4) For 2 ≤ q ≤ ∞, ||Φn;m,` − ϕSH ||Lq(R) → 0 as n →∞.
In particular, Φn;m,m−1 → ϕSH uniformly on R as m → ∞, and Φn;m,` → ϕSH uniformly on R
as n →∞.

Proof. We estimate the decay of Φ̂n;m,m−1 for m ≥ 2 :

|Φ̂n;m,m−1(w)| =
∏

j∈N

∣∣Mn;m,m−1(w/2j)
∣∣ ≤

∏

j∈N
maux(w/2j)

= |ϕ̂aux(w)| ≤ C(1 + |w|)−3+log2 3 ∈ L1(R) ∩ L2(R),

where we used Lemma 6.3. Therefore (1) follows from Lemma 6.4 by the Lebesgue dominated
convergence theorem. The claim (2) follows from (1) by Hausdorff-Young inequality:

||f ||Lq(R) ≤ ||f̂ ||Lp(R), for 1 ≤ p ≤ 2,

where q is the conjugate exponent to p.
(3) and (4) can also be proved similarly. ¤

7 Spectral decomposition

For each order (n;m, `), the mask Mn;m,` gives rise to a family of masks µn;m,`, via Riesz factor-
ization,

|µn;m,`(w)|2 := Mn;m,`(w).

The mask µn;m.` is a rational trigonometric function of w and defines the corresponding refinable
function ϕn;m,`, via

ϕ̂n;m,`(w) :=
∞∏

j=1

µn;m,`(w/2j),

which can be regarded as an extension of pseudo-spline of type I (n = 1) with order (m, `) [7].
The corresponding analysis of ϕn;m,` can be obtained analogously from that of Φn;m,` as follows.
For example, we have the following whose proofs are similar to the corresponding proof of Φn;m,`

and are omitted.

(1) s∞(ϕn;m,`) = 1
2s∞(Φn;m,`) = m

2 log2(1 + 3n)− 1
2 log2 Pn;m,`

(
3
4

)
.

(2) The projection operator Pj from L2(R) onto Vj = span{ϕj,k : k ∈ Z}, defined as

Pjf =
∑

< f, ϕj,k > ϕj,k,

where ϕ = ϕn;m,` and ϕj,k(x) = 2j/2ϕ(2jx−k), provides approximation order min{nm, 2n(`+
1)}.
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Figure 1: Φn;m,` (a) Case n = 2, m = 2 and ` = 1, (b) Case n = 2, m = 2 and ` = 0, (c) Case
n = 1, m = 2 and ` = 1 (D-D interpolatory refinable function)
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Figure 2: ϕn;m,` (a) Case n = 2, m = 2 and ` = 1, (b) Case n = 2, m = 2 and ` = 0, (c) Case
n = 1, m = 2 and ` = 1 (Daubechies D2 refinable function)

(3) If we associate a wavelet ψn;m,` to the refinable function ϕn;m,` via

ψ̂n;m,`(2w) := e−iwµn;m,`(w + π)ϕ̂n;m,`(w),

then ψn;m,` generates a Riesz wavelet.

We note that µn;m,m−1 gives rise to an orthonomal refinable function which reduces to the
Daubechies orthonormal refinable function Dm when n = 1 [3, 4]. We give some examples Φn;m,`

and ϕn;m,` with their graphs in Figures 1 and 2 and leave a more complete analysis on ϕn;m,`’s in
another paper.

Example 7.1 Case n = 2,m = 2 and ` = 1. The pseudo-Butterworth mask M2;2,1(w) is

M2;2,1(w) =
cos8(w/2)

(
cos4(w/2) + 3 sin4(w/2)

)
(
cos4(w/2) + sin4(w/2)

)3 .

We can choose a mask µ2;2,1 with real coefficients from via the Riesz factorization |µn;m,`(w)|2 :=
Mn;m,`(w). That is,

µ2;2,1(w) :=

(
eiw + 1

)4 (
e2iw − (z0 + z̄0)eiw + z0z̄0

)
√

2z0z̄0

(
(
√

2 + 1)e2iw + (
√

2− 1)
)3
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where z0 =

(
1
2
− 4
√

3
√

3− 1
2
√

2

)
+ i

(
−
√

3
2

+ 4
√

3
√

3 + 1
2
√

2

)
. The corresponding refinable functions

are Φ2;2,1 (interpolatory) and ϕ2;2,1 (orthonormal). See Figure 1 (a) and Figure 2 (a).

Example 7.2 Case n = 2,m = 2 and ` = 0. The corresponding mask are

M2;2,0(w) =
cos8(w/2)(

cos4(w/2) + sin4(w/2)
)2 .

and

µ2;2,0(w) :=

(
eiw + 1

)4

2
(
(
√

2 + 1)e2iw + (
√

2− 1)
)2 .

See Figure 1 (b) and Figure 2 (b), for the corresponding refinable functions.

Example 7.3 Case n = 1,m = 2 and ` = 1. The M1;2,1(w)

M1;2,1(w) = cos4(w/2)
(
cos2(w/2) + 3 sin2(w/2)

)

= cos4(w/2)
(
1 + 2 sin2(w/2)

)
,

is the mask for D-D interpolatory refinable function. The corresponding Riesz factorization
µ1;2,1(w) is the mask for orthonormal refinable function Daubechies D2:

µ1;2,1(w) :=
1 +

√
3

8
e3iw +

3 +
√

3
8

e2iw +
3−√3

8
eiw +

1−√3
8

.

See Figure 1 (c) and Figure 2 (c).
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