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TOPOLOGICAL CLASSIFICATION OF TORUS
MANIFOLDS WHICH HAVE CODIMENSION ONE
EXTENDED G-ACTIONS

SUYOUNG CHOI AND SHINTARO KUROKI

ABSTRACT. The aim of this paper is to determine topological types of
torus manifolds which have codimension one extended G-actions. As a
result, we show that their topological types are completely determined
by their cohomology rings and characteristic classes. Due to this result,
we find the counterexample to the cohomological rigidity problem in the
category of torus manifolds. Moreover, we find the class of manifolds in
torus manifolds with codimension one extended G-actions which is not
in the class of quasitoric manifolds but cohomologically rigid.
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1. INTRODUCTION

A toric variety of dimension n is a normal algebraic variety on which
an algebraic torus (C*)™ acts with a dense orbit. In this paper, we call a
compact non-singular toric variety a toric manifold. We regard the compact
torus 7™ as the standard compact subgroup in (C*)™. The orbit space of a
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toric manifold with 7" can be identified with the simple polytope and the
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action of T™ on a toric manifold is locally standard, that is, locally modelled
by the standard action on C". Davis and Januszkiewicz first introduced the
notion of a toric manifold as a topological counterpart, which is now called
a quasitoric manifold, by taking these two characteristic properties as the
starting point (see [I], [5]). A quasitoric manifold is a smooth closed man-
ifold of dimension 2n with a locally standard T"-action whose orbit space
is a simple polytope. Obviously not all quasitoric manifolds belong to the
family of toric manifolds. For instance, a connected sum CP?#CP? of two
CP?’s is a quasitoric manifold with an appropriate action of T2 but not a
toric manifold because it does not allow an almost complex structure. More-
over, the family of quasitoric manifolds does not contain the family of toric
manifolds entirely, but the theory can be extended to a certain family of
manifolds containing both toric manifolds and quasitoric manifolds. As an
ultimate generalization of (quasi)toric manifolds, Hattori and Masuda intro-
duced a torus manifold (or unitary toric manifold in the earlier terminology)
in [7], [11], which is an oriented, closed smooth manifold of dimension 2n
with an effective T™-action with a non-empty fixed point set. Among the
definition of torus manifolds, if a torus manifold M satisfies the following
two conditions:

(1) Ho4(M) =0 (resp. H*(M) is generated by H?(M) as ring);

(2) M, M;’s and connected components of any multiple intersection of

M;’s are all simply connected,

where M;’s are characteristic submanifolds of M, then the orbits space is a
homotopy cell (resp. homotopy polytope) and the converse also holds (see
[13]). Thus Masuda and Suh believe in [I5] that the toric theory can be
developed to the family of torus manifolds satisfying the two conditions
above in the topological category in a nice way.

On the other hand, the topological classification of these manifolds has
recently attracted the attention of toric topologists. Masuda and Suh ask
several problems in [I5]. Of special interest is the following problem which
is now called a cohomological Tigidity problem for toric manifolds:

Problem 1.1. Are toric manifolds diffeomorphic (or homeomorphic) if their
cohomology rings are isomorphic as graded rings?

They also ask the problem for quasitoric manifolds and torus manifolds
satisfying the two conditions above. Since there is no counterexample to
Problem [I.]for toric or quasitoric manifolds, but some affirmative evidences,
Problem has been still open in the toric or quasitoric categories, see [2]
and [I3]. In the present paper, we find a negative answer to Problem
for the family of torus manifolds each of whose orbit space is a homotopy
cell. In order to do, we study a topological classification of torus manifolds
which have extended G-actions, where G is a compact, connected Lie group
with maximal torus T". Recently the second author has classified the torus
manifolds which have extended G-actions with codimension 0 or 1 principal
orbits in [8], [9], [L0]. The (simply connected) torus manifold which has a
codimension 0 extended G-action (i.e., transitive G-action) is a product of
complex projective spaces and spheres. This is nothing but a product of
projective spaces and spheres from the (non-equivariant) topological point
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of view. Thus, this paper will be restricted to consideration of the topo-
logical types of the torus manifolds which have extended G-actions with
codimension 1 principal orbits. We denote such class as 991. The aim of this
paper is to prove the following theorem (see Corollary in Section .

Theorem 1.2. Homeomorphism types of I are completely determined by
their cohomology rings, Pontrjagin classes and Stiefel-Whitney classes.

This paper is organized as follows. In Section [2] we recall the results of
[9], [10] and prepare notations. In Section [3| we compute cohomology rings
and characteristic classes of these manifolds. In Section [4, we present the
main result of this paper. Finally, in Section [5| we prove the main result
and find several non-trivial examples.

2. NOTATIONS

We first recall the definition of torus manifolds (see [7], [I1]). Let M be a
2n-dimensional, oriented, closed manifold with an effective half dimensional
torus T" action. We call M a torus manifold if its fixed point set M7 is
non empty. Remark that in [7], [I1], we need to choice the omniorienta-
tions, namely, an orientation of the torus manifold and its characteristic
submanifolds, on torus manifolds. However, in this paper we do not as-
sume the omniorientations on torus manifolds because we focus only on the
topological types of torus manifolds.

Next we recall the definition of quasitoric manifolds (see [1], [5]). If the
torus manifold M?" satisfies the following two properties:

(1) T™-action is locally standard, that is, locally looks like the standard
torus representation in C";

(2) there is a projection map M?" — P™ constant on T™-orbits which
maps every k-dimensional orbit to a point in the interior of k-face
of P" for k =0,...,n, where P" is a convex, simple, n-dimensional
polytope,

then we call M 2 a quasitoric manifold.

Let 9 be the set of simply connected torus manifolds M?" which have
extended G-actions with codimension 1 principal orbits, where G is a com-
pact, connected Lie group with maximal torus 7™. Due to the main results
n [9], [10], 9 consists of the following three types of manifolds:

o TYPE L: [T/, §%™ x ([T, S% x(g1y0 P(Ckr @ Ck2));

o TYPE 2: ]/, §%™ x ([T2, S%L x(g1y0 S(CE @ R));

o TYPE 3: [T)_; 52" x ([T, S%L x(g1y0 S(CEr @ R2K241))
where P((C’l;1 ©Ch) = (Cl;l @® C* — {0})/C* is a complex projective space,
S(C*@R™) C C*@R™ is a sphere, and (S1)® acts on [[{_, S?*! naturally
and on (C’;l through the following representation p : (§1)% — S*:

p(te, .. te) =100+ %0

foro € Z (i=1,...,a).
In the remainder o£/the paper, we assume that a = 1 and b = 0 and 9
denotes the subset of 9t which satisfied a = 1 and b = 0. Let 9; (i = 1,2, 3)
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be the subset of 9t of TYPE ¢ with a = 1 and b = 0. By the definition of
M, the element N; € IM; is as follows:

Ny = %t x g P(ChH @ CP);

Ny = S%+1 X g1 S(CIZ S¥ R);

N3 = S x g1 S(CE @ R*2H1)
Defining p : S' — S' as t +— t°, we may regard p € Z. First we compute
the cohomology rings and characteristic classes of N;’s. In order to compute
them, we use the following standard notations: H*(X) is the cohomology

ring of X over Z-coefficients; w(X) (resp. w;(X)) is the total (resp. i-th)
Stiefel-Whitney class of X; and p(X) (resp. p;(X)) is the total (resp. i-th)

Pontrjagin class of X. Moreover, Z[z1, ..., x| denotes the polynomial ring
generated by z; (j =1,...,m), and < fi(z1,...,Zm), ..., fs(@1,.. ., 2m) >
denotes the ideal in Z[z1, . . ., x,] generated by the polynomials f;(z1, ..., Zm)

(j=1,...,s). E(n) denotes the total space for the fibre bundle 7.

3. TOPOLOGICAL INVARIANTS
In this section, we will compute the following three topological invariants
of N; (i = 1,2,3):
e cohomology rings H*(N;);
e Stiefel-Whiteny classes w(N;);
e Pontrjagin classes p(NV;).

3.1. Topological invariants of Nj. In this subsection, we shall compute
topological invariants of
Nl = SQe—i_l X g1 P((Clgl D (Ckz)

In order to compute them, we first recall the torus action on Nj, where in
this case the dimension of torus is £ + k1 + k2 — 1. The torus action on Ny
is defined as follows (ki, ko > 1):

((11,...,a[,bl,...,bk1701,...,Ckz_l)' KQ:O;7xf))[y177yk1ay/1a’y;@“
= [(zo, a11,. .., awe), [b1y1;- -+ 0k Ykys CLYL 5 Cho—1Yhy—15 Yko)|»
where a;, b;, ¢ € S* and (w0, ..., xz¢) € S¥TL C CHL [y1s- - 5yks vt S Ypy) €

P ((C]p"’1 @®C*2). Hence, we can easily check that this manifold IV; is a quasitoric
manifold over A x AF1+#2=1 (product of two simplices) whose dimension is
20 + 2k1 + 2ks — 2. Therefore, we can use the Davis-Januszkiewicz formula
in [5, Theorem 4.14, Corollary 6.8] for computing topological invariants of
quasitoric manifolds.

3.1.1. The Davis-Januszkiewicz formula. Next we quickly review the Davis-
Januszkiewicz formula for topological invariants (see [I], [5] for details).
The equivariant cohomology of quasitoric manifolds M?" can be described
as follows:

H*(ET x1 M; Z) = Hyn(M?™; 7Z) ~ Z[vy, ..., 0] /T,
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where v; (degv; = 2, j = 1,...,m) is the equivariant Poincaré dual of
codimension two invariant submanifold M; in M?" (characteristic subman-
ifolds) and Z is an ideal of the polynomial ring Z[vq,. .., v,] generated by
{Iervil Njer Mj = 0}. We call Z[vi, . ..., vy,] /T the face ring of M/T = P.
Let m: ET xp M — BT be the natural projection. Then, we can define the
induced homomorphism

7 H*(BT; Z) = Z[t1,. .., ty] — H*(ET xp M; 7) = H} (M*"; 7).

Moreover, the 7*-image of t;, 7*(t;) (i = 1,...,n), can be described by the
information of the T-action on M. Such information is called the charac-
teristic matric A = (A1---A\p) € M(n,m; Z) (the set of n x m integer
matrices), where \; € Z" (j = 1,...,m) corresponds with the generator
of Lie algebra of isotropy subgroup of characteristic submanifold M;. Put
Aj = (AM1j -+ Ayj)t € Z™. Then we can describe 7*(¢;) (1 = 1,...,n) as
follows:

7'['>|< (tl) = Z )\ijvj.
J=1

Let J be the ideal in Z[vy, ..., v,| generated by 7*(¢;) for all i = 1,... n.
Then the ordinary cohomology of quasitoric manifolds are described as fol-
lows:

(1) H*(M?; 7) ~ Zvy, ..., vom] /(T + T).

Moreover, for an inclusion ¢ : M — ET xp M, the Pontrjagin classﬂ and the
Stiefel-Whitney class can be described as follows:

(2) p(M) = T+,

=1

m
3) w(M) =" | J(1+wi).

=1
3.1.2. Topological invariants of N1. Now we may compute the topological
invariants of Ny. In order to use the Davis-Januszkiewicz formula, we need
to compute the characteristic functions of IV;. By the definition of the torus

action on N7, the characteristic matrix of N7 is as follows:

Iy 0 0 1 0
4) 0 I, 0 pl 1 |eMmn n+2;7Z),
0 0 Iy 0 1

where n = (+ky +ky—1and 1 = (1,...,1)" € M(r, 1; Z) for r = £, k1 and
ko.

Now we may compute the topological invariants of Ni. Because the equi-
variant cohomology ring H, (N1) is the face ring of A? x AF1+F2=1 we have
that

(5) H;m(Nl) ":Z[’Ul,...,Ug+1,w1,...,wkl+k2]/z,

I [5l Corollary 6.8], the Pontrjagin class of quasitoric manifolds (toric manifolds in
[B]) is ¢* [17, (1 — v}). However, this formula coincides with 1 — p1 (M) + p2(M) — -+ =
Z?;O(—l)ipi(M). Therefore, by [15], the Pontrjagin class of quasitoric manifolds must be
p(M) =1+ pi(M) +p2(M) + - = T[IL (1 +07)
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where degv; = degw; = 2, and 7 is generated by
v Vg1 and  wip o Wiy 4k
Now J in H}..(Ny) is as follows by using :

V1 = —U41, ---5 V¢ = —Vp41,
(6) W1 = —PU1 — Wky+kgy ---y Wk = —PUp41 — Wy +ko»
Why+1 = —Wky+kos --+5 Wki+ko—1 = —Wky+ka-

By using , and @, we have the following formula:

H*(N1) ~ Zvi,...,0041, W1, ..., W4k /(L + T)
> Zlvgpr, ek )/ < (1) (o) (mwry ks — poeg)™ (—wgy 15,) >
~ Zlx,yl/ <2y (y + px)t >,

where = Vo1, Y = Wiy +ky-

Because of , and @, we have the characteristic classes of Nj as
follows:

p(N1) = (1407 ) (14 (pvest + weyky)?)F (1 + wi, ,)*2
= 1+ A+ (pr+y)H (1 +yH)P
w(N) =2 (14 ve1) T L+ pvest + Wey i)™ (L + w4y )2

= (L+2) (L4 pr +y)M (1 +y)™.
In summary, we have the following proposition.
Proposition 3.1. Topological invariants of N1 are as follows:
HY(N) = Zz,y)/ <™ g% (y + pr)™ >;
p(N1) = (1+2*)F 1+ (pz+y)*)" (1 +y*)"
w(N1) =2 (1+2) (14 pa+ )" (1 +y)™
where degx = degy = 2 and £, k1, ks € N.

3.2. Topological invariants of N, and Ns. In this subsection, for the
following two manifolds:

Ny = S x50 S(CE @ R);
Ny = §26+1 » g S(CIZI @ R+,
we shall prove the following propositions.
Proposition 3.2. Topological invariants of Na are as follows:
H*(Ny) = Z[z,2]) <z 2(z 4 (pz)*) >
p(N2) = (1+2)F 1+ pa?)h
w(Nz) =2 (1+2)F (1 + pa)t,
where degx = 2, degz = 2k and £,k € N.
Proposition 3.3. Topological invariants of N3 are as follows:
H*(N3) = Z[z,z2]) <z 2% >,
p(N3) = (1+2*)F 1+ pPa?),
w(Na) =2 (1+2) %1+ po),
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where degx = 2, degz = 2(ky + ko) and £, k1, ky € N.
Now N> has the following fibration:
S =S(Ch@R) — N, T S*H1/8t = CP(0),

that is, Ns is a sphere bundle over a complex projective space. Therefore,
we can use the following lemma ([0, Lemma 4]):

Lemma 3.4. Let m : E — M be a smooth, oriented r-sphere bundle over
an oriented manifold M which has a section s : M — FE. Let the normal
bundle v of the embedding s be oriented by m, and let x(v) € H"(M) be the
Euler class of v with respect to this orientation. Then there exists a unique
class z € H"(F) such that

s*(z)=0€ H*(M) and < i*(z), [S"] >=1.

Furthermore H*(E), as a module over H*(M), has the basis {1, z} subject
to the relation
2+t (x(v)z = 0;
We define the section of 7 : Ny — CP(¢) as follows:
s:CP(0) 3 [z05...52¢) = ([205---52¢], (0,...,0, 1)) € No,
where (0,...,0, 1) € S((C’;@]R). We can easily check this map is well-defined
because (0,...,0, 1) € S((C’; @ R) is one of the fixed points of the S!-action

on S ((C’; @ R). Then the normal bundle of this section is isomorphic to the
following bundle &,:

CF — §2H x5 CF — CP(0),

where p : S — S! defined by ¢ — t”. Then, we have that
~ @k
p= ’Y;SB
where E(v,) = S**! x g1 C, such that S! acts on C, by the representation
t — tP. If p = 1, then v, is isomorphic to the canonical line bundle over
CP(¢). Hence, v, = v®” for the canonical line bundle (= ;). Therefore,
the Euler class of £, is

X(fp) = Ck(fp) = Ck(’YgBk) = Cl(’Yp)k = (7®p)k = (Pc)k = Pkck,

where ¢ € H?(CP({)) is the generator (determined by c1()) of the coho-
mology ring H*(CP(£)). Now 7* is injective by using H°(CP(£)) = 0 and
H®4(S§%k) = ( (see [I7]). Hence, there are the following relations in the
cohomology ring H*(Na):

forl — 0,

22+ pk:z:kz =0,
for # = 7*(c) € H%*(Ns) and some z € H?*(Ny) by using H*(CP(¢)) =
Z[c]) < "' > and Lemma Making use of the Serre spectral sequence
for the bundle 7 : Ny — CP({), there is an epimorphism Z[z, z] — H*(N3),
and additively the cohomology of H*(N2) coincides with that of CP(¢) x

52k Hence, there is no other relations except those mentioned in the above
arguments. Thus, we have the cohomology formula in Proposition



8 SUYOUNG CHOI AND SHINTARO KUROKI

In order to compute characteristic classes, we regard Np = S§2(+1

S (C’; @ R) as the unit sphere bundle of the following vector bundle over
CP(¢):

(7) gzgp@Rg’YSBk@Bv

where R is the trivial line bundle. Note that E(¢) = S**+! x g (C’; ® R).
We often denote Ny as S(€), i.e., the unit sphere bundle of &.

Now 7 denotes the tangent bundle of E(£). Then, there is the following
pull-back diagram:

X g1

gT — T
! !
S — B
where ¢ : (N2 =)S(§) — E(§) is the natural inclusion, and the following
relation holds:

TN, =0T =190 & 1o,

where 75 is the tangent bundle of Ny = S(£) and v4 is the normal bundle
of the inclusion ¢ : No = S(§) — E(£). Note that v, is a real 1-dimensional
bundle by the equation dim F(§) — dim S({) = 1. Because Nj is simply
connected, we have the following lemma for vy (see [20]).

Lemma 3.5. vy is the trivial real line bundle over Na, i.e., E(vs) = Ny x R.

Hence, we have
(8) Up(T) = p("T) = p(r2 ® va) = p(12) = p(Na),
(9) Cw(T) =w(*T) = w(n & ) = w(t) = w(Na).
We also remark * : H*(E(§)) — H*(S(€)) is injective, because 7 : S(§) —
CP(¢) is decomposed into m = 7 o ¢ where 7 : E(§) — CP({) and 7* is
injective. In order to prove Proposition we compute p(7) and w(7T).
Let s be the zero section of 7 : E({) — CP({). Consider the following
pull-back diagram:
T — T
L
CP() = E().
Because the normal bundle v(CP(¥)) of the image of § is isomorphic to &,
we have that
ST =271(CP({))®v(CP)) = 71(CP()) ®E,
)

where 7(CP(¢)) is the tangent bundle over CP(¢). Therefore, by (7)), we
have

§(p(T)) =p(s*T) = p(r(CP(0)) ® &) = p(7(CP(¢)))p(E)
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Because 5% : H*(E(£)) — H*(CP(¢)) ~ Z[c]/ < ¢! > induces the isomor-
phism and 5* = (7*)~!, we have

P(T) = (L+ 7 (@) (1 + 27 (),
W(T) = (L+7 () (L + o ())F.

Hence, we have that

p(N2) = (1+2*) (1 + p*a*)",
w(Ny) = (1+2) (1 + pa),
by using t*o7*(c) = 7*(c) = z, (8) and (9). Thus, we have the characteristic
classes in Proposition
With a method similar to that demonstrated in the above proof of Propo-
Si':t?ilon for N3 = S2+1 x o1 S(C’;l @ R%2+1) | we can prove Proposition

4. MAIN THEOREM AND PRELIMINARY

In this section, we state the main theorem and prepare to prove it.

4.1. Main theorem. Before we state the main theorem, we prepare some
notations (also see [19]). A manifold M in the given family is said to be
cohomologically rigid if for any other manifold M’ in the family the ring
isomorphism H*(M;Z) ~ H*(M';Z) implies a homeomorphism M = M.
A manifold M in the given family is said to be rigid by the cohomology
ring and the Pontrjagin class (resp. the Stiefel-Whitney class) if for any
other manifold M’ in the family the ring isomorphism ¢ : H*(M;Z) ~
H*(M';Z) such that ¢(p(M)) = p(M') (resp. ¢p(w(M)) = w(M’)) implies a
homeomorphism M = M’. We remark that if M is cohomologically rigid in
the given family, then M is autmatically rigid by the cohomology ring and
the Pontrjagin class (and the Stiefel-Whitney class).
Now we may state the main theorem.

Theorem 4.1. All manifolds M € 9N satisfy one of the following three
properties.

(1) If M is cohomologically rigid in I, then M is one of the followings:
S x 1 P(Ch @ CR2);
S %1 S(Ch®R) ¢>1and k< ¢
S x5 S(CEaR) for k=0 (k> 1);
S? xg1 S(Chr @R M) for k= 0.

(2) If M is not cohomologically rigid but rigid by the cohomology ring
and the Pontrjagin class in MM, then M is one of the followings:

241 S((C’; @®R) for k>/0>1;
S x g1 S(CJr @ R*™HY) for 0> 1.



10 SUYOUNG CHOI AND SHINTARO KUROKI

(3) Otherwise, M is rigid by the cohomology ring and the Stiefel- Whitney
class in M and one of the followings:

$® xg1 S(CE@R) for k=51 (k> 1);
S® xg1 S(CH @ R*2H) for ky =5 1.

It is easy to show that the manifolds in 91 satisfy the two conditions in
Section [1] i.e., for all M € 9N,

(1) H™(M) = 0;
(2) M, M;’s and connected components of any multiple intersection of
M;’s are all simply connected,

where M;’s are characteristic submanifolds of M. Due to Theorem we
have that torus manifolds do not satisfy the cohomological rigidity even
if the above two conditions hold. This gives the negative answer to the
cohomological rigidity problem of torus manifolds (see [I5, Problem 1 and
Section 7]).

As a corollary of Theorem we have the followig result.

Corollary 4.2. Homeomorphism types of 9 are completely determined by
their cohomology rings, Pontrjagin classes and Stiefel- Whitney classes.

4.2. Preliminary. In this subsection, we prepare to prove Theorem
Due to the definition of N; € 9y, this manifold Ny is the projectify of
the vector bundle 7,,:

Chiths — G2 g1 (CJ' @ CF2) — CP(0).
Now we have

over CP(¢) where v is the canonical line bundle (E(y) = S%*!x ¢ C;) and C
is the trivial complex line bundle. Thus, 9%; consists of 2-stage generalized
Bott towers. Therefore, we may use the following theorem.

Theorem 4.3 ([2]). Top manifolds of 2-stage generalized Bott towers are
diffeomorphic if and only if their integral cohomology rings are isomorphic.

Due to the definition of Ny € My and N3 € M3, they are sphere bundles
over projective spaces CP(¢). Then (n—1)-sphere bundles over a complex K
are induced by mappings of K into some Grassmann manifold G,, = BO(n).
As is well known, they are one-to-one correspondence with the homotopy
classes (e.g. [20]).

Theorem 4.4. The problem of classifying the (n —1)-sphere bundles over a
complex K is equivalent to the problem of enumerating the homotopy classes
of maps of K in Gyiyy for any £ > dim K, where Gy, 1, is the Grassmann
manifold of oriented k-planes through the origin in a euclidean space of
dimension n.

Note that for M € M, H*(M) = Z[z,w]/ < 2+, f(x,w) >, where f is

a homogeneous polynomial and degz = 2 and w = y for Proposition [3.1] or
w = z for Proposition 3.2} [3:3] We list up for each case:

Proposition f(z, y) = y*2(y + px)*, degy = 2 for ky, ks € N;
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Proposition f(z, 2) = 2(2 + (p2)*), deg z = 2k for k € N;
Proposition f(z, 2) = 22, deg z = 2k + 2ky for kq, ks € N.
This implies that the cohomology ring determines ¢, deg w and deg f (remark
that £ > 1, degw > 2 and deg f > 4). The proof of Theorem is divided

into the following two cases corresponding with the degree of w:

CASE 1: degw = 2, i.e., 2-dimensional sphere bundle or complex
projective bundle;
CASE 2: degw > 2, i.e., the dimension of fibre is greater than 2;

moreover, we will divide CASE 2 into the following three cases corresponding
with £

CASE 2 (1): degw > 2 and ¢ > 4;

CASE 2 (2): degw > 2 and ¢ =2, 3;

CASE 2 (3): degw > 2 and ¢ = 1.

5. PROOF OF THE MAIN THEOREM

In this final section, we prove Theorem

51. CASE 1 : degw = 2. Assume degw = 2. Then this case is a 2-
dimensional sphere bundle or a complex projective bundle over CP () , i.e.,

N1 = SQEJ'_I X g1 P(Clgl D (Ck2) or
Ny = 821 x 41 S(C, @ R).

First, we prove this case is homeomorphic to a toric manifold. By using
H¥(N;) = 0 (i = 1,2,3) and Theorem 4.1 in [I3], we see that the torus
action on this manifold is locally standard. Moreover, the orbit space of this
torus action is a product of two simplicies. Therefore, we have that this case
is a quasitoric manifold. Consider the standard torus action on the following
toric manifolds:

(CHN\{0}) xc+ P(Ch & C*).

Then its orbit space and the characteristic matrix are same as Nj for all
ki,ko > 1 or Ny for k1 = ko = 1. Therefore, N1 and Ny are homeomorphic
to the above toric manifolds.

Moreover, this case has the same cohomology rings as a 2-stage generalized
Bott tower. Hence, by using [4, Theorem 1.6] and [2, Theorem 6.4] we also
see that this case is a 2-stage generalized Bott tower. Hence, by using
Theorem we have that this case satisfies the cohomological rigidity.

In summary, the following proposition holds.

Proposition 5.1. If the CASE 1 holds, i.e., degw = 2, then the manifold
in this case s cohomologically rigid in IN.

5.2. CASE 2 (1) : degw > 2 and ¢ > 4. Assume degw > 2 and ¢ > 4.
In this case, M must be in My or MNis.
Let M7 and Ms be in 9 (we will denote w = z). Without loss of gener-
ality,
M, = S((,Y®P1)EB]€11 @R2k12+1) and

My = S((,},®02)@k’21 @ R2/€22+1>
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for some kn, k‘gl € N and klz, kgg Z 0, where (kn, klg), (kgl, kQQ) 7é (1, 0)
because deg z(= degw) > 2. Assume

H*(My) = Zz1, z1)/ < 25t fi(z, 21) >
~ H*(Ms) = Zlxs, 2]/ < 25", fo(22,22) >,

where degx; = 2, deg z; = degw = 2k;; + 2k;o (i =1, 2) and

fi(xi, Zl) = ZZ(ZZ + (plxz)k“) for ki = 0;

filzi, z) = 22 for ki >0.
Let ¢ : H*(My) — H*(Mz>) be an isomorphism. By the degree assumptions,
we can easily show that

gb(xl) = :|:.%'2.

In order to classify topological types of this case, we divide this case into
the following three cases.

5.2.1. The case k1a, koo > 0. Assume k13, koo > 0. In this case, we can
easily show that

¢(Zl) = :|:Z2.

Due to ¢(z1) = £x9, the cohomology isomorphism induces the identity
of Pontrjagin classes, i.e., by using Propositions and

d(p(My)) = (1 +23) (1 + piz3)
= p(M) = (1+23)" (1 + p3a3)F=,

if and only if each coefficient of p;(M;) and p;j(Ms) (j = 1,..., 0 + ki +
ki2) are same. Hence, by taking different Pontrjagin classes, we can easily
construct the counter examples of the cohomological rigidity.

Assume coefficients of p;(M;) and p;(Ms) are same for all j =1,...,0+
ki1 + kio. Note that a:% # 0 in H*(M;) since ¢ > 4. Hence, by the above
arguments, we have every isomorphism ¢ preserves their Pontrjagin classes
and

o(p1 (M) = p1(Ma) & Kiipt = ka1p3,
oaa) =0t = ()0t = (7)o

Therefore, we can easily show that there are two cases; one is p; = p2 =
0 and the other is p; = £ps and k13 = ko1. Thus the vector bundle
(y®P1) R g R2k12tl anq (y®r2)M21 g R2k22H1 are isomorphic. This im-
plies that M7 and M are homeomorphic. Hence, in this case, we have that
if cohomology rings and coefficients of p;(M;) and p;(M>) are same then
My and Ms are homeomorphic. In other wards, if there is a graded ring
isomorphism ¢ : H*(M;) — H*(M3) such that ¢(p(M1)) = p(Mz) then M,
and M, are homeomorphic, i.e., this case is rigid by the cohomology ring
and the Pontrjagin class.
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5.2.2. The case k12 > 0 and kos = 0. Assume k12 > 0 and k9o = 0. Because
¢(x1) = +xe, we can put ¢(z1) = ax’zm + bzg, where b = +1. Using

#(21)% = 0, we have that
p2=0 or kop > /.

If ko1 > ¢, then we have ¢(z1) = £29 because xgﬂ = 0. This is the same
situation as the above case (Section . Therefore, it is sufficient to
consider the case po = 0 and ko1 < £ only. However, in this case, we also
have ¢(z1) = £29 and My is the trivial bundle. Hence, we can regard that
this case is same as the above case (Section .

5.2.3. The case k1o = koo = 0. Assume ki3 = 0 = kos.

If k11 > £ or koy > £, then we can easily show that ¢(z1) = £29. Therefore,
this case is rigid by the cohomology ring and the Pontrjagin class by using
the same argument in Section [5.2.1

Assume ki1, ko1 < L. Let ¢(z1) = axlgm + bz9, where b = +1. Then
k11 = ko1. Hence, by using the formula zi2 + zi(piz)Fr =0 (i = 1,2), we
have

¢(21(z1 + (prz1)™))
= (azk? 4 b2)? + (azh? 4 bzo)(£pr o)k
a2x§k21 + 2abx§212’2 + b2z§ + a(:l:pl)kmxgkzl + b(:tpl)lmlzgxg21

= a2x§k21 + 2abx§21z2 — 6222(,02:1:2)k21 + a(j:pl)kmﬂ;gk21 + b(ﬂ:pl)kaQCCng

= a:p%kzl(a + (£p1)k2r) + bx’;ng(Qa - b2p§21 + b(£p)*2) = 0.

If a = 0, then |p2| = |p1| by using the above equation. This implies that the
vector bundles (y®P1)®*11 R and (y®P2)®F21 @ R are same. It follows that

the manifold in this case is cohomologically rigid. If a # 0, then we have
a = —(+p1)* and

(b—2)(£p1)" = p5,

by using the above equation and b = +1. If b = —1, we can easily show that
this gives a contradiction to ko1 > 2 and p1, po € Z. Therefore, in this case
b=1 and |p1| = |p2|.- Hence, this case is also cohomologically rigid.

In summary, the following proposition holds.

Proposition 5.2. Let M = St x g1 S((CE @ R*2>41Y) for ky > 0, ky > 0.
If the CASE 2-(1) holds, i.e., 2ki + 2ko > 2 and £ > 4, then there are the
following two cases:
(1) M is cohomologically rigid in M < ko =0 and 1 < ky < ¢;
(2) M is rigid by the cohomology ring and the Pontrjagin class in 9 <
otherwise, i.e., ko >0, or ke =0 and k1 > £.

5.3. CASE 2 (2) : degw > 2 and ¢ = 2, 3. Assume degw > 2 and
¢ =2, 3. With a method similar to that demonstrated in CASE 2 (1), we
can put

M, = S((,}/@Pl)@k‘ll @R2k‘12+1) — 524-&-1 X g1 S(CIZF D R2k12+1) and
M2 — S((,y@pz)@kzl @R%QQ-H) _ SQZ-H X g1 S(Clp{}§1 ® R2k22+1)
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for some ]{311, kgl € N and klg, ]{322 2 0. Let ¢ . H*(Ml) — H*(MQ) be an
isomorphism. Then we also have that an isomorphic map ¢ satisfies

¢($1) = :|::L'2.

Similarly to the CASE 2 (1), we divide this case into the following three
cases: the case ks, koo > 0; the case k1o > 0, koo > 0; and the case
k12 = koo = 0.

Assume k2, koo > 0. Then we have ¢(z1) = £29. Using the similar
method demonstrated in Section [5.2.1] we may regard ¢(p1(M1)) = p1(Moa).
Hence, we have

o(p1(M1)) = p1(Mz) < ki1pT = k12p3.

Remark that in this case the second Pontrjagin class p» does not appear by
its cohomology ring structure (see Propositions and . So we will use
a KO-theoretical argument.

Because of [18], in this case (¢ = 2, 3) we have KO(CP*) ~ Z[y,]/ < y? >,
where y; = () — 2 for the canonical line bundle v and the realification map
r: K(CP% — KO(CP"). Moreover, we have r(y*") = n%y, +2 by [I8]. So,
we have that

r(Y) = pir(v) = 2p1+ 2, r(Y9P?) = par(7) — 22 + 2.
Because knp% = klgp% and ki1 + k12 = ko1 + koo, we have the following
equation:
kir(Y9P1) + 2k1a 4+ 1 =k (pir(v) — 2p7) + 2k11 + 2k1a + 1
= Kyo(037r(7) — 2p3) + 2ka1 + 2kog + 1 = kyor(y®P2) 4 2kog + 1.
Therefore, we have that

(7®p1)®k11 @ R2k12+1 =, (,.Y®p2)®k21 @ R2k22+1
& kiupt =kiops and  kip + ko = koy + koo,

where 1 =5 £ means 7 and £ are stably isomorphic. If 2k;; + 2k +1 > 2¢
(i = 1,2), these bundles are in the stable range; therefore, two bundles are
isomorphic (y®P1)®k g RZFzHl = (4®p2)0ka1 @y R2k22+1 - Otherwise, i.e.,
¢ =3, kjy = kig = 1, we can easily show that |p1| = |p2|; therefore, this
case also satisfies that y®°1 @ R? = v®P2 @ R3. This implies that the case
k12, koo > 0 is rigid by the cohomology ring and the Pontrjagin class.

Here we give some non-trivial examples.

Example 5.3. The following two manifolds are homeomorphic because
H*(My) ~ H*(M>) and pi(M;) = 427 and py(Ma) = 423 (z; € H*(M;)):

M, =8 xg1 S(CaRY); My =5 xg1 S(CIdRY).

The following manifold has the same cohomology ring as the above two
manifolds, but this manifold is not homeomorphic to the above manifolds
because p1 (M) = 16z for x € H?(M).

M = S" xg1 S(Ci®RY).
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For the other cases: the case k1o > 0, kos > 0; and the case ko = koo = 0,
we can get the same results as in Sections[5.2.2]and [5.2.3] by using the similar
argument in these section.

In summary, the following proposition holds.

Proposition 5.4. Let M = S x g1 S((Ckr @ R*2+1) for ky > 0, ky > 0.
If the CASE 2 (2) holds, i.e., £ = 2,3 and 2ki + 2ky > 2, then there are the
following two cases:
(1) M is cohomologically rigid in M < ke =0 and 1 < ky < ¢;
(2) M is rigid by the cohomology ring and the Pontrjagin class in MM <
otherwise, i.e., ko > 0, or ke =0 and k1 > £.

5.4. CASE 2 (3) : degw > 2 and ¢ = 1. Assume degw > 2 and ¢ = 1.
In this case, M must be in My or M3 (we will denote w = z). Thus M is
Sdegz_hundle over S?, i.e.,

M = 5% xg S(Ch+ @ R*2H)

for p € Z, k1 > 0 and k2 > 0, where (k1, k2) # (1,0) and deg z = 2k; + 2ks.
Moreover, for any given two manifolds in this case, if we fix their dimen-
sion, their cohomology rings are always same as H*(S59* x S2) because of
Propositions and Since mo(Gy,) = Zs, the homeomorphism type of
M is determined by wq(M) if k1 =2 1 by using Propositions and In
other words, the homeomorphism type of M is determined by p (mod 2).

If k1 =2 0, then S3 x g1 (C’;l @ R2¥2+1) ig trivial bundle because its Stiefel-
Whitney class is trivial. Hence, if k; =2 0 then M = Sdegz G2 This
implies that homeomorphism types of CASE 2 (3) are determined as follows:
if k1 =9 0, then this case is cohomologically rigid; if k&1 =2 1, then this case is
determined by the cohomology ring and the Stiefel-Whitney class. Moreover,
in the case k1 =5 1, we can easy to show that every cohomology graded ring
isomorphism preserves Stiefel-Whitney classes. This implies that the case
k1 =2 1 is rigid by the cohomology ring and the Stiefel-Whitney class.

In summary, the following proposition holds.

Proposition 5.5. Let M = S**! x g1 S((CE @ R*2+1Y) for ky > 0, ky > 0.
If the CASE 2 (3) holds, i.e., { =1 and 2k; + 2ko > 2, then there are the
following two cases:
(1) M is cohomologically rigid in M < k; =2 0;
(2) M is rigid by the cohomology ring and the Stiefel-Whitney class in
M < k=5 1.
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