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Abstract. In this paper we introduce a non-iterative method to recover a static conductivity
image from internal currents and the boundary conductivity. The domain of the conductivity body
is approximated as a resistive network and a direct method to recover the conductivity image is
suggested which is based on the Kirchhoff laws of voltage and current. The conductivity tensors
are diagonal matrices in a semi-anisotropic case and the method shows that rectangular resistive
networks perfectly fit to the case. This algorithm has a low computational cost and three dimensional
computations can be easily performed. The stability of the method is given in terms of the condition
number of a matrix given by the currents that flow the network. A large part of the paper is about
numerical stability test of the method. Numerical examples in two and three space dimensions are
given for various tests.
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1. Introduction. The conductivity of a body decides the interior electrical cur-
rent when a boundary injection current is given. Finding conductivity images has a
tremendous importance, in particular, if a human body is the target. For example, the
biological tissues have various micro- and macroscopic structures and the electrical
properties are affected by them. Hence the conductivity image of a body may provide
valuable diagnostic information. Another example is the defibrillation that applies an
electric current to the heart to restore normal rhythm after fibrillation has occurred.
If the conductivity is known even for an exemplary case, it will help to develop an
efficient way to maximize the effect and to minimize the damage to other organs after
the therapy.

In the electrical impedance tomogrphy (EIT) one injects various kinds currents to
a body and measures the boundary voltages to construct images of the conductivity.
The EIT technique has been actively studied since early 1980s (see [19, 22] and ref-
erences therein). Classical image reconstruction algorithms are to iteratively update
the conductivity image to minimize the observed and computed boundary voltages
[6, 23, 24] or to produce images of changes of conductivity generated by cardiac or
respiratory functions [8, 9]. This inverse problem is a well-known ill-posed problem
[1, 7, 18] due to the insensitivity of the change of the boundary voltage to the change
of interior conductivity and the spacial resolution of reconstructed conductivity im-
ages are poor. However, the technique is successfully applied to the anomaly detection
[3, 4, 5]. Efforts to improve the resolution of EIT can be found in [2] and references
therein.

On the other hand techniques that measure the internal current distribution have
been developed to obtain high resolution static conductivity images. These techniques
employ magnetic resonance imaging (MRI) scanners to obtain internal current. These
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are used to obtain current density images in MRCDI [10, 11, 12, 20, 21] or conductivity
images in MREIT [13, 14, 15, 16, 17]. Recently a technique based on the analysis of
equipotential lines has been proposed [19] to reconstruct a conductivity image using
a single set of internal current and boundary voltage.

We have two main goals in developing conductivity reconstruction method. The
first one is to obtain a stable method. The insensitivity of the inverse problem is
reduced if the internal current is measured. However, the problem is still insensitive
on the change of the conductivity. Hence it is important to avoid possible sources
of instability in the reconstruction process. The second goal is to design a scheme
that fits to an anisotropic case. In fact the human body consists of organs which
has microscopic structures such as muscle fibers and one may consider it only from
macroscopic view. Hence, it is essential to consider it as an anisotropic way. If not,
the anisotropic structure of the problem turns into a huge source of instability.

Now we formulate the problem considered in this paper. Let Ω ⊂ R
n, n = 2, 3

be a bounded domain of an electrically conducting body. Let σ be its conductivity
distribution. The conductivity distribution σ(x) is a positive definite symmetric tensor
defined on the domain x ∈ Ω. We consider an injection current which is denoted by
g. This injection current is applied through a pair of electrodes attached at the
boundary. Then, the voltage u satisfies the Maxwell equation with the Neumann
boundary condition

−∇ · (σ∇u) = 0 in Ω,
−σ∇u · ν = g on ∂Ω,

(1.1)

where ν is the outward unit normal vector to the boundary ∂Ω. We assume that
the conductivity tensor σ is bounded and strictly positive definite, i.e., there exists
positive constants 0 < c0 < C0 such that

0 < c0 ≤ σ ≤ C0 < ∞ in Ω,(1.2)

σ = σ0 on ∂Ω.(1.3)

where c0 and C0 are positive constants and σ0 is a given tensor on the boundary ∂Ω.
It is well known that this Maxwell equation has a unique solution up to an addition
by a constant if and only if

∫

∂Ω

gdA = 0(1.4)

and hence we always consider a boundary current satisfying this condition. The
electrical current J is given by the relation

J = −σ∇u.

In other words, if the conductivity is given, then the electrical current is uniquely
decided for any given boundary injection current.

The inverse problem in this paper is to reconstruct the conductivity σ from the
given current data J. Finite element or finite difference methods has been widely used
to discretize the conductivity body. In this paper we consider a rectangular resistive
network as an approximation of the body. Then the Kirchhoff’s voltage law gives
a direct method to find the conductivity tensor. First, this method is applied for
the isotropic case and the internal conductivity is obtained using one set of current



Conductivity reconstruction based on resistive networks 3

data J and a boundary conductivity in two and three space dimension. Then, for
the semi-anisotropic conductivity case, that the tensor is given as a diagonal matrix,
two sets of current data J1,J2 and the boundary conductivity are used to obtain
the conductivity. One can clearly see that the structure of the rectangular resistive
network considered in this paper perfectly fits this semi-anisotropic case. It seems
that the fully anisotropic case requires a network in a different structure.

One of main interests of the paper is the stability property of the suggested
method. The stability of the method is estimated in terms of the condition number
of a matrix consists of internal currents. This stability analysis comes from a typical
stability analysis of the linear system and we have included it in A. Since the study
of conductivity recovery is aiming to recover conductivity of a body such as a human
body, the method should be applicable with experimental data which contain experi-
mental noises. Hence, the algorithm should be robust with respect to possible noises
to have a practical meaning and we have included various numerical experiments for
stability tests.

A large part of this paper is devoted to the numerical simulation of the conduc-
tivity recovery focused on the stability test. Let J be the electrical current without
noise. In the stability test we consider a perturbed current Jε with a random noise is
given by

Jε(x) = (1 + εR(x))J(x),(1.5)

where R(x) is a random noise made by a random number generator which produces
values between −1 and 1, and ε > 0 is the measure of the size of the error. In the
numerical examples we test the stability of the method with these multiplicative noise.
For the isotropic case the noise level has been increased up to ε = 40% in Figure 4.2.
The method becomes less stable for the semi-anisotropic case and the noise level was
increased up to 25% in Figure 4.3. The tests show that three dimensional cases are
more stable than two dimensional ones.

The stability of the method also depends on the a-priori estimate in (1.2). In
the numerical test the true value of each components of the conductivity tensor is
between 1 and 5. Since the exact range of the conductivity should not be assumed
in the reconstruction process, we assumed that it is between 0.5 and 10. Hence, if
a recovered conductivity value is above 10, then it was set as 10. Similarly, any
recovered value below 0.5 was set as 0.5 in the recovery process. It is tested that the
method becomes unstable as the range of this a-priori estimate increases.

2. Forward solver based on Kirchhoff’s current law.

2.1. Comparison between a network and a finite difference. We start our
discussion comparing a finite difference method for the equation (1.1) and a method
based on a related resistive network. First, we construct a finite difference scheme in
a two dimensional rectangular domain Ω = [0, 1] × [0, 1]. In this comparison the con-
ductivity distribution is assumed to be isotropic, σ ∈ R

+, for a simpler presentation.
The domain Ω is discretized using uniformly distributed meshes

xi = i∆x, yj = j∆y, xi+1/2 = (i +
1

2
)∆x, yj+1/2 = (j +

1

2
)∆y,(2.1)

where ∆x = ∆y = 1/n and meaningful subindices are between 0 and n. Consider the
four points in Figure 2.1(a):

A = (xi+1/2, yj), B = (xi, yj+1/2), C = (xi−1/2, yj), D = (xi, yj−1/2).



4 Yong-Jung Kim and Min-Gi Lee

1

(a) A Finite Difference Mesh (b) A Resistive Network

Fig. 2.1. A discretization of the finite difference method for a continuous conductivity body and
a resistive network provide identical forward solvers.

Then, the approximation Ui,j of the voltage u at the mesh point X = (xi, yj) is given
by the relation

σ(A)Ui+1,j + σ(B)Ui,j+1+σ(C)Ui−1,j + σ(D)Ui,j−1

−(σ(A) + σ(B) + σ(C) + σ(D))Ui,j = 0,(2.2)

which is a typical second order discretization of the equation (1.1). Therefore, if a the
conductivity distribution σ and the boundary data g are given, then the approximation
of the voltage u can be obtained by solving (2.2) with an appropriate discretization
of the Neumann boundary condition. The conductivity σ is usually given at grid
points (xi, yj)’s and hence the conductivity at the midpoints such as A,B,C and
D can be replaced by the average of the conductivity at the adjacent points, e.g.,
σ(A) ∼= 1

2
[σ(xi+1, yj) + σ(xi, yj)].

Consider a resistive network that discretizes the domain Ω = [0, 1] × [0, 1] as in
Figure 2.1(b). The Kirchhoff’s current law says that the sum of electrical currents
that flow through a given point X = (xi, yj) should be zero. Hence, one obtains

1

R1

(Ui+1,j − Ui,j) +
1

R2

(Ui,j+1 − Ui,j) +
1

R3

(Ui−1,j − Ui,j) +
1

R4

(Ui,j−1 − Ui,j) = 0,

where Ri’s are resistivity constants of the resistive network in Figure 2.1(b). If it is
written in the form of (2.2) for a comparison, then we obtain

1

R1

Ui+1,j + 1

R2

Ui,j+1 + 1

R3

Ui−1,j + 1

R4

Ui,j−1 −
(

1

R1

+ 1

R2

+ 1

R3

+ 1

R4

)

Ui,j = 0.(2.3)

The resistivity is the reciprocal of the conductivity and hence this relation is actually
identical to (2.2). The continuous model and the network model for the conductivity
body look quite different. However, their discretized models have basically the same
structure. Therefore, it is natural to approximate the original continuous conductivity
body problem with a resistive network.

If the conductivity tensor σ is given as a diagonal matrix, then the corresponding
discretization is almost same as (2.2) after replacing σ(C) and σ(D) with the first
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1

(a) The Kirchhoff’s Voltage Law (b) A Resistive Network with n = 3

Fig. 2.2. A continuous conductivity body is discretized using a resistive network. Then the
backward solver is given by the Kirchhoff’s voltage (or circuit) law.

and second diagonal elements of the conductivity tensor at the grid point X in Figure
2.1(a), respectively. Hence, the semi-anisotropic case can be easily handled using a
network model. It seems that the fully anisotropic case is not covered by the simple
structure of the rectangular network in this paper. The fully anisotropic case seems
to require a general and a complicate network structure which is beyond the scope of
this paper. Therefore, we restrict our study to the isotropic and the semi-anisotropic
cases in this paper.

2.2. Algorithm for forward problem. Finding the voltage u or the electrical
current J = −σ∇u from a given conductivity tensor σ and the normal component of a
boundary current g(x), x ∈ ∂Ω, will be called a forward problem in the followings. We
have briefly seen that the Kirchhoff’s current law applied to the rectangular resistive
network gives a forward solver which is almost identical to the one obtained by a
typical finite difference method.

First we introduce the notation for the network. As in Figure 2.2(b), we denote
the resistor placed on the left hand side of a grid point (xi, yj) by aij and the one
below the grid point by bij . Then the Kirchhoff’s current law related to the grid point
(xi, yj) is written as

Ui+1 j − Uij

ai+1 j
+

Ui j+1 − Uij

bi j+1

+
Ui−1 j − Uij

ai j
+

Ui j−1 − Uij

bi j
= 0, 0 ≤ i, j ≤ n,(2.4)

where the undefined terms on the boundary should be replaced with appropriate input
currents (see Figure 2.2(b)), i.e, for 0 ≤ j ≤ n and 0 < i < n,

U−1 j − U0j

a0j
:= g0j ,

Un+1 j − Unj

an+1 j
:= gnj ,

Ui,−1 − Ui0

bi 0

:= gi0,
Ui n+1 − Uin

bi n+1

:= gin.

(2.5)
Note that there are only three currents related to the four corner points. Hence the
four terms excluded are zero, i.e.,

U0,−1 − U0 0

bi 0

:=
U0 n+1 − U0n

b0 n+1

:=
Un,−1 − Unn

bn n+1

:=
Un n+1 − Unn

bn n+1

:= 0.(2.6)
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In this setting the condition corresponding to
∫

∂Ω
g(x)dx = 0 is

n
∑

j=0

g0j +
n−1
∑

i=1

gi0 =
n

∑

j=0

gnj +
n−1
∑

i=1

gin.(2.7)

We have obtained (n+1)2 equations in (2.4) with the same number of unknowns
Uij , 0 ≤ i, j ≤ n. Hence solving the forward problem implies to solve the system of
(n + 1)2 equations in (2.4) substituting boundary conditions (2.5) and (2.6) in the
place of undefined terms in the system. It is well known that the solution of such
a system is unique upto an addition of a constant. Hence we may set U00 = 0 for
the uniqueness. One of the advantages using this network model is the flexibility in
handling the boundary data. One may choose the boundary data gij freely as long as
the condition for the boundary data (2.7) is satisfied.

Let Ja
ij and Jb

ij be the currents that flow the resistors aij and bij respectively (see
Figure 2.2(a)). Then, they are given by the following relations

−Ja
ij = (Uij − Ui−1 j)/aij , −Jb

ij = (Uij − Ui j−1)/bij .(2.8)

One may consider Jij := (Ja
ij , J

b
ij) as the current vector at the mesh point (xi, yj).

3. Backward solver in two space dimension. We consider the two dimen-
sional case in this section. Finding the resistivity aij ’s and bij ’s from given electrical
currents Ja

ij ’s and Jb
ij ’s and boundary resistivity will be called a backward problem

in the followings. First note that there are 2n(n + 1) resistors in the system and
4n of them are boundary resistors, which are ai0, ain, b0j and bnj for 1 ≤ i, j ≤ n.
We assume that the resistivity of the boundary material can be observed. For our
convenience, we assume that 2n boundary resistors ai0’s and b0j ’s are given and then
find the other 2n2 unknown resistors including 2n boundary resistors ain’s and bnj ’s.

Consider a loop given in Figure 2.2(a), where the currents Ja
ij and Jb

ij flow along

the resistors aij and bij , respectively. There are n2 such loops and the Kirchhoff’s
circuit or voltage law gives n2 number of equations:

Jb
i−1 jbi−1 j + Ja

i jai j − Jb
i jbi j − Ja

i j−1ai j−1 = 0, 1 ≤ i, j ≤ n.(3.1)

Therefore, it is clear that one set of current data is not enough to solve this backward
problem and we use two or more current data. However, if an isotropic conductivity
is considered, the single set of current data is just enough and we will see it in the
following section.

There are four unknowns in the equation (3.1). Since we assume that the resis-
tivity is known on the boundary we may assume that two of them are known if the
loop under consideration is at one of the four corners. If we have two data sets for the
currents, then we can solve (3.1) at the corner loop. We may continue this process
since one can find a loop that two of the resistors are known until all of them are
computed. Note that, if a current vector is given at a grid point (xi, yj), then we may
set its x and y components as Ja

ij and Jb
ij respectively.

3.1. Isotropic conductivity in two dimensional space. The conductivity
tensor product is actually a scalar multiplication in an isotropic case. For the two
dimensional case we may simply set aij = bij and consider aij as this isotropic resis-
tivity value at the grid point (xi, yj). Then there are basically n2 unknowns left since
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(a) nothing recovered (b) partly recovered (c) completely recovered

Fig. 3.1. Two dimensional isotropic conductivity has been recovered under three different in-
jection currents. Injection currents are denoted by arrows. The best result is (c). In this example
noise levels are all zero.

the boundary resistors on the x, y-axes are given. Hence the resistivity can be recov-
ered using a single data set of currents. Suppose that ai−1 j and ai j−1 are already
obtained in the previous steps. Then aij is obtained by

aij =
Ja

i j−1

Ja
i j − Jb

i j

ai j−1 −
Jb

i−1 j

Ja
i j − Jb

i j

ai−1 j .(3.2)

This means that the isotropic conductivity can be obtained if Ja
i j − Jb

i j 6= 0 for all i’s
and j’s. It is shown that two sets of current data are required to obtain the uniqueness
of conductivity recovery in [14]. Note that we have assumed that the conductivity is
given on the boundary and hence the non-uniqueness phenomena is not observed.

It is clear that, if Ja
i j −Jb

i j is close to zero, then it is hard to get the conductivity
recovered since it is the denominator in the conductivity reconstruction algorithm
formula in (3.2). Hence it is important to consider a injection current to avoid such
a situation. First consider the worst the injection current that uses two corner points
(0, 0) and (1, 1) (i.e., g00 = gnn = 1 and all the other boundary currents are zero).
Then the main stream of the current is in the direction of vector (1, 1) which will make
the denominator in (3.2) be small. In Figure 3.1(a) the results of recovered conduc-
tivity is given using this injection current. Even though the numerical computation
has been done under very small noise, the conductivity is not recovered at all.

If the current is injected using the points (0.5, 0) and (0.5, 1) as in Figure 3.1(b),
some portion of the conductivity is recovered. However, there are spots that the
results are poor. It seems that the bad spots start from a point that the electric
current becomes parallel to the vector (1, 1). The best case is the one that the current
is injected using the points (1, 0) and (0, 1). Then the main stream of the current is
aligned to the direction of slope negative one and Ja

i j −Jb
i j seems not be close to zero.

The recovered conductivity is given in Figure 3.1(c) which shows perfect recovered
image. Note that these images were recovered without noise.

In the following two dimensional isotropic examples we apply an injection current
same as the case (c). The reason for this preferred direction of current is due to the
assumption aij = bij . If the injection current in Figure 3.1(a) should be employed,
then we may consider the model under the assumption that aij = bi−1 j . Then,
under this assumption, we may obtain the conductivity correctly. It is also possible
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(a) true value (b) recovered with 10% noise (c) recovered from 25% noise

Fig. 3.2. This is an example that the discontinuity of the conductivity is orthogonal to the main
stream of the current. Since the boundary conductivity is assumed to be given, the conductivity is
reasonably recovered even with 25% of noise.

to recover the conductivity after dividing the whole domain into several parts. Then,
the image of each part of the domain can be computed starting from a corner point
and then combined to get the whole picture. For simplicity, we consider the model
case aij = bij only for the isotropic case and the injecting current given as in Figure
3.1(c) in the following numerical examples.

Remark 3.1. Notice that under the assumption aij = bij for the isotropic case
there is a preferred direction of current injection. This non-symmetric structure of
the scheme can be neutralized as in the followings. Let rij be the resistivity at the grid
point (xi, yj). Then, the resistivity aij and bij can be replaced as the average of the
adjacent resistivity, i.e., (3.1) can be replaced by

Jb
i−1 j

ri−1,j + ri−1,j−1

2
+Ja

i j

rij + ri−1,j

2
−Jb

i j

rij + ri,j−1

2
−Ja

i j−1

rij−1 + ri−1,j−1

2
= 0.

Suppose that ri−1 j , ri j−1 and ri−1 j−1 are already obtained in the previous steps. Then
rij is obtained by

rij =
Ja

i j−1(rij−1 + ri−1,j−1) − Jb
i−1 j(ri−1,j + ri−1,j−1)

Ja
i j − Jb

i j

+ Jb
ijri,j−1 − Ja

ijri−1,j .

Hence we still need to have the same denominator Ja
i j −Jb

i j to be large enough to have

stability. Furthermore the extra addition term Jb
ijri,j−1−Ja

ijri−1,j is another source of

noise which is proportional to (Jb
ij − Ja

ij). Hence this scheme is more sensitive on the
noise and the numerical examples show blowups for small noise size. The advantage
of this method is that one may use it as increasing or decreasing the indexes due to
the symmetry of the structure. However, we did not use this form due to its noise
sensitivity.

Note that the boundary resistivity is assumed to be given. This assumption makes
it possible to obtain the isotropic conductivity using a single set of data. It is well
known that if the electrical current is perpendicular to the discontinuity curve of the
conductivity, then such a change is not detectible. In Figure 3.2 such a case is tested.
Even the case with 25% noise the conductivity is recovered reasonably. It is pretty
obvious that the given boundary resistivity makes the problem stable. However, one
may still find some traces of equipotential lines from the last image with 25% noise.
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1

(a) true value (b) without noise (c) 1% noise

(d) 5% noise (e) 10% noise (f) 25% noise

Fig. 3.3. Isotropic conductivity recovery in two dimensional space. The noise level is increased
up to 25%.

In Figure 3.3, a numerical example using a CT image of a human body is given.
It is possible that certain geometric structure of the body may trigger a singularity
property of the method. In this example one may observe that even if the noise level
is of 25% the two dimensional conductivity is recovered reasonably. This level of
stability is of satisfactory and seems to have better stability property than most of
other methods. However, one may observe a singularity from the with a noise level
higher than this that starts from the point (x20, y45) (see the third figure in the second
row of Figure 4.2).

3.2. Two dimensional semi-anisotropic conductivity. If the conductivity
tensor is a diagonal matrix, which is called a semi-anisotropic case in this paper,
the diagonal elements correspond to aij and bij for the two dimensional case. If
the diagonal entries are any positive numbers, then the tensor is positive definite.
Hence, we may take any two images as vertical and horizontal resistors aij ’s and bij ’s
respectively. The total number of resistors for the two dimensional resistive network
is 2n2 + 2n. If 2n boundary resistors ai0’s and b0j ’s are given, then 2n2 unknown
resistors are left. Since the Kirchhoff’s circuit law gives n2 number of equations as
in (3.1), it is clear that one set of current data is not enough for the solvability. We
should employ at least two sets of current data and we denote them by Jka

ij and Jkb
ij ,

k = 1, 2. Then we obtain 2n2 equations:

J1a
i j ai j − J1b

i j bi j = J1a
i j−1ai j−1 − J1b

i−1 jbi−1 j ,
J2a

i j ai j − J2b
i j bi j = J2a

i j−1ai j−1 − J2b
i−1 jbi−1 j ,

1 ≤ i, j ≤ n.(3.3)

Suppose that aij−1 and bi−1j are boundary resistors or obtained from previous
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true horizontal resistivity true vertical resistivity

2 given boundary layers 4 given boundary layers 8 given boundary layers

2 given boundary layers 4 given boundary layers 8 given boundary layers

Fig. 3.4. Two dimensional semi-isotropic conductivity images obtained as increasing the num-
ber of given boundary layers from 2 to 8. The noise level is 5%. The images in the second row are
of horizontal resisters aij ’s and the ones in the third row are for bij ’s.

steps. Then aij and bij can be computed by solving the 2 by 2 system in (3.3).
Therefore, the stability of the method depends on the condition number of the matrix

A =

(

J1a
ij J1b

ij

J2a
ij J2b

ij

)

.(3.4)

From the numerical examples for the isotropic case one observes that the direction of
injection currents should be perpendicular to the vector (1, 1). Unlike the isotropic
case the direction of each injecting current does not make a difference since aij = bij is
not assumed in this anisotropic case. However, if the two currents J1 and J2 become
parallel at a point, the matrix becomes singular. Hence, it is required to reduce the
condition number of the matrix A by making the two currents vectors have large
anlges. In the followings we consider two methods.



Conductivity reconstruction based on resistive networks 11

1

10 input nodes 20 input nodes 40 input nodes

10 input nodes 20 input nodes 40 input nodes

Fig. 3.5. Two dimensional semi-isotropic conductivity images obtained as increasing the num-
ber of input nodes from 10 to 40. For example, five input nodes were used to each of two parallel
sides which totals ten input nodes. The noise level in this example is 10%.

First, notice that the electrical current becomes parallel to the boundary if it
is away from the boundary current sources. This makes the matrix in (3.4) have
large condition numbers along the boundary. To reduce this boundary effect the
resistors in several boundary layers are assumed to be given. It is tested as increasing
the number of given layers in Figure 3.4. The recovered conductivity images show
interesting behavior. The conductivity image near the boundary is very poor, which
was expected due to the condition number of the matrix A. Since the reconstruction
technique is performed from the boundary cells, the interior image can be affected by
this poor boundary image. However, the inside image is better than the boundary one.
It seems that there is a mechanism that neutralizes the boundary blowups. Another
interesting phenomenon is that, even if several boundary layers are given, it does
not make significant changes. An interesting thing is that the images of horizontal
resistors aij in the second row of Figure 3.4 show horizontal strips and the images
for bij ’s show vertical strips. One may also find similar phenomenon in the three
dimensional computations, Figures 4.3 and 4.4. However, the trips are weaker in the
three dimensional examples.

The second approach is to increase the number of input nodes. So far we have
used only two nodes, which is an extreme case. Now we increase the number of nodes
up to forty. Note that one of the main advantages of using a resistive network method
is that the input current g(x), x ∈ ∂Ω, is not required in the reconstruction process.
Hence one may choose even a random input data using various number of nodes at
various places for input currents as long as (2.5) is satisfied. This property removes
many annoying experimental concerns if one uses a reconstruction method depending
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Fig. 4.1. A cell of a three dimensional resistive Network

on the boundary input data. In Figure 3.5 conductivity images are recovered as
increasing the number of input nodes. One may observe that the method becomes
more stable as the number of input nodes are increased.

In these examples one may observe that the semi-anisotropic case is more unstable
in compare with the isotropic one. For the isotropic case the conductivity image has
been recovered using only two input nodes with an acceptable resolution even with
the noise level 25%. However, the images for the semi-anisotropic case is very poor
under the same conditions.

4. Backward solver in three space dimension. We now consider the three
dimensional case. A cell for a three dimensional resistive network is given in Figure
4.1. First note that there are 3n(n + 1)2 resistors in the system and 12n2 of them
are boundary ones. Since the conductivity of the boundary material can be observed,
the unknown resistors are 3n(n − 1)2 interior ones. For our convenience, we assume
that boundary resistors on the xy-,xz- and yz-planes are given. Then 3n3 resistors
left which will be decided by the reconstruction method.

Consider the three faces of the cubic cell in Figure 4.1 that contains the vertex
(xi, yj , zk). If the Kirchhoff’s circuit law is applied to each of these three faces, then
we obtain

Ja
ijkaijk − Jb

ijkbijk = Ja
i j−1 kai j−1 k − Jb

i−1 jkbi−1 jk,

Jb
ijkbijk − Jc

ijkcijk = Jb
ij k−1bij k−1 − Jc

i j−1 kci j−1 k,

Ja
ijkaijk − Jc

ijkcijk = Ja
ij k−1aij k−1 − Jc

i−1 jkci−1 jk,
1 ≤ i, j, k ≤ n.(4.1)

Suppose that the resistors with subindexes other than ‘ijk’ are given in previous
steps. Then the right hand sides are given terms, and the three unknown resistors
with subindex ‘ijk’ should be computed using these three equations. Adding first two
equations gives

Ja
ijkaijk − Jc

ijkcijk = Ja
i j−1 kai j−1 k + Jb

ij k−1bij k−1 − Jc
i j−1 kci j−1 k − Jb

i−1 jkbi−1 jk.

Comparing this equation to the third one in (4.1), one can easily see that the linear
system has a solution only if

Ja
i j−1 kai j−1 k−Ja

ij k−1aij k−1+Jb
ij k−1bij k−1−Jb

i−1 jkbi−1 jkJc
i−1 jkci−1 jk−Jc

i j−1 kci j−1 k = 0.
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Then, the third equation in (4.1) is the sum of the first two. Hence, we have obtained
only two equations applying the Kirchhoff’s circuit law to the three dimensional cell.
There are 2n3 equations in total, which are enough for the isotropic cases but not for
semi-anisotropic cases.

4.1. Isotropic case. For the three dimensional case we similarly set aijk =
bijk = cijk and consider aijk as the isotropic conductivity value at the grid point
(xi, yj , zk). Then the problem becomes over determined. Hence we should consider a
way that maximizes the information. We rewrite (4.1) as

aijk = (Ja
i j−1 kai j−1 k − Jb

i−1 jkai−1 jk)/(Ja
ijk − Jb

ijk),

aijk = (Jc
i−1 jkai−1 jk − Ja

ij k−1aij k−1)/(Ja
ijk − Jc

ijk),

aijk = (Jb
ij k−1aij k−1 − Jc

i j−1 kai j−1 k)/(Jb
ijk − Jc

ijk),
1 ≤ i, j, k ≤ n.(4.2)

Therefore, if Ja
ijk = Jb

ijk = Jc
ijk, the problem is unsolvable. If the three terms are

close to each other, then the recovery of the conductivity becomes unstable to noises.
Hence we need to avoid such a situation to obtain a stable conductivity recovery.

The first strategy is to choose one of the three equations that makes the method
most stable. Consider three quantities

A :=
Ja

ijk + Jb
ijk

√

(Ja
ijk)2 + (Jb

ijk)2
, B :=

Ja
ijk + Jc

ijk
√

(Ja
ijk)2 + (Jc

ijk)2
, C :=

Jb
ijk + Jc

ijk
√

(Jb
ijk)2 + (Jc

ijk)2
.

These measure the cosine of the angle between vectors (1, 1) and (Ja
ijk, Jb

ijk), (Ja
ijk, Jc

ijk)

or (Jb
ijk, Jc

ijk), respectively. Hence we choose the equation corresponding to the small-
est one.

The second strategy is to choose an injection current in a way that the main
stream of the electric current is orthogonal to the diagonal direction vector v1 =
(1, 1, 1)/

√
3. For a comparison purpose we consider three kinds of injection currents.

For the first injection current we chose two points (0, 0, 0) and (1, 1, 1). Then the main
current direction is parallel to v1, which should be the worst case. In the first row of
Figure 4.2 conductivity images recovered using this current are given. This numerical
computation has been done for a three dimensional case with 128 × 128 × 128 mesh
and then the slice which is identical to the two dimensional image has been displayed.
In this case the image is recovered without noise only. Note that two dimensional
conductivity is not recovered at all even without noise, Figure 3.1(a). The three
dimensional case has more stability than the two dimensional one.

The second injection current is given through two vertex points (1, 0, 1) and
(0, 1, 0). Let v2 be the unit vector that connects these two points, i.e., v2 = (1,−1, 1)/

√
3.

The angle between the vectors v1 and v2 is given by

cos θ = v1 · v2 = 1/3,

i.e., the angle is about 70.5 degree. In the second rwo of Figure 4.2 conductivity images
recovered using this current are given. In this case the conductivity is well recovered
even with high noise levels. In compare with Figure 3.1(b) this three dimensional case
is more stable on noises than the two dimensional case. Note that, under the noise
level of 40%, there is a black strip in the middle of the left half.

The last injection current uses two middle points of edges, (0, 1, 0.5) and (1, 0, 0.5).
Let v3 be the unit vector that connects these two points, i.e., v3 = (1,−1, 0)/

√
2. This
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1

true image without noise 0.001% noise

10% noise 20% noise 40% noise

10% noise 20% noise 40% noise

Fig. 4.2. Isotropic conductivity image in three dimension. Injection current for the first row
is given through two points (0, 0, 0) and (1, 1, 1). The second row uses (1, 0, 1) and (0, 1, 0) and the
third one uses (0, 1, 0.5) and (1, 0, 0.5).

vector is orthogonal to the diagonal direction, i.e.,

cos θ = v1 · v3 = 0.

In the third row of Figure 4.2 three images recovered using this injection current are
given. The recovered images are better than the ones in the second row. In particular
the one of noise level of 40% does not have a black strip in this case.

4.2. Anisotropic case. It is clear that one set of current data is not enough to
decide aijk’s, bijk’s and cijk’s and hence we use two data sets for the backward solver.
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1

aijk of true image bijk of true image cijk of true image

aijk with 1% noise bijk with 1% noise cijk with 1% noise

aijk with 5% noise bijk with 5% noise cijk with 5% noise

aijk with 25% noise bijk with 25% noise cijk with 25% noise

Fig. 4.3. Three dimensional semi-anisotropic conductivity images. Two sets of injection cur-
rents are applied in the direction of x and y-axes. These figures are slices of three dimensional body
orthogonal to the z-axis with k = 68 out of 128. The image for cijk is worse than others since the
current in the direction is weaker.
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1

Images for aijk, bijk and cijk reconstructed under a-priori estimate: 0.5 ≤ σ ≤ 10.

Images for aijk, bijk and cijk reconstructed under a-priori estimate: 0.25 ≤ σ ≤ 20.

Images for aijk, bijk and cijk reconstructed under a-priori estimate: 0.125 ≤ σ ≤ 40.

Fig. 4.4. Three dimensional semi-anisotropic conductivity images. Two sets of injection cur-
rents are applied in the direction of x and y-axes. These figures are slices of three dimensional body
orthogonal to the x-axis with i = 60 out of 128 layers. The actual conductivity is range is 1 ≤ σ ≤ 5.
The noise level of this example is 10%.

Let J1 and J2 be the given currents. Then the Kirchhoff’s circuit law gives

J1a
ijkaijk − J1b

ijkbijk = J1a
i j−1 kai j−1 k − J1b

i−1 jkbi−1 jk,

J1b
ijkbijk − J1c

ijkcijk = J1b
ij k−1bij k−1 − J1c

i j−1 kci j−1 k,

J2a
ijkaijk − J2b

ijkbijk = J2a
i j−1 kai j−1 k − J2b

i−1 jkbi−1 jk,

J2b
ijkbijk − J2c

ijkcijk = J2b
ij k−1bij k−1 − J2c

i j−1 kci j−1 k,

1 ≤ i, j, k ≤ n.(4.3)

In Figure 4.3 a numerical experiment for three dimensional semi-anisotropic con-
ductivity reconstruction is given. First, for this experiment, a three dimensional cubic
domain Ω = [0, 1]3 is discretized into 1283 cubic cells and three dimensional images
have been constructed for resisters aijk’s, bijk’s and cijk’s. For the current injections,
two kinds of injection currents are applied using 20 input nodes. The first set of
electrical current data is measured after applying the boundary current on two sides
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which are parallel to the yz-plan. The second one is measured after applying the
currents on the sides parallel to xy-plan. Note that these two currents are mostly
move to the direction of x and y axes. Hence z-component of the current is weaker
than others.

The images for aijk’s and bijk’s in Figure 4.3 are in a good shape. However, the
one for cijk’s is poor. Hence it needs to make the current move to the direction of
z-axis to obtain the conductivity image related to the direction. The images for aijk’s
and bijk’s are in a pretty good shape even with 25% noise. There are lines in the
images which is weaker than the ones of the two dimensional cases. Hence, it seems
that the three dimensional case is more stable that the two dimensional one.

In this example the true conductivity is in the range between 1 and 5. In the
construction process, it is assumed that we have an a-priori estimate that conductivity
satisfies 0.5 ≤ σ ≤ 10. Hence any reconstructed conductivity value higher than 10
was set as 10. Similarly, any value below 0.5 was set as 0.5. In Figure 4.4, the
performance is tested under a different a-priori estimates. The first row of the figure is
simply a different slice of the previous example which uses the same a-priori estimate
0.5 ≤ σ ≤ 10. The images in the second and third rows were built using a-priori
estimates 0.25 ≤ σ ≤ 20 and 0.125 ≤ σ ≤ 40, respectively. In the figures one can
clearly observe that the performance of the method strongly depends on the a-priori
estimate of the conductivity.

5. Conclusions. A conductivity reconstruction method based on a rectangular
resistive network is suggested for two and three dimensional spaces. This method
handles both of isotropic and semi-anisotropic cases. For the stability test a multi-
plicative random noise has been added and numerical examples show stable behavior
of the method. Three dimensional examples are more stable than the two dimensional
ones. The noise level can be increased up to 40% for three dimensional isotropic case.
For the three dimensional semi-anisotropic case is done up to 25% noise level. Since
this is a direct method based on the Kirchhoff’s laws of current and voltage, the com-
putation time is minimum. It take about couple of minutes for the three dimensional
case with 1283 meshes with a personal computer.

There are several things that should be done to complete the project. A network
with a general structure should be introduced to handle general anisotropic cases. We
could not handle them with the rectangular network in this paper. A noise reducing
technique should be developed that fits with resistive networks. In this paper we have
tested how the method works under noise. The final goal of this project is to obtain
the real conductivity of a human body. Hence one should work with experimental
data and understand the noise and its effect to the method.

There are also remaining questions raised by this work. We could reconstruct
the conductivity using a single set of internal current if the boundary conductivity
is given. For semi-anisotropic cases two sets were required both of two and three
space dimensions. Considering the number of unknowns and equations, it seems to
require three sets of internal currents both of two and three dimensional anisotropic
cases. Mathematically we do not have answers on this question. One may observe
from Figure 3.4 that the interior conductivity is recovered well even if there are severe
oscillations near the boundary. Furthermore, the recovered conductivity images of
semi-anisotropic cases have vertical and horizontal lines. It needs to understand these
behaviors of the method to obtain better results.
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Appendix A. Stability analysis. In this section we consider the stability of
the conductivity reconstruction method based on a resistive network. For simplicity,
we consider a two dimensional object with semi-anisotropic conductivity. The total
number of resistors for such a case is 2n2 + 2n. The 2n boundary resistors, ai0’s and
b0j ’s, are assumed to be given. Hence the number of unknown resistors is 2n2. If the
currents Ja

ij , J
b
ij that flow through the resistors aij and bij , respectively, are given for

all 0 ≤ i, j ≤ n, then the Kirchhoff’s circuit law gives n2 number of equations as in
(3.1). In the numerical examples two or more sets of current data can be used. In
doing that two equations has been chosen in the way that the corresponding 2 × 2
matrix has the smallest condition number among other possible choices.

In the followings we consider the currents which are chosen in a way that the
following matrix

A =

(

J1a
ij J1b

ij

J2a
ij J2b

ij

)

is not singular and has the smallest condition number among other possible choices.
Then we solve the following 2n2 equations

J1a
i j ai j − J1b

i j bi j + J1b
i−1 jbi−1 j − J1a

i j−1ai j−1 = 0,
J2a

i j ai j − J2b
i j bi j + J2b

i−1 jbi−1 j − J2a
i j−1ai j−1 = 0,

1 ≤ i, j ≤ n.(A.1)

Since ai0’s and b0j ’s are given, these 2n2 equations can be written as

Cx = f ,(A.2)

where C = (cij) is a 2n2 × 2n2 sparse matrix consists of the coefficients J1a
ij , J1b

ij , J2a
ij

and J2b
ij and the vector x is 2n2 column vector consists of 2n2 unknown resistors. The

right hand side column vector f appears due to the given boundary resistor and hence
it has at most 2n − 1 nonzero elements.

For the stability analysis consider perturbed current data J̃k
ij ’s with noise. Then

the linear system one may obtain is an approximation of the exact one (A.2) that is
written as

C̃x̃ = f̃ .(A.3)

Now we test the stability of the problem. Let

e = x̃ − x, E = C̃ − C, h = f̃ − f and Hk
ij = J̃k

ij − Jk
ij , 0 ≤ i, j ≤ n, k = 1, 2.

The condition number of a nonsingular matrix C is κ = cond(C) = ‖C‖∞‖C−1‖∞.
Let ρ(C) be the smallest eigenvalue of the matrix C. First we consider the solvability
of the perturbed problem which depends on the following lemma:

Neumann Lemma If ρ(C−1E) ≤ ‖C−1‖∞ · ‖E‖∞ < 1, then I + C−1E is
invertible. Hence C(I + C−1E) = C + E = C̃ is invertible, too.

One can easily see that E = C̃ − C has at most four nonzero elements in each
row, it is clear that

‖E‖∞ = max
1≤i≤2n2

(

2n2

∑

j=1

|eij |
)

≤ 4 max
0≤i,j≤n

(|H1a
ij |, |H1b

ij |, |H2a
ij |, |H2b

ij |),

‖h‖∞ = max
1≤i≤2n2

|hi| ≤ max
0≤i,j≤n

(|ai0H
1a
i0 |, |b0jH

1b
0j |, ai0|H2a

i0 |, b0j |H2b
0j |).

(A.4)
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Hence, if

max
0≤i,j≤n

(|H1a
ij |, |H1b

ij |, |H2a
ij |, |H2b

ij |) <
1

4‖C−1‖∞
=

‖C‖∞
4κ

,(A.5)

the perturbed problem (A.3) is solvable.
Using (A.2) the perturbed system can be written as

(C + E)e = h − Ex,

and

e = (C + E)−1(h − Ex) = (I + C−1E)−1C−1(h − Ex).

Hence the error e = x̃ − x is estimated by

‖e‖∞ ≤ ‖C−1‖∞
1 − ‖C−1E‖∞

(‖h‖∞ + ‖E‖∞‖x‖∞).

Since the exact solution x is bounded and E and h are bounded by (A.4), the error
is estimated by

‖e‖∞ ≤ ‖C−1‖∞
1 − ‖C−1E‖∞

[1 + 4R max
0≤i,j≤n

(|H1a
ij |, |H1b

ij |, |H2a
ij |, |H2b

ij |) ],(A.6)

where R is the maximum resistor. Hence the error e decays to zero as the noises of
the current data converge to zero. Therefore, under the stability condition (A.5), the
approximation error of the method is estimated by (A.6).
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