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Abstract

Suppose that we are interested in modeling for a random vectorX and that we are given a set of
graphical decomposable models,G1, · · · ,Gm, for subvectors ofX each of which share some variables
with at least one of the other models. Under the assumption that the model ofX is graphical and
decomposable, we propose an approach of searching for model structures ofX based on the given
decomposable graphical models. A main idea in this approach is that we combineG1, · · · ,Gm using
graphs of prime separators (section 2). When the true graphical model for the whole data is decompos-
able, prime separators in a marginal model are also prime separators in a maximal combined model of
the marginal models. This property plays a key role in model-combination. The proposed approach is
applied to a simulated data set of 40 binary variables and to a model of 100 variables for illustration.

Keywords:combined model structure; decomposable graph; edge-subgraph; graph-separateness; inter-
action graph; Markovian subgraph; prime separator

1 Introduction

Since the work of Darroch, Lauritzen, and Speed (1980), statistical graphical models have accumulated
popularity among statisticians and others in relevant research fields due to their powerful interpretive
and pedagogical value in statistical modeling. The model structure embodies the formal representation
of independence and conditional independence relationships. This representativeness can be employed,
from a graph-theoretic point of view, not only for building a graphical model from data but also for
combining graphical models.

Fienberg and Kim (1999) and Kim (2006a) considered a problem of combining conditional graph-
ical log-linear structures and derived a combining rule for them based on the relation between the
log-linear model and its conditional version. A main feature of the relation is that conditional log-
linear structures appear as parts of their original model structure [see Theorems 3 and 4 in Fienberg
and Kim]. The relationship becomes more explicit when the distribution is multivariate normal. LetX
be a normal random vector. The precision matrix of the conditional distribution of a subvectorX1 given
the remaining part ofX is the same as theX1 part of the precision matrix ofX [Section 5.7, Whittaker
(1990)]. Marginals of a joint probability distribution are not in general represented as parts of the joint
distribution. However, there is a way that we can express explicitly the relationship between joint and
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Figure 1: Two marginal models (Pair-1) on the left and the four graphs of the models in (1)
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Figure 2: Two marginal models (Pair-2) on the left and the eight graphs of the models in (2)

marginal distributions under the assumption that the joint (as against marginal) probability model is
graphical and decomposable (Kim, 2006b).

Suppose that we are given a pair (call it Pair-1) of simple graphical models where one model is of
random variablesX1, X2, X3 with their inter-relationship thatX1 is independent ofX3 conditional on
X2 and the other is ofX1, X2, X4 with their inter-relationship thatX1 is independent ofX4 conditional
on X2. From this pair, we can imagine a model structure for the four variablesX1, · · · , X4. The two
inter-relationships are pictured at the left end of Figure 1. We will use the notation [·]· · · [·] as used in
Fienberg(1980) to represent a model. The graph at the top of the two at the left is of the model [12][23]
and the one at the bottom is of the model [12][24].X1 andX2 are shared in both models, and assuming
that none of the four variables are marginally independent of the others, we can see that the following
models have marginals in Pair-1:

[12][24][23], [12][24][34], [12][23][34], [12][234], (1)

which are displayed in graph in Figure 1. Note that the first three of these four models are submodels
of the last one.

We consider another pair (call it Pair-2) of simple marginals, [12][23] and [24][25], where only one
variable is shared. In this case, we have a longer list of combined models as follows:

[12][24][23][25], [124][23][25], [124][23][35], [124][25][35], [125][23][34], [125][24][34],
[124][235], [125][234],

(2)

which are displayed in Figure 2. Model structures [124][235] and [125][234] are maximal in the sense
of set inclusion among these eight models.

It is important to note that some variable(s) are independent of the others, conditional onX2 in each
of the two pairs of marginals, Pair-1 and Pair-2, and in all the models in (1) and (2). That conditional
independence takes place conditional on the same variable in the marginal models and also in the
combined (or joint) models underlies the main theme of the paper.

In addressing the issue of combining graphical model structures, we can not help using indepen-
dence graphs and related theories to derive desired results with more clarity and refinement. The
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conditional independence embedded in a distribution can be expressed to some level of satisfaction by
a graph in the form of graph-separateness [see, for example, the separation theorem in p. 67, Whittaker
(1990)]. We instrument the notion of conditional independence with some particular sets of random
variables in a model, where the sets form a basis of the model structure so that the Markov property
among the variables of the model may be preserved between the model and its marginals. The sets are
called prime separators and defined in section 2. In the above two simple examples,X2 forms the basis.
Without the variable,X2, the conditional independence disappears in the examples.

It is shown that if we are given a graphical model with its independence graph,G, and some of
its marginal models, then under the decomposability assumption of the model we can find a graph,
sayH, which is not smaller thanG and in which the graph-separateness in the given marginal models
is preserved (Theorem 3.3). This graph-separateness is substantiated by the prime separators which
are found in the graphs of the marginal models. In combining marginal models intoH, we see to it
that these prime separators appear as the only prime separators inH. Based on this observation, we
will propose an algorithm for combining marginal graphical models to the effect that one can build a
decomposable graphical model of a large number of random variables.

While we will consider a problem of building decomposable graphical models from a collection of
marginal models, there have been remarkable improvements in learning graphical models in the form
of a Bayesian network [Pearl (1986, 1988)] from data. This learning however is mainly instrumented
by heuristic searching algorithms since the model searching is usually NP-hard [Chickering (1996)].
A good review is given in Cooper (1999) on structural discovery of Bayesian or causal networks from
data. Since a Bayesian network can be transformed into a decomposable graph [Lauritzen and Spiegel-
halter (1988)], the method of model combination which is proposed and applied in this paper would
lead to an improvement in graphical modelling from data.

In section 2 we introduce notation and graphical terminologies to use; some of the terminologies are
prime separator and Markovian subgraph. In section 3 we describe stochastic properties concerning the
relation between a graph and a type of its Markovian subgraph and introduce basic notions and a tool for
model combination and presents some important results that are instrumental for model combination.
In section 4 we then define a special type of graph which is called a graph of prime separators or GOPS
for short, and describe the combining procedure that is proposed in this paper. In section 5, we describe
basic rules and conditions that underlie the proposed algorithm and explain how the algorithm works
for model combination. The algorithm is applied to a simulated data set of 40 binary variables and to a
model of 100 variables in Section 6. The paper closes at section 7 with some concluding remarks.

2 Notation and Terminologies

We will consider only undirected graphs in the paper. We denote a graph byG = (V, E), whereV is
the set of the indexes of the variables involved inG andE is a collection of ordered pairs, each pair
representing that the nodes of the pair are connected by an edge. SinceG is undirected, that(u, v) is in
E is the same as that(v, u) is in E. If (u, v) ∈ E, we say thatu is a neighbor node of or adjacent tov
or vice versa. We say that a set of nodes ofG forms a complete subgraph ofG if every pair of nodes in
the set is adjacent to each other. If every node inA is adjacent to all the nodes inB, we will say thatA
is adjacent toB. A maximal complete subgraph is called a clique ofG, where the maximality is in the
sense of set-inclusion. We denote byC(G) the set of cliques ofG.
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A path of lengthn is a sequence of nodesu = v0, · · · , vn = v such that(vi, vi+1) ∈ E, i =
0, 1, · · · , n− 1 andu 6= v. If u = v, the path is called ann-cycle. If u 6= v andu andv are connected
by a path, we writeu ­ v. We define the connectivity component ofu as

[u] = {v ∈ V ; v ­ u} ∪ {u}.
So, we have

v ∈ [u] ⇐⇒ u ­ v ⇐⇒ u ∈ [v].

We say that a path,v1, · · · , vn, v1 6= vn, is intersected byA if A ∩ {v1, · · · , vn} 6= ∅ and neither
of the end nodes of the path is inA. We say that nodesu andv are separated byA if all the paths from
u andv are intersected byA. In the same context, we say that, for three disjoint setsA,B, andC, A
is separated fromB by C if all the paths fromA to B are intersected byC and write〈A|C|B〉G . A
non-empty setB is said to be intersected byA if B is partitioned into three setsB1, B2, andB∩A and
B1 andB2 are separated byA in G. The complement of a setA is denoted byAc and the cardinality of
a setA by |A|.

ForA ⊂ V , we define aninduced subgraphof G confined toA asGind
A = (A, E ∩ (A×A)). We

also define a graph, called aMarkovian subgraphof G confined toA, which is formed fromGind
A by

completing the boundaries inG of the connectivity components of the complement ofA and denote it
by GA. In other words,GA = (A, EA) where

EA = (E ∩A×A) ∪ {(u, v) ∈ A×A; u andv are not separated byA \ {u, v} in G}. (3)

Let a path,π say, fromu to v is a sequence of edges(ui, ui+1) with u0 = u anduk = v. Then we
will say that a sequence of edges(ui1 , ui2), · · · , (uir , uir+1), 0 ≤ i1 < i2 < · · · < ir+1 ≤ k, is a
Markovian subpath ofπ.

If G = (V, E), G′ = (V,E′), andE′ ⊆ E, then we say thatG′ is an edge-subgraph ofG and write
G′ ⊆e G. A subgraph ofG is either a Markovian subgraph, an induced subgraph, or an edge-subgraph
of G. If G′ is a subgraph ofG, we callG a supergraph ofG′.

Although decomposable graphs are well known in literature, we define them here for completeness.

Definition 2.1. A triple (A,B, C) of disjoint, nonempty subsets ofV is said to form a decomposition
of G if V = A ∪B ∪ C and the two conditions below both hold:
(i) A andB are separated byC;
(ii) Gind

C is complete.

By recursively applying the notion of graph decomposition, we can define a decomposable graph.

Definition 2.2. G is said to be decomposable if it is complete, or if there exists a decomposition
(A,B, C) into decomposable subgraphsGind

A∪C andGind
B∪C .

For a decomposable graph, we can find a sequence of cliquesC1, · · · , Ck of G which satisfies
the following condition [see Proposition 2.17 of Lauritzen (1996)]: withC(j) = ∪j

i=1Ci andSj =
Cj ∩ C(j−1) 6= ∅,

for all i > 1, there is aj < i such thatSi ⊆ Cj . (4)
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By this condition for a sequence of cliques, we can see thatSj is expressed as an intersection of
neighboring cliques ofG. If we denote the collection of theseSj ’s by χ(G), we have, for a decompos-
able graphG, that

χ(G) = {a ∩ b; a, b ∈ C(G), a 6= b}. (5)

It is possible for some decomposable graphG that there are sets,a andb, in χ(G) such thata ⊂ b.

The cliques are elementary graphical components and theSj is obtained as intersection of neigh-
boring cliques. So, we will call theSj ’s prime separators (PSs for short) of the decomposable graph
G. The PSs in a decomposable graph may be extended to separators of prime graphs in any undirected
graph, where the prime graphs are defined as the maximal subgraphs without a complete separator in
Cox and Wermuth (1999).

3 Markovian Subgraphs and Combined Models

For a probability distributionP of XV , let the logarithm of the density ofP be expanded into interaction
terms and let the set of the maximal domain sets of these interaction terms be denoted byΓ(P ), where
maximality is in the sense of set-inclusion. We will call the set,Γ(P ), the generating class ofP and
denote byG(Γ(P )) = (V, E) the interaction graph ofP which satisfies, under the hierarchy assumption
for probability models,

(u, v) ∈ E ⇐⇒ {u, v} ⊆ a for somea ∈ Γ(P ). (6)

When confusion is not likely, we will useΓ instead ofΓ(P ).

It is well known in literature [Pearl and Paz (1987)] that if a probability distribution onXV is
positive, then the three types of Markov property, pairwise Markov (PM), locally Markov (LM), and
globally Markov (GM) properties relative to an undirected graph, are equivalent. Furthermore, for any
probability distribution, it holds that

(GM) =⇒ (LM) =⇒ (PM)

[see Proposition 3.8 in Lauritzen (1996)]. So, we will writeM(G) instead ofMG(G) and we will
simply say that a distributionP is Markov with respect toG whenP ∈ MG(G).

Let V be a set of subsets ofV . We will define a collection of distributions,

L̃(GA, A ∈ V) = {P ; PA ∈ M(GA), A ∈ V}.

L̃(GA, A ∈ V) is the collection of the distributions each of whose marginals is Markov with respect to
its corresponding Markovian subgraph ofG.

Theorem 3.1. For a collectionV of subsets ofV with an undirected graphG,

M(G) ⊆ L̃(GA, A ∈ V).

Proof. See the proof of Theorem 4.6 in Kim(2004).
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Theorem 3.1 lays the groundwork for model-combination since it shows the relationship between
a graphical model with its graphG and a collection of Markovian subgraphs ofG. The setM(G) of the
probability distributions each of which is Markov with respect toG is contained in the set̃L(GA, A ∈
V) of the distributions each of which has its marginals Markov with respect to their corresponding
Markovian subgraphsGA, A ∈ V. This result sheds light on our efforts in searching forM(G) since it
can be found as a subset ofL̃(GA, A ∈ V).

Let G = (V,E) be the graph of a decomposable model and letV1, V2, · · · , Vm be subsets ofV .
Them Markovian subgraphs,GV1 ,GV2 , · · · ,GVm , may be regarded as the structures ofm submodels of
the decomposable model. In this context, we may refer to a Markovian subgraph as amarginal model
structure. These terms reflect that our goal is to find the model structureG based on a collection of
marginal models. For simplicity, we writeGi = GVi .

Definition 3.2. Suppose there arem Markovian subgraphs,G1, · · · ,Gm. Then we say that graphH of
a set of variablesV is a combined model structure(CMS) corresponding toG1, · · · ,Gm, if the follow-
ing conditions hold:
(i) ∪m

i=1Vi = V.
(ii) HVi = Gi, for i = 1, · · · ,m. That is,Gi are Markovian subgraphs ofH.

We will callH a maximal CMScorresponding toG1, · · · ,Gm if adding any edge toH invalidates
condition (ii) for at least onei = 1, · · · ,m. SinceH depends onG1, · · · ,Gm, we denote the collection
of the maximal CMSs byΩ(G1, · · · ,Gm).

Recall that ifGi, i = 1, 2, · · · ,m, are Markovian subgraphs ofG, thenG is a CMS. For a given set
S of Markovian subgraphs, there may be many maximal CMSs, and they are related withS through
PSs as in the theorem below.

Theorem 3.3. Let there be Markovian subgraphsGi, i = 1, 2, · · · ,m, of a decomposable graphG.
Then

(i) ∪m
i=1χ(Gi) ⊆ χ(G);

(ii) for any maximal CMSH,
∪m

i=1χ(Gi) = χ(H).

Proof. See the proof of Theorem 4 in Kim (2006b).

4 Graph of prime separators

In this section, we will introduce a graph of PSs which consists of PSs and edges connecting them.
The graph is the same as the undirected graphs that are considered so far in this paper, the nodes being
replaced with PSs. Given a decomposable graphG, the graph of the PSs ofG is defined as follows:

Let A = ∪a∈χ(G)a. Then the graph of the prime separators (GOPS for short) ofG is obtained
from GA by replacing every PS and all the edges between every pair of neighboring PSs inGA

with a node and an edge, respectively.
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For example, there are three PSs,{3, 4}, {3, 5}, and{4, 8}, in graphG1 in Figure 8. IfG1 is an
interaction graph, then none of the PSs is conditionally independent of any other among the three PSs.
We represent this phenomenon with the graph at the top-left corner in Figure 9, where the GOPS’s are
the graphs of the line (as against dotted) ovals only.

We can see conditional independence among the PSs,{13, 14}, {10, 13}, {10, 19}, and{10, 21},
in graphG3 in Figure 8. This conditional independence is depicted inGOPS3 in Figure 9. As connoted
in GOPS1 in Figure 9, a GOPS may contain a clique of more than 2 PSs, but it cannot contain a cycle
of length 4 or larger if the PSs are from a decomposable graph.

In the theorem below,CG(A) is the collection of the cliques which include nodes ofA in the graph
G. The proof is intuitive. The symbol,〈·| · |·〉, follows Pearl (1988), and for three disjoint sets,A, B,
andC, 〈A|C|B〉G means thatA is separated fromB by C in G.

Theorem 4.1. Let G′ = (V ′, E′) be a Markovian subgraph ofG and suppose that, for three disjoint
subsetsA,B,C of V ′, 〈A|B|C〉G′ . Then

(i) 〈A|B|C〉G ;

(ii) For W ∈ CG(A) andW ′ ∈ CG(C), 〈W |B|W ′〉G .

Proof. Since
〈A|B|C〉G′ , (7)

there is no path inG′ betweenA andC that bypassesB. If (i) does not hold, it is obvious that (7) does
not hold either. Now suppose that result (ii) does not hold. Then there must be a path from a node
in A to a node inC bypassingB. This implies negation of the condition (7) by the definition of the
Markovian subgraph. Therefore, result (ii) must hold.

Let G′ be a Markovian subgraph ofG and suppose that, for three PSs,A,B, andC, of G′, A \ C
andB \ C are separated byC in G′. Then, by Theorem 4.1, the same is true inG.

For three sets,A,B, andC, of PSs of an interaction graphG, if A andB are separated byC, then
we have that

(∪a∈Aa) ∩ (∪b∈Bb) ⊆ (∪c∈Cc) . (8)

WhenA,B, andC are all singletons of PSs, the set-inclusion is expressed as

A ∩B ⊆ C. (9)

This is analogous to the set-inclusion relationship among cliques in a junction tree of a decomposable
graph (Lauritzen (1996)). A junction tree is a tree-like graph of cliques and intersection of them, where
the intersection of neighboring cliques lies on the path which connects the neighboring cliques. As for
a junction tree, the sets in (9) are either cliques or intersection of cliques. In the context of a junction
tree, the property as expressed in (9) is called the junction property. We will call the property expressed
in (8) PS junctionproperty, where ‘PS’ is from ‘prime separator.’

The GOPS and the junction tree are different in the following two senses. First, the basic elements
are PSs in the GOPS while they are cliques in the junction tree; secondly, the GOPS is an undirected
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graph of PSs while the junction tree is a tree-like graph of cliques. Some PSs may form a clique in an
undirected graph as in graphsG1 andG4 in Figure 8. This is why GOPS may not necessarily be tree-like
graphs. So, two PSs may be separated by a set of PSs. But, since all the PSs in a decomposable graph
G are obtained from the intersections of neighboring cliques inG, the GOPS ofG is the same as the
junction tree ofG with the clique-nodes removed from the junction tree. WhetherG is decomposable
or not, expression (8) holds in general.

5 Markovian model-combining procedure

We can obtain a maximal CMS,H∗ say, by adding edges, if any, to the graphG of Theorem 3.3 in such
a way that result (ii) of Theorem 3.3 holds. In reality, however, we do not know the true modelG and
the Markovian subgraphsGi’s are obtained based on the corresponding marginal sets of data. If we let
V = {V1, V2, · · · , Vm}, thenL̃(GA, A ∈ V) is the family of the probability modelsP of XV for which
PA ∈ M(GA) for all A ∈ V. SinceH∗A = GA, every pair of nodes,u andv, that are separated by a set
of nodes in any of the graphsGA, A ∈ V, are also separated inH∗ by the same set of nodes. However,
if a pair of nodes,u andv, are not separated in any of the graphsGA, A ∈ V, the two nodes may or
may not be separated inH∗.

For a given set ofGA’s, we denote byEs(V) the set of the pairs,u and v, for which there is
at least oneGA such that{u, v} ⊆ A and they are not adjacent inGA, denote byEa(V) the set of
the pairs,u and v, for which there is at least oneGA such that{u, v} ⊆ A and they are adjacent
in GA, and letErem(V) = {{u, v} ⊆ V ; u 6= v} \ (Es(V) ∪ Ea(V)). For example, in the graph
below,V = {1, 2, · · · , 7}, A = {1, 2, 3}, B = {3, 4, 5}, C = {5, 6, 7}, V = {A, B,C}, Es(V) =
{{1, 3}, {3, 5}, {5, 7}}, Ea(V) = {{i, i + 1}, i = 1, 2 · · · , 6} andErem(V) = {{i, j}, 1 ≤ i < j ≤
7} \ (Es(V) ∪ Ea(V)).

GA

4 5 761 2 3

GB GC

Before describing the model-combining process in a formal manner, we will show that if a set of
nodes is a PS in a Markovian subgraph, then it is not intersected in any other Markovian subgraphs.

Theorem 5.1. LetG be a decomposable graph andG1 andG2 be Markovian subgraphs ofG. Suppose
that a setC ∈ χ(G1) and thatC ⊆ V2. ThenC is not intersected inG2 by any other subset ofV2.

Proof. Suppose that there are two nodesu andv in C that are separated inG2 by a setS. Then, by
Theorem 4.1, we have〈u|S|v〉G . SinceC ∈ χ(G1) andG1 is decomposable,C is an intersection of
some neighboring cliques ofG1 by equation (5). So,S can not be a subset ofV1 but a proper subset of
S can be. This means that there are at least one pair of nodes,v1 andv2, in G1 such that all the paths
between the two nodes are intersected byC in G1, with v1 appearing in one of the neighboring cliques
andv2 in another.

Sincev1 andv2 are in neighboring cliques, each node inC is on a path fromv1 to v2 in G1. From
〈u|S|v〉G , it follows that there is anl-cycle (l ≥ 4) that passes through the nodesu, v, v1, andv2 in G.
This contradicts the assumption thatG is decomposable. Therefore, there can not be such a separator
S in G2.
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We will call a node aPS nodeif it is contained in a PS, and anon-PS nodeotherwise. Theorem 5.1
implies that if, for a given Markovian subgraphG′, s is the set of the PSs each of which is a neighbor to
a PS nodev in G′, thens will also be the set of the neighboring PSs of any PS, saya, such thatv ∈ a,
in the Markovian subgraph which is obtained by adding the PS,a, toG′. This is useful in locating PSs
for model-combination since PS nodes of a PS always form a complete subgraph.

Other useful nodes in model-combination are the non-PS nodes that are shared by multiple Marko-
vian subgraphs. A simple illustration of the usefulness is given in expressions (1) and (2). The Marko-
vian subgraphs in Figure 1 share node 1, which determines the meeting points of the subgraphs when
they are combined into the maximal CMS,[12][234]. On the other hand, when combining the models
in Pair-2, i.e.,[12][23] and[24][25], node 4 can form a clique with either{1, 2} or {2, 3} in the maximal
CMS of models in Pair-2.

Whether they are PS nodes or not, a set of nodes which are shared by a pair of Markovian sub-
graphs become meeting points of the subgraphs in the combining process. The shared nodes restrict
the possible locations of the PS nodes that are not shared by both of the subgraphs.

A rule of thumb of model-combination is that we connect two nodes each from different Markovian
subgraphs in a given set, sayM, of Markovian subgraphs if the two nodes are not separated by any
other nodes inM. We will formally describe this condition below:

[Separateness condition] LetM be a set of Markovian subgraphs ofG andH a maximal CMS ofM.
If two nodes are in a graph inM and they are not adjacent in the graph, then neither are they in
H. Otherwise, adjacency of the nodes inH is determined by checking separateness of the nodes
in M.

Suppose thatM consists ofm Markovian subgraphs,G1, · · · ,Gm, of G and we denote byai a PS
of Gi. We can then combine the models ofM as follows.

Step 1. We arrange the subgraphs intoGi1 , · · · ,Gim such that|Vij ∩ Vij+1 | ≥ |Vij+1 ∩ Vij+2 | for
j = 1, 2, · · · ,m− 2. For convenience, letij = j, j = 1, 2, · · · ,m. We setη1 = {G1}.

Step 2a. We first put an edge between every pair of PSs,a1 anda2, if

a1 ∩ a2 6= ∅, (10)

in such a way that the separateness condition is satisfied with regard toM. We denote the
resulting GOPS byH.

Step 2b. Once the node-sharing PSs are all considered in Step 2a, we need to consider all the PSsa1

anda2 such that
a1 ∩ (∪a∈χ(G2)a

)
= ∅ and a2 ∩ (∪a∈χ(G1)a

)
= ∅ (11)

and put edges betweenai, i = 1, 2, and every PS inG3−i that is acceptable under the separate-
ness condition, in addition to the GOPS which is obtained in Step 2a. For example, for each
a1 satisfying (11), we add edges toH between thea1 and every possible PS inG2 under the
separateness condition, and similarly for each ofa2 that satisfy (11). We denote the result of the
combination byη2.
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GOPS 6
GOPS 5

Figure 3: A graphic display of part of Step 2a corresponding to that the PS of GOPS5, {28, 30}, and the
PS of GOPS6, {30, 32}, share node 30 and that{28, 30} is adjacent to{29, 31, 32, 34} and separated
from {35, 36, 37, 38} by {29, 31, 32, 34}. The non-adjacent connectedness is expressed by dashed
lines.

Step 3. Let ηi be the GOPS obtained from the preceding step. Note thatηi can be a set of GOPS’s. For
each GOPSH in ηi, we combineH with Gi+1 as in Step 2, where we replaceG1 andG2 with H
andGi+1, respectively. We repeat this combination withGi+1 for all the graphsH in ηi, which
results in the set,ηi+1, of newly combined graphs.

Step 4. If i + 1 = m, then stop the process. Otherwise, repeat Step 3.

We will call this process Markovian combination of model structures or MCMoSt for short. For
a brief illustration of the MCMoSt, we will consider the two marginal graphs,G5 andG6 in Figure 8.
This example has only two graphs, so we may skip Step 1.

Figure 8 shows the GOPSs of two marginal graphsG5 andG6. As forG5, the set of PSs in GOPS1

is {{28, 30}, {28, 29, 30}, {29, 34}, {34, 36}} and it is{{30, 32}, {36, 38}, {37, 38}} for G6. The PS
of GOPS5, {28, 30}, and the PS of GOPS6, {30, 32}, share node 30. So we put an edge between
the two PS’s. InG5, {28, 30} is adjacent to{29, 31, 32, 34} and separated from{35, 36, 37, 38} by
{29, 31, 32, 34}. This separateness must be preserved, by Theorem 4.1, in the combined model ofG5

andG6. We represent this non-adjacent connectedness by dashed lines in Figure 3.

The other PSs that share nodes betweenG5 andG6 are the pair of{28, 29, 30} and{30, 32} and the
pair of{34, 36} and{36, 38}. We put edges between the PSs in each of these pairs and then check the
separateness condition. InG5, {37, 38} is separated from{28, 29, 30} by {31, 32, 34, 35, 36}, which is
satisfied in the graph in Figure 4. This is the result of Step 2a.

In Step 2b, we can see that the PS,{37, 38}, of G6 is disjoint with all the PS’s ofG5. In G5, we
see that{34, 36} separates{37, 38} from the remaining six nodes inG5. Thus we put an edge between
{34, 36} and{37, 38} only. This ends up with the combined GOPS in Figure 5.

In combining a pair of subgraphs,G1 andG2 say, suppose that an edge is added between a PS,a1,
in G1 and another PS,a2, in G2 and letNi, i = 1, 2, be the set of the PSs which are adjacent toai in Gi.
Then, under the decomposability assumption and the separateness condition, further edge-additions are
possible between the PSs in the({ai} ∪ Ni)’s only.

The computing time of MCMoSt depends upon the sizes of the sets such asEa andErem of the

10



GOPS 6
GOPS 5

Figure 4: Step 2a in progress from Figure 3 as for the PS pairs,{28, 29, 30} and{30, 32} and{34, 36}
and{36, 38}.

Figure 5: Step 2b as continued from Figure 4.

graphs inM. A main part of the algorithm is designed for searching for all the possible edges between
nodes under the condition that the pairs of nodes inEs are separated. We use the depth-first search
method (Tarjan, 1972) in Step 2 of the combination process to check the separateness between nodes.
Suppose we combineG1 andG2 into a graphH and obtainEs, Ea andErem from G1 andG2. Then
we search for all the possible edges between nodes in such a way that, if there is a path,π′, in G1 or G2

which containsu andv on itself and there is a path,π, inH which also containsu andv on itself, then
π′ is a Markovian subpath ofπ.

The overall time complexity of this algorithm depends upon the number of the nodes that are not
shared between graphs. For two graphs,G1 andG2, let |Vi| = ni with i = 1, 2, |V1 ∩ V2| = n12

andñi = ni − n12. It is well known that the time complexity of the depth-first search method for a
graphG = (V, E) is of orderO(|V | + |E|). So the time complexity for the combination is of order
ñ2

1O(ñ2+ẽ2)+ñ2
2O(ñ1+ẽ1), whereẽi is the number of edges in the induced subgraph ofGi onVi\V3−i.

As a matter of fact, when we use GOPS’s instead of graphs of nodes, the time complexity reduces by a
considerable amount. For instance, we can see in Figure 9 that the six GOPS’s are composed of 3, 3,
5, 5, 6, 3 PS’s, respectively, while the marginal graphs are of ten nodes each. MCMoSt uses PS’s and
the nodes that are shared between graphs rather than nodes only.

6 Applications

We applied the algorithm, MCMoSt, to two sets of marginal models, one of 40 binary variables and the
other of 100 variables. Using a decomposable model, sayG, of the 40 variables, we generated a data
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set, constructed marginal models of 10 variables, combined the marginal models into a decomposable
model of the 40 variables, and then compared the combined result withG. As for the case of 100
variables, we did the same thing as for the 40 variables except that we use a simulated data set. We
instead split the model of 100 variables into several marginal models in such a way that neighboring
nodes in the original model are also neighbors in the marginal models. These applications are described
in the following two subsections.

6.1 A model of 40 binary variables
In this subsection, we use a simulated data set of 40 binary variables which is obtained from the graph-
ical log-linear model as in Figure 6, and demonstrate a modelling procedure with the data. The model
in Figure 6 is decomposable, and, by Theorem 7 of Pearl (1988, p. 112), the graph can be transformed
into a directed acyclic graph. So the simulated data can be generated by following the direction of the
arrows in the directed graph.

The number of categorical variables that can be handled at once for log-linear modelling and the
complexity of a model are limited up to the computational capacity of a computer. Our computer
(IBM PC) could handle up to 10 binary variables at once at a relatively good speed of a few seconds
or minutes. For any larger model with more than 10 variables, it would take hours or days with the
computer. So, we applied the approach as described in the preceding section.

6.1.1 Selection of marginal contingency tables

The log-linear model is a model of association among the variables. The association between a pair of
categorical variables is reflected in the coefficient of the logistic regression model of one variable of
the pair upon the other (Chapter 3 of Hosmer and Lemeshow (1989)). It is thus reasonable to apply
a regression method to select subsets of variables that are associated higher with each other within
subsets than they are between subsets.
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Figure 6: A model of the 40 variables that are used for the simulation study
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Since the logistic regression analysis requires dealing with the whole set of variables, we run into
the same, large modelling problem. So, we apply a nonparametric, tree regression method as an ef-
fective alternative by using thetree and its related commands in S-plus (Chambers and Hastie, 1992).
In the tree regression analysis for variableX∗, we select regressor variables one after another in such
a way that, if variablesX1, X2, · · · , Xi are selected already with their outcomes,x1, x2, · · · , xi, re-
spectively, then we select the variableX ′ for which var(X∗|X1 = x1, X2 = x2, · · · , Xi = xi) −
E(var(X∗|X1 = x1, X2 = x2, · · · , Xi = xi, X

′)) > 0 is maximized.

Using the simulated data set of size 250,000, we applied the tree regression to every of the 40
variables and selected a set of regressor variables which explains about 80% of the total variation of the
response variable.

The selected regressor variables are listed in the form of a matrix in Figure 7. The entries in the
matrix are either 0 or 1. The regressor variables for the variableXj are listed as 1’s in thejth column.
For instance, variablesX4, X6, X7, X8 are selected as the regressor variables forX5. The variables are

Figure 7: A matrix of regressor-response relationships for the 40 variables as obtained from a tree
regression analysis. The 1’s in columnj are the indicators of the regressor variables for the response
variableXj . The six blocks correspond to the six subsets of variables listed in Table 1.
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not arranged in their index order but are arranged so that more highly associated variables appear next
to each other.

We denote byψ(j) the selected set of the indexes of the regressor variables forXj . Thati ∈ ψ(j)
does not necessarily imply thatj ∈ ψ(i). For instance,ψ(7) = {3, 5}, while ψ(3) = {2, 4, 5}. This
asymmetry in the regressor-response relationship is not unusual. The regression tree we consider is
constructed by selecting regressor variables one after another in such a way that the most informative
variable for a particular response variable may be selected. So, the fact thatψ(3) = {2, 4, 5}means that
X7 is less informative forX3 than those inψ(3). This asymmetry can also be due to sampling error.
Although we have seen some instances of asymmetry in the regressor-response relationship, symmetry
is a prevalent feature in the relationship, as we can see in the matrix.

We grouped the 40 variables into 6 subsets of 10 variables in such a way that the variables share
more variables as regressor variables within subsets of variables than the variables share between sub-
sets. The grouping can be carried out easily from the arrangement in Figure 7, and the six subsets are
listed in Table 1. As noted in the figure and the table, subsetsi and i + 1, i = 1, 2, · · · , 5, share a
nonempty set of variables. In particular, subsets 5 and 6 share as many as 7 variables. Once an ar-
rangement of variables such as in Figure 7 is obtained, the grouping is subject to the optimal number of
variables that our computer can handle at once and the variable-sharing between neighboring subsets of
variables. For example, we need a subset such asV5 as a bridge betweenV4 andV6 sinceV4 ∩ V6 = ∅.

Table 1: The indexes of the variables in the 6 subsets,V1, · · · , V6.

V1 = {1, 2, 3, 4, 5, 6, 7, 8, 11, 12}
V2 = {8, 9, 10, 11, 12, 14, 15, 16, 17, 18}
V3 = {10, 13, 14, 15, 19, 20, 21, 22, 23, 24}
V4 = {13, 20, 21, 22, 25, 26, 27, 28, 29, 34}
V5 = {28, 29, 30, 31, 32, 34, 35, 36, 37, 38}
V6 = {30, 31, 32, 33, 35, 36, 37, 38, 39, 40}

Table 2: Goodness-of-fit levels of the six marginal models

Marginal model d.f. Pearsonχ2 p-value
1 567 547.50 0.714
2 645 667.41 0.263
3 601 589.07 0.628
4 649 679.25 0.199
5 617 591.89 0.760
6 604 621.53 0.302

14



1

2
3

4 5

6

7

8

11

12

17

18

15
16

14

8

10

9 11

12

15

13

10

23

21
20

22 24

19

14

20

21

22 25

26

27

13

28

29

34

31 28

30

29

37

38

36

35

34

32

39

40
36

32

37

3833

30

31

35

G1 G2 G3

G4 G5 G6

Figure 8: Marginal models of the model in Figure 6 for the 6 subsets of variables which are listed in
Table 1.Gi is the decomposable log-linear model for subsetVi. PSs are represented by thick lines. See
Figure 9 for the PSs of the 6 marginal models.
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Figure 10: The graph obtained by linking non-PS variables (bullets) to the PS’s ofG3.

6.1.2 Marginal log-linear models for the 6 subsets of variables

For every subset of 10 variables, we found, by applying a backward deletion method, a decomposable
log-linear model that fits well to the corresponding marginal set of data. In applying the backward
deletion method, we began with an allk-way interaction model. Once thek value was found for
a subset of variables with an acceptable goodness-of-fit level, we began removing interaction terms
until an appropriate model was reached. Figure 8 displays the model structures for the six subsets of
variables and their goodness-of-fit results are listed in Table 2. The p-values of the goodness-of-fit tests
are all larger than or equal to 0.199. We denote byGi the model structure of the variables indexed inVi

and byc(k1, k2, · · · , kr) the PS which consists of variables,Xk1 , Xk2 , · · · , Xkr .

FromG1, we haveχ(G1) = {c(3, 4), c(4, 8), c(3, 5)}. If we regard the three PSs as random vari-
ables, these PSs are associated. In the same context, we can represent the conditional independence
relationship among the PSs via an independence graph based on the corresponding marginal models
Gi. The GOPS’s are displayed for each marginal model in Figure 9 along with the nodes which are
shared among the marginal models. We will call a variable whose corresponding node is a PS-node a
PS variable and similarly for a non-PS variable. Since every non-PS variable is separated from other
variables by its neighbor PSs, we can representGi by linking each non-PS variable to its neighbor PSs.
For example, the graph in Figure 10, which is obtained by adding non-PS variables ofG3 to the graph,
GOPS3, of the PSs ofG3. Since every non-PS node has a unique set of neighboring PSs, a graph such
as that in Figure 10 is determined uniquely.

6.1.3 Combination of marginal models

The variable-sharing betweenVi andVi+1, i = 1, 2, · · · , 5, is as follows:

|V1 ∩ V2| = 3, |V2 ∩ V3| = 3, |V3 ∩ V4| = 4, |V4 ∩ V5| = 3, |V5 ∩ V6| = 7.

|Vi ∩ Vj | = 0 when|i− j| > 1. So, it is desirable that we begin combining marginal models from the
pair ofG5 andG6, and then keep combining marginal models in the order ofG4, G3, G2, G1.

ModelsG5 andG6 are combined in Section 5 and then we combine the GOPS in Figure 5 with
GOPS4 in Figure 9 by applying the MCMoSt. We repeat this combining process until all the GOPS’s
in Figure 9 are combined to obtain the combined GOPS in Figure 11. This combining process took 2
seconds by MCMoSt with an IBM compatible PC and MATLAB 7.0.

A PS is itself a complete subgraph and so is a clique of PSs. So we can easily transform the graph in
Figure 11 into the undirected graph in Figure 12. This is a maximal CMS of the six marginal models as
listed in Figure 8. The true model in Figure 6 is fully recovered in the maximal CMS except the 5 thick
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The thick edges are additional to the true model in Figure 6.

edges appearing in Figure 12. These additional edges were created because bothX4 andX9 were not
contained in any of the marginal models. IfX4 had been added toG2, thenX{4,9} would have separated
X11, X12, andX{8,10} from each other, making those additional edges unnecessary. This phenomenon
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of additional edges leads us to recommend that the variables be grouped into marginal models so that
the association between variables is higher within a marginal model than between marginal models.

6.2 A model of 100 variables

In this subsection, we intend to check availability of MCMoSt when there are a large number of
marginal models to combine. We consider a decomposable model, sayG∗, of 100 variables as given in
Figure 13. For this model, we did not use data to select subsets of variables but use the model structure
to split it into 18 marginal models in such a way that non-adjacent nodes inG∗ are not neighbors in any
of the marginal models. The 18 marginal models or Markovian subgraphs are in Figures 16 and 17. As
displayed in these figures, the marginal models are of sizes from 5 to 12 and none of them is isolated
from the rest. Table 3 lists the variables of the marginal models and the neighboring models of each
marginal model.

The combining process took 37 seconds until we got the combined result in Figure 15, where we
see four thick edges which are additional to the edges in the true model,G∗. This addition is due to the
same reason as is for the additional edges in Figure 12.

The four thick edges,(13, 20), (13, 22), (20, 21), (20, 22), took place when combining marginal
modelsG2 andG3. Note that the set{10, 19} forms a PS in the true model but not in any of the
marginal models (see Figure 14.) Thus those nodes which are separated by{10, 19} in the true model
become neighbors to each other in the combined result. A similar argument applies to the additional
edge(29, 86). The set{28, 35} is a PS in the true model but not in any of the marginal models. For
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instance, the marginal modelG7 contains the nodes, 28 and 35, but they do not form a PS therein.

7 Concluding remarks

In this paper, we propose an approach of combining marginal model structures that are decomposable.
A main idea behind the approach is that we group the random variables into several subsets such that
the association among the variables are higher within subsets than between subsets. The sizes of the
subsets of random variables are bounded by the computing capacity of the computer to use. It is
desirable that the subset sizes are as large as possible since smaller subsets would end up with more
edges which are not contained in the actual model.

In combining marginal models, we need to take into consideration the number of variables that are
shared by neighboring marginal models. As more variables are shared, the model-combination becomes
easier since the shared variables are used as road signs in constructing a maximal CMS of a given set of
marginal models. While we use GOPS’s of marginal models to construct another GOPS, the locations
of the non-PS nodes that are shared by the marginal models to be combined are as important as the PSs
in the marginal models. The PS junction property (8) and the separateness condition are instrumental
for locating PSs in model-combination.

In the two applications, we assumed true models. But in reality, we do not know true models
but only have marginal models that are developed from subsets of data involving manageable sizes of
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variables or different sources of data. When we have a data set of a full set of random variables, we
can build a model as in subsection 6.1. Even though only marginal models are provided, we can apply
MCMoSt to obtain combined results as long as none of the models are isolated from the rest.

In the applications, the sizes of the marginal models are between 5 and 12. In combining models, it
is desirable that there are smaller number of larger marginal models. For instance, letV1∪V2∪V3 = V .
Then combiningGV1 , GV2 , andG3 is at most as efficient as combiningGV1∪V2 andG3. This is because
the combined result ofGV1 andGV2 may at best be the same asGV1∪V2 .

Consider two marginal models,Gi = (Vi, Ei), i = 1, 2. As mentioned at the end of section 5, the
time complexity is at most of ordermax{|V1|2(|V2|+ |E2|), |V2|2(|V1|+ |E1|)}. As the models share
more variables, the complexity decreases accordingly.

Although the model combination is carried out under the decomposability assumption, we can
deal with the marginal models of a graphical model, which are not decomposable, by transforming
their model structures into decomposable (i.e., triangulated) graphs. The combined model will then be
larger than expected as a trade-off of the graph triangulation made on the marginal models.
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Appendix: Tables and graphs for Subsection 6.2

Table 3: The 18 marginal models of the model in Figure 13.

Marginal models Variables Neighbor models
1 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 17 2
2 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19, 20 1, 3, 4, 7
3 10, 19, 21, 22, 23, 24, 25, 26, 27 2, 7
4 7, 14, 15, 16, 18, 51 2, 5
5 7, 18, 42, 44, 51, 52 4, 6
6 41, 42, 43, 44, 45, 46, 47, 48, 49, 52 5
7 10, 13, 19, 20, 28, 29, 30, 31, 32, 33, 35 2, 3, 8, 9
8 29, 34, 35, 36, 40, 81, 85, 86 7, 9, 10
9 29, 34, 35, 36, 37, 38, 39 7, 8
10 81, 82, 83, 84, 85, 86, 87, 88 8, 11
11 83, 84, 88, 89, 90, 91, 92, 93, 94, 99, 100 10, 12, 13
12 90, 93, 94, 95, 96, 98, 99, 100 11, 13
13 74, 76, 77, 78, 79, 80, 93, 94, 95, 96, 97 11, 12, 14
14 60, 68, 69, 70, 74, 75, 76, 77, 78, 79, 80 13, 15
15 50, 53, 59, 60, 68, 69, 70, 71, 72, 73 14, 17, 18
16 54, 55, 56, 57, 58 18
17 50, 59, 61, 62, 63, 64, 65, 66, 67 15, 18
18 50, 53, 54, 55, 56, 59, 61, 62, 63, 64 15, 16, 17
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Figure 15: The combined result of the 18 marginal models in Figures 16 and 17. The thick edges are
additional to the true model in Figure 13.
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Figure 16: The first nine marginal models,G1, · · · ,G9, of the model in Figure 13.
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Figure 17: The second nine marginal models,G10, · · · ,G18, of the model in Figure 13.
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