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Abstract. In this paper, the memory type boundary stabilization for an Euler-Bernoulli beam
with one end fixed and control at the other end is considered. We prove the existence of solutions
using the Galerkin method and then investigate the exponential stability of solutions by using
multiplier technique.

1. Introduction

In this paper, we consider the following Euler-Bernoulli beam with memory which has one

end fixed and control input at the other end:

ytt(x, t) + yxxxx(x, t)−
∫ t

0
κ(t− τ)yxxxx(x, τ)dτ + g(yt(x, t)) = 0, (1.1)

x ∈ (0, L), t ≥ 0,

y(0, t) = yx(0, t) = yxx(L, t) = 0, t ≥ 0,

yxxx(L, t)−
∫ t

0
κ(t− τ)yxxx(L, τ)dτ = u(t)− θ̃ sin t, t ≥ 0,

y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ (0, L),

yout(t) = yt(L, t), t ≥ 0,

where κ represents the kernel of memory term, g : R → R is a given function, θ̃ is a positive

constant, u : R+ → R is the boundary control force applied at the free end of the beam and

yout(t) stands for the measured signal of the system at time t. System (1.1) describes the

transverse vibration of an extensible beam clamped at x = 0 and supported at x = L by a

control force. The advantage of the adaptive stabilization is that stabilization and good control

performance can be automatically achieved even in the presence of various types of uncertainty.

In this paper, we consider the stabilization of the system (1.1). To this end, we design the
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following adaptive output feedback controller:

u(t) = h(t)yt(L, t) + θ(t) sin t, t ≥ 0, (1.2)

ht(t) = ry2
t (L, t), h(0) = h0 > 0, t ≥ 0, r > 0,

θt(t) = yt(L, t) sin t, θ(0) = θ0, t ≥ 0,

where θ0 is the initial condition of the estimator.

Under this adaptive controller, the closed-loop system (1.1) becomes

ytt(x, t) + yxxxx(x, t)−
∫ t

0
κ(t− τ)yxxxx(x, τ)dτ + g(yt(x, t)) = 0, (1.3)

x ∈ (0, L), t ≥ 0,

y(0, t) = yx(0, t) = yxx(L, t) = 0, t ≥ 0,

yxxx(L, t)−
∫ t

0
κ(t− τ)yxxx(L, τ)dτ = h(t)yt(L, t) + [θ(t)− θ̃] sin t, t ≥ 0,

y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ (0, L),

ht(t) = ry2
t (L, t), h(0) = h0 > 0, t ≥ 0, r > 0,

θt(t) = yt(L, t) sin t, θ(0) = θ0.

The energy of the system (1.3) is given by

E(t) =
1
2

∫ t

0
(y2

t (x, t) + y2
xx(x, t))dx.

Ma [12, 13] studied the boundary stabilization for a nonlinear beam on elastic bearings without

memory and boundary output feedback control. The existence and uniform decay of solutions

for an Euler-Bernoulli beam with memory was consider by Park and Kim [14]. Also, the Euler-

Bernoulli beam equation with memory and boundary output feedback control was studied by

Park, Kang and Kim [15]; they proved the existence and exponential stability of solutions for

the following system:

ytt(x, t) + yxxxx(x, t)−
∫ t

0
κ(t− τ)yxxxx(x, τ)dτ + g(yt(x, t)) = 0, (1.4)

x ∈ (0, L), t ≥ 0,

y(0, t) = yx(0, t) = yxx(L, t) = 0, t ≥ 0,

yxxx(L, t)−
∫ t

0
κ(t− τ)yxxx(L, τ)dτ = h(t)yt(L, t), t ≥ 0,

y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ (0, L),

ht(t) = ry2
t (L, t), h(0) = h0 > 0, t ≥ 0, r > 0.
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Conrad and Omër [3] proved the existence and uniform decay for a flexible beam with a tip mass.

The boundary stabilization and boundary controllability for the beams were consider by authors

[1, 2, 4-6, 9-11, 16, 18]. Guo and Luo [8] studied the stabilization and parameter estimation for

a flexible-beam vibration with gain adaptive direct strain feedback control. Recently, Guo and

Guo [7] consider the adaptive stabilization for a Kirchhoff-type nonlinear beam under boundary

output feedback control. Also, Ryabenkii, Utyuzhnikov and Turan [17] prove the stabilization

using by difference potential theory under active noise control.

Motivated by [15] and some idea in [7], we can obtain our main results. The objective of

this paper is to study of the stabilization for a more general Euler-Bernoulli beam with memory

under boundary output feedback control. Our choice of boundary feedback is motivated by the

fact that boundary controls are easily implemented as the need to act only on the boundary

of the spatial domain. This paper is organized as follows. In Section 2, using a constructive

Galerkin approximation scheme, we show the existence and uniqueness of the solution for the

system (1.3). The exponential decay that is dependent on the initial data is obtained in Section

3 by making use of the multiplier technique.

2. Existence Result

In this section we prepare some notation and hypotheses which will be needed in the proof

of our result. Let L2(0, L) be the usual Hilbert space with the inner product (·, ·) and the inner

product induced norm ‖·‖. Throughout this paper, we define V = {y ∈ H2(0, L)|y(0) = yx(0) =

0} equipped with the norm ‖y‖V = ‖yxx‖, W = {y ∈ V ∩H4(0, L)|yxx(L) = 0} equipped with

the norm ‖y‖W = ‖yxx‖ + ‖yxxxx‖ and (u, v) =
∫ L
0 u(x)v(x)dx. From the Poincaré inequality,

it follows that ‖ · ‖V and ‖ · ‖W are equivalent to the stand norms of H2(0, L) and H4(0, L),

respectively. Now, we state the following hypotheses which will be assumed in this paper.

(H1) For any y0 ∈W, y1 ∈ V ,

yxxxx(x, 0) + g(y1) = 0, x ∈ (0, L), (2.1)

y(0, 0) = yx(0, 0) = yxx(L, 0) = 0,

yxxx(L, 0) = h0yt(L, 0).
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(H2) Let g : R → R be a continuously differentiable function and there exists a positive

constant µ such that

g(0) = 0, (g(r)− g(s))(r − s) ≥ µ|r − s|2, r, s ∈ R. (2.2)

(H3) Let the function κ : R+ → R+ be a positive and bounded C2-function such that

` = 1−
∫ ∞

0
κ(r)dr > 0 (2.3)

and for some positive mi, i = 0, 1, 2

−m0κ(t) ≤ κt(t) ≤ −m1κ(t), ∀t ≥ 0, (2.4)

0 ≤ κtt(t) ≤ m2κ(t), ∀t ≥ 0.

Considering the above hypotheses we have the following existence result by Galerkin method.

Theorem 2.1. Let y0 ∈ W, y1 ∈ V. Suppose that (H1), (H2) and (H3) are satisfied, then the

problem (1.3) has a unique solution y in the sense that for any time T > 0,

y ∈ L∞(0, T ;W ), yt ∈ L∞(0, T ;V ), ytt ∈ L∞(0, T ;L2(0, L)), (2.5)

h ∈ C1[0, T ], θ ∈ C1[0, T ],

ytt(x, t) + yxxxx(x, t)−
∫ t

0
κ(t− τ)yxxxx(x, τ)dτ + g(yt(x, t)) = 0 in L2(0, T ;L2(0, L)),

y(0, t) = yx(0, t) = yxx(L, t) = 0, t ≥ 0,

yxxx(L, t)−
∫ t

0
κ(t− τ)yxxx(L, t)dx = h(t)yt(L, t) + [θ(t)− θ̃] sin t, t ≥ 0,

y(x, 0) = y0(x), yt(x, t) = y1(x), x ∈ (0, L),

ht(t) = ry2
t (L, t), t ≥ 0, h(0) = h0 > 0, r > 0,

θt(t) = yt(L, t) sin t, t ≥ 0, θ(0) = θ0.

By the Sobolev embedding theorem, it follows that y ∈ C((0, L)× [0, T ]).

Proof. Let us solve the variational problem with (2.5) which is given by: find y(t) ∈ V such

that

(ytt(t), w) + (yxx(t), wxx)−
∫ t

0
κ(t− τ)(yxx(τ), wxx)dτ + (g(yt(t)), w) (2.6)

+{h(t)yt(L, t) + (θ(t)− θ̃) sin t}w(L) = 0 for all w ∈ V.
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Let {wj} be a complete orthogonal system of V for which {y0, y1} ∈ Span{w1, w2}. For each

m ∈ N, we denote Vm = Span{w1, w2, · · · , wm}. We search for a function

ym(t) =
m∑

j=1

kj(t)wj

such that for any w ∈ Vm, it satisfies the approximate equation

(ym
tt (t), w) + (ym

xx(t), wxx)−
∫ t

0
κ(t− τ)(ym

xx(τ), wxx)dτ + (g(ym
t (t)), w) (2.7)

+{hm(t)ym
t (L, t) + (θm(t)− θ̃) sin t}w(L) = 0,

hm
t (t) = r

[ m∑
j=1

kj
t (t)w

j(L)
]2

= r[ym
t (L, t)]2,

θm
t (t) =

[ m∑
j=1

kj
t (t)w

j(L)
]
sin t = ym

t (L, t) sin t,

hm(0) = h0 > 0, θm(0) = θ0,

ym(0) = y0m → y0 in W, ym
t (0) = y1m → y1 in V.

By standard methods in differential equations, we can prove the existence of a solution to (2.7)

on some interval, (0, tm), where tm = ∞ by using the first estimate below. In order to prove the

Theorem 2.1 it suffices to prove the following a priori estimates.

Estimate I. Replacing w by ym
t in (2.7), we have

1
2
d

dt

(
‖ym

t (t)‖2 + ‖ym
xx(t)‖2

)
+ (g(ym

t (t)), ym
t (t)) (2.8)

=
d

dt

( ∫ t

0
κ(t− τ)(ym

xx(τ), ym
xx(t))dτ

)
−

∫ t

0
κt(t− τ)(ym

xx(τ), ym
xx(t))dτ

−κ(0)‖ym
xx(t)‖2 − {hm(t)[ym

t (L, t)]2 + [θm(t)− θ̃] sin t · ym
t (L, t)}.

By hypotheses (2.4) and Cauchy-Schwartz inequality, we deduce that

∣∣∣ ∫ t

0
κt(t− τ)(ym

xx(τ), ym
xx(t))dτ

∣∣∣ ≤ ‖ym
xx(t)‖

∫ t

0
|κt(t− τ)|‖ym

xx(τ)‖dτ (2.9)

≤ m2
0

2
‖ym

xx(t)‖2 +
1
2

( ∫ t

0
κ(t− τ)‖ym

xx(τ)‖dτ
)2

≤ m2
0

2
‖ym

xx(t)‖2 +
1
2
‖κ‖L1(0,∞)

∫ t

0
κ(t− τ)‖ym

xx(τ)‖2dτ.
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Integrating (2.8) over (0, t) and using (2.2) and (2.9), we obtain

‖ym
t (t)‖2 + ‖ym

xx(t)‖2 +
1
r
[hm(t)]2 + [θm(t)− θ̃]2 + 2µ

∫ t

0
‖ym

t (τ)‖2dτ (2.10)

≤ ‖ym
t (0)‖2 + ‖ym

xx(0)‖2 +
1
r
[hm(0)]2 + [θ0 − θ̃]2 + 2

∫ t

0
κ(t− τ)(ym

xx(τ), ym
xx(t))dτ

+
(
m2

0 + ‖κ‖2
L1(0,∞) − 2κ(0)

) ∫ t

0
‖yxx(τ)‖2dτ.

Using Schwartz inequality and Young’s inequality, we get

∣∣∣ ∫ t

0
κ(t− τ)(ym

xx(τ), ym
xx(t))dτ

∣∣∣ ≤ ‖ym
xx(t)‖‖κ‖

1
2

L1(0,∞)

( ∫ t

0
κ(t− τ)‖ym

xx(τ)‖2dτ
) 1

2 (2.11)

≤ 1
8
‖ym

xx(t)‖2 + 2‖κ‖L1(0,∞)‖κ‖L∞(0,∞)

∫ t

0
‖ym

xx(τ)‖2dτ.

Combining the inequality (2.10), (2.11) and applying Gronwall’s Lemma, we see the first esti-

mate:

‖ym
t (t)‖2 + ‖ym

xx(t)‖2 +
1
r
[hm(t)]2 + [θm(t)− θ̃]2 ≤M1, (2.12)

where M1 > 0 depends on the initial data y0, y1, h0, θ0.

From this, we obtain ym
t (L, t) ∈ L∞(0,∞). Therefore, the approximate solution can be ex-

tended to the whole interval [0, T ], where T = ∞.

Estimate II. First of all, we estimate the L2-norm of ym
tt (0). Considering t = 0 and w = ym

tt (0)

in (2.7), then we get

‖ym
tt (0)‖2 + (ym

xx(0), ym
xxtt(0)) + (g(ym

t (0)), ym
tt (0)) + h0y

m
t (L, 0)ym

tt (L, 0) = 0.

Since the compatibility condition (H1), we obtain

(ym
xx(0), ym

xxtt(0)) = ym
xx(L, 0)ym

xtt(L, 0)− ym
xx(0, 0)ym

xtt(0, 0)− ym
xxx(L, 0)ym

tt (L, 0)

+ym
tt (0, 0)ym

xxx(0, 0) + (ym
xxxx(0), ym

tt (0))

= −h0y
m
t (L, 0)ym

tt (L, 0)− (g(ym
t (0)), ym

tt (0)).

Therefore, from above inequality, there exists the following result

‖ym
tt (0)‖ = 0. (2.13)
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Finally, differentiating (2.7) and writing the equation with w = ym
tt (t), we have

1
2
d

dt
(‖ym

tt (t)‖2 + ‖ym
xxt(t)‖2) + κ(0)‖ym

xxt(t)‖2 + (g′(ym
t (t))ym

tt (t), ym
tt (t)) (2.14)

+
(
r[ym

t (L, t)]3 + hm(t)ym
tt (L, t)

)
ym

tt (L, t) +
(
ym

t (L, t)sin2t+ (θm(t)− θ̃) cos t
)
ym

tt (L, t)

=
d

dt

( ∫ t

0
κt(t− τ)(ym

xx(τ), ym
xxt(t))dτ

)
−

∫ t

0
κtt(t− τ)(ym

xx(τ), ym
xxt(t))dτ

−κt(0)(ym
xx(t), ym

xxt(t)) + κ(0)
d

dt
(ym

xx(t), ym
xxt(t)).

From hypotheses (2.4), we deduce that∣∣∣ ∫ t

0
κtt(t− τ)(ym

xx(τ), ym
xxt(t))dτ

∣∣∣ (2.15)

≤ m2
2

2
‖yxxt(t)‖2 +

1
2
‖κ‖L1(0,∞)

∫ t

0
κ(t− τ)‖ym

xx(τ)‖2dτ.

Since g ∈ C1(R) and ym
t (t) is bounded by (2.12), there exists C1 > 0 depends on the initial

datas y0, y1, h0, θ0 such that

|(g′(ym
t (t))ym

tt (t), ym
tt (t))| ≤ C1‖ym

tt (t)‖2. (2.16)

Using (2.13), (2.15) and (2.16), we integrate (2.14) over (0, t) to obtain

1
2
‖ym

tt (t)‖2 +
1
2
‖ym

xxt(t)‖2 + κ(0)
∫ t

0
‖ym

xxt(τ)‖2dτ +
r

4
[ym

t (L, t)]4 (2.17)

≤ C2 +
m2

2

2

∫ t

0
‖ym

xxt(τ)‖2dτ +
1
2
‖κ‖2

L1(0,∞)

∫ t

0
‖ym

xx(τ)‖2dτ + C1

∫ t

0
‖ym

tt (τ)‖2dτ

+κ(0)(ym
xx(t), ym

xxt(t))− κt(0)
∫ t

0
(ym

xx(τ), ym
xxt(τ))dτ +

∫ t

0
κt(t− τ)(ym

xx(τ), ym
xxt(t))dτ

+
r

4
[ym

t (L, 0)]4 −
∫ t

0
hm(τ)[ym

tt (L, τ)]2dτ − 1
2
[ym

t (L, t)]2 sin2 t+
1
2

∫ t

0
[ym

t (L, τ)]2 sin 2τdτ

−ym
t (L, t)[θm(t)− θ̃] cos t+ ym

t (L, 0)[θ0 − θ̃] +
∫ t

0
ym

t (L, τ){ym
t (L, τ) sin τ cos τ

−[θm(τ)− θ̃] sin τ}dτ,

where C2 > 0 depends on the initial data y0, y1, h0.

Now, since (2.4), for any η > 0 we see that

|κ(0)(ym
xx(t), ym

xxt(t))| ≤
(κ(0))2

4η
‖ym

xx(t)‖2 + η‖ym
xxt(t)‖2, (2.18)

∣∣∣κt(0)
∫ t

0
(ym

xx(τ), ym
xxt(τ))dτ

∣∣∣ ≤ m2
0(κ(0))2

4η

∫ t

0
‖ym

xx(τ)‖2dτ + η

∫ t

0
‖ym

xxt(τ)‖2dτ (2.19)
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and

∣∣∣ ∫ t

0
κt(t− τ)(ym

xx(τ), ym
xxt(t))dτ

∣∣∣ (2.20)

≤ m2
0

4η
‖κ‖L1(0,∞)‖κ‖L∞(0,∞)

∫ t

0
‖ym

xx(τ)‖2dτ + η‖ym
xxt(t)‖2.

From the inequality ab ≤ δ1a
2+ 1

4δ1
b2, δ1 > 0 and the Sobolev embedding theorem ‖yt(L, t)‖2 ≤

δ2‖yxxt(t)‖2, δ2 > 0, we deduce

∣∣∣− 1
2
[ym

t (L, t)]2 sin2 t− ym
t (L, t)[θm(t)− θ̃] cos t

∣∣∣ (2.21)

≤ δ1[ym
t (L, t)]2 sin2 t+ δ1[ym

t (L, t)]2 cos2 t+
1

4δ1
[θm(t)− θ̃]2

≤ δ̃1‖ym
xxt(t)‖2 +

1
4δ1

[θm(t)− θ̃]2, where δ̃1 = δ1δ2

and using Young’s inequality we obtain

∣∣∣ ∫ t

0
ym

t (L, τ){ym
t (L, τ) sin τ cos τ − [θm(τ)− θ̃] sin τ}dτ

∣∣∣ (2.22)

≤
∫ t

0
[ym

t (L, τ)]2dτ +
1
2

∫ t

0
[θm(τ)− θ̃]2dτ

≤ hm(t)
r

− h0

r
+

1
2

∫ t

0
[θm(τ)− θ̃]2dτ.

Thus from (2.17)-(2.22), we have

1
2
‖ym

tt (t)‖2 +
1
2
‖ym

xxt(t)‖2 + κ(0)
∫ t

0
‖ym

xxt(τ)‖2dτ +
r

4
[ym

t (L, t)]4 (2.23)

≤ C2 + C1

∫ t

0
‖ym

tt (τ)‖2dτ +
(κ(0))2

4η
‖ym

xx(t)‖2 +
(m2

2

2
+ η

) ∫ t

0
‖ym

xxt(τ)‖2dτ + 2η‖ym
xxt(t)‖2

+
(1
2
‖κ‖2

L1(0,∞) +
m2

0(κ(0))2

4η
+
m2

0

4η
‖κ‖L1(0,∞)‖κ‖L∞(0,∞)

) ∫ t

0
‖ym

xx(τ)‖2dτ +
r

4
[ym

t (L, 0)]4

−
∫ t

0
hm(τ)[ym

tt (L, τ)]2dτ − 1
2
[ym

t (L, t)]2 sin2 t+
1
2

∫ t

0
[ym

t (L, τ)]2 sin 2τdτ

−ym
t (L, t)[θm(t)− θ̃] cos t+ ym

t (L, 0)[θ0 − θ̃]

+
∫ t

0
ym

t (L, τ){ym
t (L, τ) sin τ cos τ − [θm(τ)− θ̃] sin τ}dτ
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≤ C2 + C1

∫ t

0
‖ym

tt (τ)‖2dτ +
(κ(0))2

4η
‖ym

xx(t)‖2 +
(m2

2

2
+ η

) ∫ t

0
‖ym

xxt(τ)‖2dτ + 2η‖ym
xxt(t)‖2

+
(1
2
‖κ‖2

L1(0,∞) +
m2

0(κ(0))2

4η
+
m2

0

4η
‖κ‖L1(0,∞)‖κ‖L∞(0,∞)

) ∫ t

0
‖ym

xx(τ)‖2dτ +
r

4
[ym

t (L, 0)]4

+
3hm(t)

2r
+ δ̃1‖ym

xxt(t)‖2 +
1

4δ1
[θm(t)− θ̃]2 +

1
2
[ym

t (L, 0)]2

+
1
2
[θ0 − θ̃]2 +

1
2

∫ t

0
[θm(τ)− θ̃]2dτ − 3h0

2r
.

From the inequalities (2.12) and (2.23)and choosing η > 0 sufficiently small, we get

1
2
‖ym

tt (t)‖2 +
(1
2
− δ̃1

)
‖ym

xxt(t)‖2 + κ(0)
∫ t

0
‖ym

xxt(τ)‖2dτ +
r

4
[ym

t (L, t)]4

≤ C3 + C1

∫ t

0
‖ym

tt (τ)‖2dτ +
(m2

2

2
+ η

) ∫ t

0
‖ym

xxt(τ)‖2dτ,

where C3 > 0 depends on the initial data y0, y1, h0, θ0.

Taking δ̃1 with 1
2 − δ̃1 > 0 and using of Gronwall’s Lemma, we have the second estimate:

‖ym
tt (t)‖2 + ‖ym

xxt(t)‖2 + r[ym
t (L, t)]4 ≤M2, (2.24)

where M2 depends on the initial data y0, y1, h0, θ0.

Analysis of the Nonlinear Terms. By estimates (2.12) and (2.24), we deduce that

{ym} is bounded in L∞(0, T ;V ), (2.25)

{ym
t } is bounded in L∞(0, T ;V ),

{ym
tt } is bounded in L∞(0, T ;L2(0, L)),

{ym
t (L, t)} is bounded in L2(0, T ),

{hm} is bounded in L∞(0, T ),

{hm
t } = {r(ym

t (L, t))2} is bounded in L∞(0, T ),

{θm} is bounded in L∞(0, T ),

{θm
t } = {ym

t (L, t) sin t} is bounded in L∞(0, T ).



10 JONG YEOUL PARK1, YONG HAN KANG2 AND JUNG AE KIM3

Therefore, there exists a subsequence of {ym}, still denoted by {ym} such that

ym → y weakly star in L∞(0, T ;V ), (2.26)

ym
t → yt weakly star in L∞(0, T ;V ),

ym
tt → ytt weakly star in L∞(0, T ;L2(0, L)),

ym
t (L, t) → yt(L, t) weakly in L2(0, T ),

hm → h weakly star in L∞(0, T ),

hm
t → ht weakly star in L∞(0, T ),

θm → θ weakly star in L∞(0, T ).

Due to the compact embedding V ↪→ L2(0, L), we can get a subsequence such that

ym
t → yt strongly in L2(0, T ;L2(0, L)). (2.27)

From (H2) and (2.27), we get

g(ym
t ) → g(yt) a.e. in x ∈ (0, L), t > 0. (2.28)

From the above convergence and due to the boundedness of the sequence {g(ym
t )} in L2(0, T ;L2(Ω)),

we conclude by Lion’s Lemma that

g(ym
t ) → g(yt) weakly in L2(0, T ;L2(Ω)).

Moreover, by the Sobolev embedding theorem and (2.26), we see that h ∈ C1[0, T ] and hm(t)ym
t (L, t) →

h(t)yt(L, t) weakly in L2(0, T ).

We also derive that

θ ∈ C1[0, T ] and θm(t) sin t→ θ(t) sin t weakly in L2(0, T ).

The above convergence are sufficient to pass to the limit in the nonlinear terms of (2.7). Then

it is a matter of routin to deduce the existence of global solutions in [0, T ]. The uniqueness can

be proved by the straightforward methods and Gronwall’s inequality.

3. Exponential Stability

Having established global existence of solution to (1.1), we focus our attention on exponential

decay that can be obtained for the energy function.
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We define the energy E(t) of problem (1.1) by E(t) = 1
2‖yt(t)‖2 + 1

2‖yxx(t)‖2. Then the

derivative of the energy is given by

Et(t) = −(g(yt(t)), yt(t))+
∫ t

0
κ(t−τ)(yxx(τ), yxxt(τ))dτ−h(t)(yt(L, t))2−[θ(t)− θ̃] sin t·yt(L, t).

Defining

(κ2yxx)(t) =
∫ t

0
κ(t− τ)‖yxx(τ)− yxx(t)‖2dτ. (3.1)

By simple computation, we obtain

(κ2yxx)t(t) = (κt2yxx)(t)− 2
∫ t

0
κ(t− τ)(yxx(τ), yxxt(t))dτ (3.2)

+
d

dt

(
‖yxx(t)‖2

∫ t

0
κ(τ)dτ

)
− κ(t)‖yxx(t)‖2.

From (3.2), we see that∫ t

0
κ(t− τ)(yxx(τ), yxxt(t))dτ (3.3)

= −1
2
(κ2yxx)t(t) +

1
2
(κt2yxx)(t) +

1
2
d

dt

(
‖yxx(t)‖2

∫ t

0
κ(τ)dτ

)
− 1

2
κ(t)‖yxx(t)‖2.

Define the modified energy by

e(t) =
1
2
‖yt(t)‖2 +

1
2
(κ2yxx)(t) +

1
2

(
1−

∫ t

0
κ(τ)dτ

)
‖yxx(t)‖2 (3.4)

+
1
2
[θ(t)− θ̃]2.

Then, from (3.3) and (3.4) we obtain

et(t) = −(g(yt(t)), yt(t)) +
1
2
(κt2yxx)(t)− 1

2
κ(t)‖yxx(t)‖2 − h(t)(yt(L, t))2 (3.5)

≤ −(g(yt(t)), yt(t))−
m1

2
(κ2yxx)(t)− 1

2
κ(t)‖yxx(t)‖2 − h(t)(yt(L, t))2 ≤ 0, ∀t ≥ 0.

We observe that in view of hypotheses (2.3) and (2.4), we see that e(t) ≥ 0 and E(t) ≤ `−1e(t).

Therefore it is enough to obtain the desired exponential stability for the modified energy e(t)

which will be done below. In order to carry the proof of Theorem 3.2, we need the following

Theorem 3.1.

Theorem 3.1. Let y be the solution given by Theorem 2.1 and e(t) be defined by (3.4), then we

have

lim
t→∞

e(t) = 0, lim
t→∞

h(t) ≤
√

2re(0) + (h(0))2 ,

h(t) ≤
√

2re(0) + (h(0))2, ∀t ≥ 0.
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Now, we define the perturbed energy by

eε(t) = e(t) + εψ(t), where ψ(t) = δ

∫ t

0
y(x, t)yt(x, t)dx with 0 < δ <

1
2
. (3.6)

Then, we obtain the following two propositions.

Proposition 3.1. There exists C
′
1 > 0 such that

|eε(t)− e(t)| ≤ εC
′
1e(t), ∀t ≥ 0 and ∀ε > 0. (3.7)

Proof. The proof of this Proposition is the same the proof of [15, Proposition 3.1], so we will

omit this proof. 2

Proposition 3.2. There exist positive constants C ′2, C ′3 and C ′4 such that
d

dt
eε(t) ≤ −εC ′2e(t) + εC ′3(1 + h(t))(y(L, t))2 + εC ′4[θ(t)− θ̃]2, ∀t ≥ 0 and ∀ε ∈ [0, ε1].

Proof. Using (1.1), we deduce that

d

dt
ψ(t) = δ

∫ L

0
y2

t (t)dx+ δ

∫ L

0
y(t)ytt(t)dx (3.8)

= δ

∫ L

0
(yt(t))2dx+ δ

∫ t

0
y(t)(−yxxxx(t))dx+ δ

∫ L

0
y(t)

( ∫ t

0
κ(t− τ)yxxxx(τ)dτ

)
dx

−δ
∫ L

0
y(t)g(yt(t))dx.

By y(0, t) = yx(0, t) = yxx(L, t) = 0 and y ∈ L∞(0, T ;W ), we have the following two inequality∫ L

0
y(t)(−yxxxx(t))dx = −y(L, t)yxxx(L, t) +

∫ L

0
yx(t)yxxx(t)dx

= −y(L, t)yxxx(L, t) + yx(L, t)yxx(L, t)−
∫ L

0
(yxx(t))2dx

= −y(L, t)yxxx(L, t)−
∫ L

0
(yxx(t))2dx

and ∫ L

0
y(t)

( ∫ t

0
κ(t− τ)yxxxx(τ)dτ

)
dx

= y(L, t)
( ∫ t

0
κ(t− τ)yxxx(L, τ)dτ

)
−

∫ L

0
yx(t)

( ∫ t

0
κ(t− τ)yxxx(τ)dτ

)
dx

= y(L, t)
( ∫ t

0
κ(t− τ)yxxx(L, τ)dτ

)
− yx(L, t)

( ∫ t

0
κ(t− τ)yxx(L, τ)dτ

)
+

∫ L

0
yxx(t)

( ∫ t

0
κ(t− τ)yxx(τ)dτ

)
dx

= y(L, t)
( ∫ t

0
κ(t− τ)yxxx(L, τ)dτ

)
+

∫ L

0
yxx(t)

( ∫ t

0
κ(t− τ)yxx(τ)dτ

)
dx.
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Thus, from (3.8) we get

d

dt
ψ(t) = δ

∫ t

0
(yt(t))2dx− δy(L, t)

[
yxxx(L, t)−

∫ t

0
κ(t− τ)yxxx(L, τ)dτ

]
(3.9)

−δ
∫ L

0
(yxx(t))2dx+ δ

∫ L

0
yxx(t)

( ∫ t

0
κ(t− τ)yxx(τ)dτ

)
dx− δ

∫ L

0
y(t)g(yt(t))dx.

From the assumptions on g, Young’s inequality and Sobolev imbedding theorem, we see that

δ
∣∣∣ ∫ t

0
y(t)g(yt(t))dx

∣∣∣ ≤M ′
1‖yt(t)‖2 +M ′

2‖yxx(t)‖2, (3.10)

where M ′
1 and M ′

2 are some positive constants.

Moreover, for any η > 0, from Fubini’s theorem, we have∫ L

0
yxx(t)

( ∫ t

0
κ(t− τ)yxx(τ)dτ

)
dx (3.11)

=
∫ t

0
κ(t− τ)

( ∫ L

0
yxx(τ)yxx(t)dx

)
dτ

=
∫ t

0
κ(t− τ)

( ∫ L

0
(yxx(τ)− yxx(t))yxx(t)dx

)
dτ +

∫ t

0
κ(t− τ)

( ∫ L

0
(yxx(t))2dx

)
dτ

≤ η‖yxx(t)‖2 +
1
4η

∫ t

0

∫ L

0
(κ(t− τ))2(yxx(τ)− yxx(t))2dxdτ +

∫ t

0
κ(τ)

( ∫ L

0
(yxx(t))2dx

)
dτ

≤ η‖yxx(t)‖2 +
1
4η
‖κ‖L∞(0,∞)(κ2yxx)(t) +

∫ t

0
κ(τ)dτ‖yxx(t)‖2.

Combining (3.9)-(3.11), we obtain

d

dt
ψ(t) ≤ δ

∫ L

0
(yt(t))2dx− δy(L, t)

[
yxxx(L, t)−

∫ t

0
κ(t− τ)yxxx(L, τ)dτ

]
(3.12)

−δ
∫ t

0
(yxx(t))2dx+M ′

1‖yt(t)‖2 +M ′
2‖yxx(t)‖2 + ηδ‖yxx(t)‖2

+
δ

4η
‖κ‖L∞(0,∞)(κ2yxx)(t) + δ

∫ t

0
κ(τ)dτ‖yxx(t)‖2

≤ (δ +M ′
1)‖yt(t)‖2 − δy(L, t)[h(t)yt(L, t) + (θ(t)− θ̃) sin t]

+
(
M ′

2 + ηδ + δ

∫ t

0
κ(τ)dτ − δ

)
‖yxx(t)‖2 +

δ

4η
‖κ‖L∞(0,∞)(κ2yxx)(t)

= −δe(t) +
(
M ′

1 +
3
2
δ
)
‖yt(t)‖2 +

(
M ′

2 + ηδ +
δ

2

∫ t

0
κ(τ)dτ − δ

2

)
‖yxx(t)‖2

+
(δ
2

+
δ

4η
‖κ‖L∞(0,∞)

)
(κ2yxx)(t)− δy(L, t)[h(t)yt(L, t) + (θ(t)− θ̃) sin t]

+
δ

2
[θ(t)− θ̃]2.
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On the other hand, from (2.2), (3.5), (3.6) and (3.12), we get

d

dt
eε(t) =

d

dt
e(t) + ε

d

dt
ψ(t) (3.13)

= −(g(yt(t)), yt(t))−
m1

2
(κ2yxx)(t)− 1

2
κ(t)‖yxx(t)‖2 − h(t)(yt(L, t))2

−εδe(t) + ε
(
M ′

1 +
3
2
δ
)
‖yt(t)‖2 + ε

(
M ′

2 + ηδ +
δ

2

∫ t

0
κ(τ)dτ − δ

2

)
‖yxx(t)‖2

+ε
(δ
2

+
δ

4η
‖κ‖L∞(0,∞)

)
(κ2yxx)(t)− εδy(L, t)[h(t)yt(L, t) + (θ(t)− θ̃) sin t]

+
εδ

2
[θ(t)− θ̃]2

≤ −εδe(t)−
(
µ− ε

(
M ′

1 +
3
2
δ
))
‖yt(t)‖2 −

(m1

2
− ε

(δ
2

+
δ

4η
‖κ‖L∞(0,∞)

))
(κ2yxx)(t)

−
(1
2
κ(t)− ε

(
M ′

2 + ηδ +
δ

2

∫ t

0
κ(τ)dτ − δ

2

))
‖yxx(t)‖2 − h(t)

(
1− δε

2

)
(yt(L, t))2

+
εδ

2
(1 + h(t))(y(L, t))2 + εδ[θ(t)− θ̃]2.

Now, we define

ε1 = min
{ 2µ

2M ′
1 + 3δ

,
2m1η

δ(2η + ‖κ‖L∞(0,∞))
,

κ(t)
2M ′

2 + 2ηδ + δ
∫ t
0 κ(τ)dτ − δ

,
2
δ

}
. (3.14)

Considering ε ∈ [0, ε1] and choosing δ > 0 such that (2η − `)δ + 2M ′
2 > δ, then from (3.13) and

(3.14), we obtain

d

dt
eε(t) ≤ −εδe(t) +

εδ

2
(1 + h(t))(y(L, t))2 + εδ[θ(t)− θ̃]2. (3.15)

This completes the proof of Proposition 3.2. 2

Proof of Theorem 3.1. From Proposition 3.1, we see that

(1− εC ′1)e(t) ≤ eε(t) ≤ (1 + εC ′1)e(t), ∀t ≥ 0. (3.16)

From (3.15) and (3.16), we have

d

dt
eε(t) ≤

−εδ
1 + εC ′1

eε(t) +
εδ

2
(1 + h(t))(y(L, t))2 + εδ[θ(t)− θ̃]2. (3.17)

Let Cε = εδ/(1 + εC ′1) and apply Gronwall’s inequality to (3.17), we get

eε(t) (3.18)

≤ e−Cεteε(0) +
εδ

2

∫ t

0
e−Cε(t−τ)(1 + h(τ))(y(L, τ))2dτ + εδ

∫ t

0
e−Cε(t−τ)[θ(t)− θ̃]2dτ

≤ e−Cεteε(0) +
εδ

2
sup
t≥0

[1 + |h(t)|]
∫ t

0
e−Cε(t−τ)(y(L, τ))2dτ + εδ

∫ t

0
e−Cε(t−τ)[θ(t)− θ̃]2dτ.
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Referring to the paper [7], we deduce that∫ t

0
e−Cε(t−τ)(y(L, τ))2dτ

≤
∫ t

2

0
e−Cε(t−τ)(y(L, τ))2dτ +

∫ t

t
2

e−Cε(t−τ)(y(L, τ))2dτ

≤ max
0≤τ≤ t

2

e−Cε(t−τ)
∫ t

2

0
(y(L, τ))2dτ + max

t
2
≤τ≤t

e−Cε(t−τ)
∫ t

t
2

(y(L, τ))2dτ

≤ e−
Cε
2

t
∫ t

2

0
(y(L, τ))2dτ +

∫ ∞

t
2

(y(L, τ))2dτ.

By Theorem 2.1 and W ↪→ L2(0, T ;L2(0, L)), y(L, t) ∈ L2(0,∞), we obtain∫ t

0
e−Cε(t−τ)(y(L, τ))2dτ → 0 as t→∞. (3.19)

Similarly, we see that ∫ t

0
e−Cε(t−τ)[θ(τ)− θ̃]2dτ → 0 as t→∞. (3.20)

From (3.18), (3.19) and (3.20), we deduce

lim
t→∞

eε(t) = 0. (3.21)

Let ε0 = min{ε1, 1/(2C ′1)}, where C ′1 is given in Proposition 3.1.

Since ε ≤ 1/(2C ′1)(ε ∈ (0, ε0]) and from (3.16), we get

1
2
e(t) ≤ eε(t) ≤

3
2
e(t). (3.22)

Therefore, from (3.21) and (3.22), we have

lim
t→∞

e(t) = 0. (3.23)

Now, we consider the Lyapunov functional U(t) for the system (1.3) as follows:

U(t) = e(t) +
h(t)2

2r
.

Then from (3.5), we see that

Ut(t) ≤ 0. (3.24)

Since yt(L, ·) ∈ L2(0,∞), we obtain

sup
t≥0

{
e(t) +

h(t)2

2r

}
≤M ′

3,

where M ′
3 > 0 is a constant depending on the initial data.
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From U(t) is decreasing, we get

e(∞) +
1
2r
h2(∞) ≤ e(0) +

1
2r
h2(0). (3.25)

Thus, from (3.23) and (3.25), we have

h(∞) ≤
√

2re(0) + (h(0))2.

Since h(t) is nondecreasing, we deduce that

h(t) ≤
√

2re(0) + h(0)2. (3.26)

Thus, the proof of Theorem 3.1 is completed. 2

We can now proceed to state our main exponential stability result.

Theorem 3.2. Let y be the solution of Theorem 2.1 and let e(t) be defined by (3.4). Then there

exist constants K > 0 and ν > 0 depending on the initial data such that

E(t) ≤ Ke−νt, ∀t ≥ 0.

Proof. From (3.17), we have

d

dt
eε(t) ≤ −Cεeε(t) +

εδ

2
(1 + h(t))(y(L, t))2 + εδ[θ(t)− θ̃]2, where Cε = δε/(1 + εC ′1).(3.27)

Using (3.26) and by integrating over (0, t) in (3.27) we obtain

eε(t) ≤ eε(0)− Cε

∫ t

0
eε(τ)dτ +

εδ

2

∫ t

0
(1 + h(τ))(y(L, τ))2dτ + εδ

∫ t

0
[θ(t)− θ̃]2dτ

≤ eε(0)− Cε

∫ t

0
eε(τ)dτ +

εδ

2
(1 + ‖h‖L∞(0,∞))

∫ t

0
(y(L, τ))2dτ + εδ

∫ t

0
[θ(t)− θ̃]2dτ.

Since
∫∞
0 (y(L, τ))2dτ and

∫∞
0 [θ(t) − θ̃]2dτ are bounded, by Gronwall’s inequality, we deduce

that

eε(t) ≤ (K1 + eε(0))exp(−Cεt), where K1 is some positive constant.

For sufficiently small ε
(
0 < ε < 1

2C′
1

)
, using the Proposition 3.1, we get

E(t) ≤ `−1e(t) ≤ Ke−νt,

where K = 2`−1(K1 + eε(0)) and ν = Cε.

The proof of Theorem 3.2 is completed. 2
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