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Abstract

We propose a variational segmentation model based on statistical
information of intensities in an image. The model consists of both
a local region-based energy and a global region-based energy in or-
der to handle misclassification which happens in a typical statistical
variational model with an assumption that an image is a mixture of
two Gaussian distributions. We find local ambiguous regions where
misclassification might happen due to a small difference between two
Gaussian distributions. Based on statistical information restricted to
the local ambiguous regions, we design a local region-based energy
in order to reduce the misclassification. We suggest an algorithm to
avoid the difficulty of the Euler-Lagrange equations of the proposed
variational model.

1 Introduction

Segmentation has been widely studied in the field of image processing
and computer vision. It basically separates an image into several homoge-
neous regions according to a criterion. The quality of segmentation is crucial
in other fields of image analysis such as motion tracking and image classi-
fication. Methods of segmentation are classified into two categories; one is
the boundary-based segmentation which uses gradient information of an im-
age to detect abrupt changes in the image and the other is the region-based
segmentation which uses similarity information of an image to separate the
image into several regions.

∗This work was supported by KRF-2006-511-C00005.
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‡e-mail: colee@kaist.edu
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As basic boundary-based segmentations, there are filters by Roberts,
Prewitt, Sobel [1, 2], and Canny [3]. These filters have a problem of irregu-
larity of a curve which detects a boundary of an object in an image. Recently
based on active contours models [4], variational formulations on deformable
curves have been developed in order to handle the irregularity problem.
These models consider energy functionals which consist of smoothness and
attraction of a curve. The energy for attraction of the curve commonly in-
troduces an edge-detector function which makes a curve evolution converge
at a boundary of an object as a minimizer of the energy functional. More
advanced methods have been suggested in geometric active contours [5],
geodesic active contours [6], and gradient vector flows [7]. With the help
of the level set method [8, 9], these methods are able to deal with topo-
logical change which is a problem in the parametric deformable model [4].
However, there still remains a problem to capture weak boundaries changed
smoothly from strong boundaries because these methods depend on edge-
detector functions.

As region-based segmentations, there are thresholding, region growing [10],
active contours without edges [11], and region competition [12]. Whereas the
gradient-based segmentation uses local information on a deformable curve,
the region-based segmentation uses global information of an image. In other
words, an energy functional of the latter is formed by statistical information
such as means and standard deviations of intensities on a region inside a
deformable curve and a region outside the curve. Region competition [12]
has been a fundamental framework in the region-based segmentation with
an assumption that a given image is a mixture of two Gaussian distributions.
Many region-based segmentations with the assumption have a problem of
misclassification due to a small difference between two Gaussian distribu-
tions. The misclassification easily happens when an object has various in-
tensities inside the boundary of the object or outside the boundary; see
Figure 1.

Combinations of the boundary-based segmentation and the region-based
segmentation have been also studied. Geodesic active regions [13, 14] com-
bines geodesic active contours [6] and region competition [12] in order to
segment a texture in an image. Region-aided geometric snake [15] adds
the region force term in the geodesic active contours [6]. The region force
is obtained from any region-based segmentation such as mean shift algo-
rithm [16].

In this paper we propose a variational model based on statistical in-
formation of intensities in an image. The model consists of both a global
region-based energy and a local region-based energy. The former roughly
captures outlines of objects which we want to segment in an image. The
latter reduces misclassification which happens in a typical statistical varia-
tional model with an assumption that the image is a mixture of two Gaussian
distributions. We find local ambiguous regions where the misclassification
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happens due to small difference between two Gaussian distributions. Using
statistical information restricted to the local ambiguous regions, we design
the local region-based energy in order to reduce misclassification. We sug-
gest an algorithm to avoid the difficulty of the Euler-Lagrange equations of
the proposed energy functional.

The outline of this paper is as follows. In Section 2, we review the region
competition and show what misclassification is in an image. In Section 3,
we propose a statistical variational model and suggest an algorithm for seg-
mentation. In Section 4, we show examples and comment numerical aspects
of the algorithm. This paper is concluded in Section 5.

2 Region competition

Let Ω be a bounded closed subset of R2 and I: Ω ⊂ R2 → R be an
image. A segmentation problem is to partition the image into several subre-
gions which are characterized by prescribed properties. We assume that the
image consists of two disjoint regions, i.e., Ω = RA ∪ RB and intensities in
the regions follow Gaussian distributions with probability density functions
(PDFs) P(I; αi), i ∈ {A,B}, where αi = (µi, σi) is a Gaussian parameter
of a mean µi and a standard deviation σi:

P(I(x);αi) =
1√
2πσi

exp
(
−(I(x)− µi)2

2σi
2

)
.

Let Γ be the boundary separating two regionsRA and RB and α = (αA, αB)
be Gaussian parameters of two regions. Many energy functionals in typical
statistical variational models [12–14] contain an energy term

E(Γ, α) = −
∑

i∈{A,B}

∫

Ri

logP(I(x);αi)dx, (2.1)

which generates a region competition as the energy is decreased.
In order to find a minimizer of the energy functional (2.1), an algorithm

which consists of two alternating steps was used in [12]. In the first step,
when a boundary Γ is fixed, the functional has a minimum if αi = (µi, σi)
is the Gaussian parameter of the region Ri:

µi =
1
|Ri|

∫

Ri

I(x)dx and σ2
i =

1
|Ri|

∫

Ri

(I(x)− µi)2dx

for i ∈ {A,B}. In the second step, when α is fixed, the Euler-Lagrange
equation with respect to Γ is deduced and the gradient descent method is
used. That is, the energy has a minimum if Γ is a curve C that is a steady
state solution of

∂C(x, t)
∂t

= F (x)~n, F (x) = logP(I(x);αA)− logP(I(x);αB), (2.2)
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(a) (b)

(c) (d)

Figure 1: Red curves in (a) and (c) are minimizers of (2.1). Graphs in
(b) and (d) are Gaussian PDFs when (2.1) is minimized. If an object and
its background have simple colors, a minimizer of (2.1) clearly finds the
object in an image. However, if an illumination is changed in the image,
misclassification may happen where intensities are near the intersection I∗

in (d).

where ~n is the outward normal vector to the curve(We assume that RA is
inside the curve C).

The evolution of the curve is generated by the sign of the force (2.2).
The sign indicates that a point on the curve is more likely included into one
of two regions RA and RB. If F > 0 at a point, then the curve at the point
moves along ~n. It means that the point belongs to the region RA. If F < 0
at a point, on the other hand, the curve at the point moves along −~n and
the point belongs to the region RB. In this way, all points on the boundary
belong to one of two regions. This process is called “region competition”.

Unfortunately the region competition process may cause a problem which
we call “misclassification”. In Figure 1-(a), a minimizer of the energy func-
tional (2.1) clearly captures the cross shape in the image. However, if an
illumination is changed inside and outside the object in Figure 1-(c), a min-
imizer of the functional does not capture the cross shape. The reason is that
some points whose intensities are near an intersection of two Gaussian PDFs
are classified into a wrong region. That is, points whose intensities are near
the intersection I∗ in Figure 1-(d) are possibly misclassified in segmentation.
We call the region which consists of such points as “local ambiguous region”.
In [12], in order to reduce misclassification, an energy functional was con-
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(a) (b)

Figure 2: Two graphs in (a) are Gaussian PDFs on RA and RB. There are
three intervals [Imin, I0], [I1, I2], and [I3, Imax], where the difference of two
PDFs is less than ζ(α) in (3.2). The local ambiguous region D(α) in (b) is
a set of points x whose intensities I(x) lie in the intervals. Each connected
component in D(α) is painted with green color.

structed using an average probability inside a window around points in an
image. The algorithm to minimize the energy functional has a drawback
that it is difficult to measure an optimal size of an window to obtain proper
segmentation. It is also hard to decide how many seed points are needed
in order to obtain computational efficiency. In this paper, we propose a
variational model which overcome those drawbacks. The main purpose of
the model is to handle misclassification in the local ambiguous regions.

3 Statistical variational formulation

3.1 Modeling of energy functional

Let Γ be a boundary separating two regions RA and RB and α =
(αA, αB) be Gaussian parameters of two regions. Figure 1 tells us that
if a difference of two Gaussian PDFs is large at a point, there is no misclas-
sification when we classify the point according to the difference of Gaussian
PDFs. However if the difference is small at a point, the classification of the
point could be wrong. We define a set of such points as a local ambiguous
region depending on Gaussian parameter α:

D(α) = {x | H(fα(x)) = 1}, (3.1)

where H is the Heaviside function,

fα(x) ≡ ζ(α)− |P(I(x);αA)−P(I(x);αB)|, (3.2)

and ζ(α) will be determined in Section 4.1. In Figure 2, (a) shows two
Gaussian PDFs and three intervals [Imin, I0], [I1, I2], and [I3, Imax], where
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the difference of PDFs is less than ζ(α). Here Imin and Imax are the smallest
intensity and the largest intensity in the image. Then the pixels whose
intensities are in the intervals belong to the local ambiguous region. In (b),
we depict the local ambiguous regions for Figure 1-(c) with green color.

Now, we propose a variational model which reduces misclassification in
the local ambiguous region D(α):

E(Γ, α, αl) = −
∑

i∈{A,B}

[ ∫

Ri\D(α)
logP(I(x);αi)dx

+
∫

Ri∩D(α)
logP(I(x);αl

i)dx

]
,

(3.3)

where α=(αA, αB) and αl=(αl
A, αl

B). For a simple explanation, we assume
that D(α) is a connected subset of Ω. In practice, we consider different pa-
rameters αl on each connected component of D(α). The first term in (3.3)
which we call the global region-based energy is the same as one in the
model (2.1) except that the energy is contributed in the region Ri \ D(α)
where a difference of two PDFs is large. In most cases, this term plays a
dominant role to segment an outline of objects in an image. The second
term which we call the local region-based energy is defined on the local am-
biguous region Ri ∩D(α) where the difference is small. Whereas the global
Gaussian parameter αi makes a misclassification in D(α), the local Gaussian
parameter αl

i reduces the misclassification because αl
i is obtained on not a

global region RA or RB, but a local region RA ∩ D(α) or RB ∩ D(α).
In order to find Euler-Lagrange equations for each variable, we write the

proposed energy functional (3.3) using the function fα in (3.2):

E(Γ, α, αl) = −
∑

i∈{A,B}

∫

Ri

[
H(fα) logP(I(x);αl

i)

+
(
1−H(fα)

)
logP(I(x);αi)

]
dx.

First, we consider the minimization of the energy with respect to the bound-
ary Γ. Fixing α and αl, the Euler-Lagrange equation for Γ becomes

−
[
H(fα)

(
logP(I(x);αl

A)− logP(I(x);αl
B)

)

+
(
1−H(fα)

)(
logP(I(x);αA)− logP(I(x);αB)

)]
~n = 0,

where x ∈ Γ. When the boundary Γ and α are fixed, the Euler-Lagrange
equation for αl = (αl

A, αl
B) = (µl

A, σl
A, µl

B, σl
B) produces the Gaussian pa-
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rameter for intensities in regions indicated by H(fα):

µl
i =

∫

Ri

H(fα)I(x)dx

∫

Ri

H(fα)dx

and (σl
i)

2
=

∫

Ri

H(fα)(I(x)− µl
i)

2dx

∫

Ri

H(fα)dx

for i ∈ {A,B}.
Finally fixing the boundary Γ and αl, we consider the minimization of the

energy with respect to the parameter α = (µA, σA, µB, σB). The necessary
condition ∂E

∂µk
= 0, k ∈ {A,B} gives the equations

∑

i∈{A,B}

∫

Ri

H ′(fα)
∂fα

∂µk

(
logP(I(x);αi)− logP(I(x);αl

i)
)
dx

−
∫

Rk

(
1−H(fα)

)I(x)− µk

σ2
k

dx = 0.

(3.4)

The condition ∂E
∂σk

= 0, k ∈ {A,B} gives the equations

∑

i∈{A,B}

∫

Ri

H ′(fα)
∂fα

∂σk

(
logP(I(x);αi)− logP(I(x);αl

i)
)
dx

−
∫

Rk

(
1−H(fα)

) (
− 1

σk
+

(I(x)− µk)2

σ3
k

)
dx = 0.

(3.5)

Unfortunately, solving the equations (3.4) and (3.5) is not possible and what
is worse, the parameter α is not relevant to Gaussian parameters on RA and
RB. The main problem comes from the fact that the local ambiguous region
D(α) in (3.1) depends on the parameter α.

3.2 Modification of Euler-Lagrange equations

In this section, we propose an algorithm to avoid the difficulty of Euler-
Lagrange equations for α in (3.4) and (3.5). Since the difficulty comes from
the dependence of the local ambiguous region on α in the proposed energy
functional (3.3), to remove the dependence we regard D as a parameter in
the functional

E(Γ,D, α, αl) = −
∑

i∈{A,B}

[ ∫

Ri\D
logP(I(x);αi)dx

+
∫

Ri∩D
logP(I(x);αl

i)dx

]
.

(3.6)

However, we do not drop the dependence of D on α; we use (3.6) to find
Euler-Lagrange equations with respect to α and D is determined by (3.1).
Then we propose the following procedure
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a) Initialize a curve Γn, n = 0.

b) Find regions RA and RB separated by the curve Γn and compute global
Gaussian parameters αA and αB in each region:

µi =
1
|Ri|

∫

Ri

I(x)dx and σ2
i =

1
|Ri|

∫

Ri

(I(x)− µi)2dx,

for i ∈ {A,B}.
c) Determine the local ambiguous region D(α) in (3.1).

d) Compute local Gaussian parameters αl
A and αl

B:

µl
i =

1
|Di|

∫

Di

I(x)dx and (σl
i)

2 =
1
|Di|

∫

Di

(I(x)− µl
i)

2dx,

where Di = Ri ∩ D(α) for i ∈ {A,B}.
e) Obtain the curve Γn+1 by solving the equation

−
[
H(fα)

(
logP(I(x);αl

A)− logP(I(x);αl
B)

)

+
(
1−H(fα)

)(
logP(I(x);αA)− logP(I(x);αB)

)]
~n = 0.

(3.7)

f) If Γn+1 is not changed from Γn, we stop the procedure. Otherwise, set
n = n + 1 and repeat.

Note that the local ambiguous region D(α) usually has many disjoint con-
nected components, i.e., D(α) =

⋃N
k=1Dk, Di ∩ Dj = ∅, i 6= j; see Figure 2.

Strictly speaking, the algorithm solves neither the Euler-Lagrange equa-
tions in Section 3.1 nor the variational model (2.1) on three different regions
RA, RB and D. However, it keeps the main purpose of the proposed energy
functional (3.3), which is to find the local ambiguous regions depending on
the global Gaussian parameter α and to use the local Gaussian parameter
αl to reduce misclassification. In the proposed algorithm, the parameter α
represents statistical information on regions separated by the evolving curve
Γ and the difficulty of Euler-Lagrange equations for α is avoided.

3.3 Extension to multi-dimensional Gaussian PDFs

Our algorithm can be easily extended to multi-dimensional Gaussian
PDFs which are used in a color image. The multi-dimensional Gaussian
PDF is given by

P(I(x)) =
1

2π
d
2 |Σ| 12

exp
(
−1

2
(I(x)− µ)T Σ−1(I(x)− µ)

)
, (3.8)
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where d is the number of channels and µ is the mean vector and Σ is the
covariance matrix. Basically dealing with the RGB color model, we compute
three dimensional probability density functions. If the channels are linearly
dependent it is not possible to compute the PDF because |Σ| = 0 and hence
Σ is not invertible in (3.8). To overcome the difficulty, we examine the
correlation between channels to select independent channels. The correlation
between two channels X,Y is given by

ρXY =
Cov(X, Y )

σXσY
,

where Cov(X,Y ) is the covariance of X, Y and σX , σY are the standard
deviations. If |ρXY | is close to 1, X and Y are likely to be linearly dependent
and if it is close to 0, they are almost linearly independent. Therefore if the
correlation is larger than a criterion, then we take the average of two channels
as one channel. Likewise we make a gray image if three channels are almost
linearly dependent. Then two Gaussian PDFs P(I(x);αA) and P(I(x);αB)
use the same channels.

4 Numerical aspects and examples

In this section, we raise numerical issues to solve (3.7) and show how to
take a threshold ζ(α) in (3.2).

4.1 Local ambiguous region

In order to determine the local ambiguous region D(α) in (3.1), we need
to determine a criterion ζ(α) in (3.2). The smaller the value ζ(α) is, the
smaller the region D(α) becomes and the more dominant a global parameter
α is in finding a boundary of an object in the proposed algorithm. Hence,
the selection of ζ(α) is crucial in our algorithm for segmentation.

Given a Gaussian PDF P(x) with a mean µ and η(0 ≤ η ≤ 1), we first
find β such that

∫ µ+β

µ−β
P(x)dx = η.

This means that the confidence interval of 100×η% is [µ−β, µ+β]. Taking
P(µ + β) as a criterion, if P(x) < P(µ + β) at x ∈ Ω, then we may regard
the point x as an uncertain point for classification. Based on this idea, we
compute βA and βB for two Gaussian PDFs P(I(x);αA) and P(I(x);αB),
respectively, in the proposed algorithm. Then we take

ζ(αA, αB) = min{P(µA + βA; αA),P(µB + βB; αB)}.
We used η = 0.7 for all examples.
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4.2 Evolution of the boundary

With the gradient descent method and the level set method, (3.7) is
formulated as

∂φ(x, t)
∂t

=
[
H(fα)

(
logP(I(x);αl

A)− logP(I(x);αl
B)

)

+
(
1−H(fα)

)(
logP(I(x);αA)− logP(I(x);αB)

)]|∇φ(x, t)|,
(4.1)

where the zero level set of φ(x, t) is the evolving curve which separates two
regions. Note that φ is a signed distance function with being positive inside
the curve. The equation (4.1) may be solved numerically by the nonoscil-
latory scheme for space and the explicit Euler scheme for time [17] with φn

as an initial curve. The numerical scheme, however, cause a severe restric-
tion on the stability condition because the force is not bounded. Instead
we find directly a steady state solution for the equation when the Gaussian
parameters α and αl are given. Since the steady state solution satisfies

F |∇φ(x, t)| = 0

with F ,

F = H(fα)
(
logP(I(x);αl

A)− logP(I(x);αl
B)

)

+
(
1−H(fα)

)(
logP(I(x);αA)− logP(I(x);αB)

)

we simply take a step function

φ(x) =





1 if F (x) > 0,

−1 if F (x) < 0, for x ∈ Ω
0 if F (x) = 0,

and take the reinitialization process [18]. Then it becomes the solution φn+1.

4.3 Examples

In this section, we present several examples to illustrate our model and
algorithm. We have two synthetic images on the top in Figure 3. These im-
ages are expected to have two modes, the object and the background. Note
that two images have various intensities around boundaries of objects by il-
lumination. We select the initial curve manually for each image as shown at
the bottom in Figure 3. Figure 4 shows several iterates for two synthetic im-
ages when we apply our algorithm. For each image, local ambiguous regions
are depicted by green color. In Figure 5 we compare our method with the
region competition based on (2.1) and the Chan-Vese model in [11], which
are most popular among the region-based segmentations. Figure 5-(a) is the

10



(a) (b)

Figure 3: Two synthetic images on the top and the initial curves at the
bottom are shown. These images have various intensities around boundaries
of objects by illumination.
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(a) (b)

Figure 4: Several iterates are shown for two synthetic images when our
method is applied. From the top to the bottom, n = 1, 2, 3, 4. For each
image, local ambiguous regions are depicted by green color.
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(a) (b) (c)

Figure 5: For two synthetic images, three models are applied. (a) is obtained
when the region competition is used and (b) is for our model and (c) is for
the Chan-Vese model. Notice that (a) and (c) fail to detect boundaries
correctly. On the other hand our model gives the correct boundary between
the object and the background.
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(a) (b)

(c) (d) (e)

Figure 6: (a) is an image taken from a studio. It has weak boundary on the
top as well as highly concave shape on the sides of the object. An initial
curve(red line) is shown in (b). With this initial curve, three segmenta-
tion models are applied. Different results are shown at the bottom. (c)
is obtained from the region competition, (d) is from our model, and (e) is
from the Chan-Vese model. Our method detects both weak edge and highly
concave shape.

results of two synthetic images when the region competition is applied, and
(b) and (c) account for our model and the Chan-Vese model, respectively.
Both (a) and (c) give wrong segmentation by passing though boundaries
where illumination changes and these misclassification is inevitable, while
our model gives exact boundary by reducing misclassification in ambiguous
region as shown in Figure 4.

We apply our method to the real image taken in a studio. Figure 6-(a) is
the original image where the object has various intensities inside the object
as well as near its boundary, in particular, the top. The top is illuminated
and forms weak edge. Notice that both sides of the object have highly con-
cave parts. Thus the main problem for this image is to detect the weak edge
and highly concave boundary simultaneously. With the same initial curve
in Figure 6-(b), three models are applied; (c) is for the region competition,
(d) and (e) are for our model and the Chan-Vese model, respectively. Three
models detect correctly highly concave boundaries on both sides of the ob-
ject. However, the region competition and Chan-Vese model fail to detect
the weak edge on the top where the curves pass through the boundary of
the object. On the other hand our model detects the weak edge correctly.

In Figure 7 there are three real images. Figure 7-(a) is a gray blurred

14



(a) (b) (c)

(d) (e) (f)

Figure 7: There are three real images on the top. (a) is a gray noisy image
which is blurred. (b) is a shaded color image and (c) is taken from the
seashore with a digital camera. Images at the bottom are the results of our
algorithm.
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noisy image, (b) is a shaded color image, and (c) is taken from the seashore
with a digital camera. For three images we apply our method. In (d)
numbers in the blurred noisy image are segmented without corruption of
noise. Alphabet letters are separated from the background in (e). (f) shows
segmentation between a boy and the sandy plain. The shadow near the boy
is excluded.

5 Conclusions

In this paper we proposed a variational segmentation model based on
statistical information of intensities in an image. Since the global region-
based energy model which uses the statistical information in whole region
causes misclassification, in order to reduce misclassifications, we defined the
local ambiguous region, where the difference of two Gaussian PDFs is small
and considered an energy using the local Gaussian parameter restricted to
the local region. Then we combined the local region-based energy with the
global region-based energy. This model, however, induces the difficulty in
handling Euler-Lagrange equations. We thus proposed an algorithm to avoid
the difficulty. It consists of several steps to solve Euler-Lagrange equations;
the local ambiguous region as a parameter of the energy is determined ex-
plicitly after the global Gaussian parameters are computed. With several
examples we confirmed that our model and the algorithm reduced misclassi-
fication and hence detected the boundary of the object when an illumination
is changed.
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