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Abstract

We propose a nonlinear partial differential equation (PDE) for regularizing a tensor
which contains the first derivative information of an image such as strength of edges
and a direction of the gradient of the image. Unlike a typical diffusivity matrix which
consists of derivatives of a tensor data, we propose a diffusivity matrix which consists
of the tensor data itself, i.e., derivatives of an image. This allows directional smoothing
for the tensor along edges which are not in the tensor but in the image. That is, a
tensor in the proposed PDE is diffused fast along edges of an image but slowly across
them. Since we have a regularized tensor which properly represents the first derivative
information of an image, the tensor is useful to improve the quality of image denoising,
image enhancement, corner detection, and ramp preserving denoising. We also prove
the uniqueness and existence of solution to the proposed PDE.

Keywords: nonlinear diffusion, structure tensor, image denoising, image enhance-
ment, corner detection, ramp preserving denoising.

1 Introduction

The image processing based on partial differential equations (PDEs) has been extensively
studied for last 20 years and remarkably successful in problems of computer vision. It
starts with an assumption that a gray image is a positive real valued function defined on a
rectangular domain even though a digital image is represented by integers from 0 as black
to 255 as white. In many low-level topics in computer vision such as image denoising, image
enhancement, edge and corner detection, and image segmentation, it is crucial to obtain
a regularized derivative information of an image. Since a digital image is represented by
integral values, it is difficult to obtain a good approximation of derivatives of the image
using a standard finite difference scheme. If a given image has noise, it will be a much
harder problem. One of simple solutions is to regularize an image and then differentiate the
regularized image. However, in this paper, we use the opposite order of operation; we get
derivative information of an image and then regularize it even though the image has noise.
∗This work was supported by KRF-2006-311-C00015.
†jyhahn76@amath.kaist.ac.kr
‡colee@kaist.edu
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In other words, we propose a noble PDE for regularizing a tensor which contains the first
derivative information of an image such as strength of edges and a direction of the gradient
of the image.

The Perona-Malik (PM) model [1,2] has been a fundamental frame for adaptive smooth-
ing process based on a nonlinear PDE. Let I0: Ω ⊂ R2 → R+ be an initial noisy image and
h: R+ → R+ be an weight function with a regularization factor ε:

h
(
s2
)

=
1√

ε2 + s2
. (1.1)

As time evolves, the PM model generates regularized images I(x, t) which satisfy the PDE

∂I

∂t
(x, t) = ∇ ·

(
h
(∣∣∇Iσ∣∣2)∇I) in Ω× (0, T1],

∇I(x, t) · n = 0 on ∂Ω× (0, T1],
I(x, 0) = I0(x) on Ω,

(1.2)

where n is a normal vector to ∂Ω and Iσ ≡ Gσ ∗ I is the convolution of I with the two-
dimensional Gaussian kernel with a standard deviation σ. The PM model uses regularized
strength of edges as |∇Iσ| which makes an adaptive smoothing process. Note that Iσ is
an isotropically smoothed image since the Gaussian convolution is equivalent to solve an
isotropic linear heat equation. If an initial image is highly noisy, we need to use large σ in
order to obtain reliable information of strength of edges. However, the regularized strength
of edges with large σ is smeared out and it fails to make effective adaptive smoothing in
order to keep edges and corners in an original image. Even though we take small σ, large
end time T1 is needed to obtain a regularized image which has visually small amount of
noise. It is not guaranteed that edges and corners are preserved with large end time T1.
Moreover, it is hard to take a proper σ in order to obtain good regularized strength of edges
because it is hard to measure an amount of noise in practice.

Weickert [3] proposed the coherence-enhancing diffusion based on a diffusivity matrix
which explicitly represents directional smoothing. The diffusivity matrix is obtained by a
structure tensor [4–6]

Gσ ∗
(
∇Iρ∇IρT

)
, (1.3)

where T is the transpose and (Gσ ∗M)ij = Gσ ∗mij for a matrix M = (mij). The noise
scale ρ is determined by an amount of noise in an initial image and the integration scale
σ reflects a size of neighborhood for a local structure analysis. The structure tensor has a
remarkable feature in obtaining regularized strength of edges when ρ is taken small enough
to compute ∇Iρ. While the regularized strength of edges in the PM model is obtained by
regularizing an image and then differentiating the regularized image, it is obtained in a
structure tensor by differentiating an image and then regularizing derivatives of the image.
Changing the order of two operations, the structure tensor has better representation of
flow-like structures in an image [3]. However, it still has the same problem of choosing a
value σ as in (1.2) when an initial image is highly noisy.

From two PDE-based image denoising models in the above, we notice that, for the
purpose of adaptive smoothing of an image, it is crucial to obtain regularized strength of
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edges which properly represents local structures of the image such as edges and corners
robust to a change of an amount of noise in the image. Moreover, if we have a regularized
direction of the gradient of an image which properly represents the orthogonal orientation
to edges in the image, it will improve the quality of image denoising based on an anisotropic
diffusion.

In this paper, we propose a nonlinear PDE for regularizing a tensor which contains the
first derivative information of an image such as strength of edges and a direction of the
gradient of the image. Unlike a typical diffusivity matrix which consists of derivatives of a
tensor data [7–13], we propose a diffusivity matrix which consists of the tensor data itself,
i.e., derivatives of an image. This allows directional smoothing of a tensor along edges
which are not in the tensor but in the image. That is, the tensor is diffused fast along
edges of an image but slowly across them. It explains that the proposed PDE generates
regularized tensors which adapt to the first derivative information of an image as time
evolves. Moreover, the regularized tensor is used to improve the quality of image denoising,
image enhancement, corner detection, and ramp preserving denoising.

The rest of this paper is organized as follows. We propose a nonlinear PDE for regular-
izing a tensor which contains the first derivative information of an image in Section 2. The
existence and uniqueness of solution to the proposed PDE are proved in Section 3. Appli-
cations which use derivative information of an image are shown with examples in Section 4
and we show how a regularized tensor in the proposed PDE is used to improve the quality
of results. The paper is concluded in Section 5.

2 A nonlinear PDE for regularizing a tensor

2.1 Modeling of PDE

In this section, we propose a nonlinear PDE for regularizing a tensor which contains the
first derivative information of an image. Let us consider a gray image I: Ω ⊂ R2 → R+,
which is smooth enough to compute a structure tensor [4–6]:

∇I∇IT =


(
∂I

∂x

)2 ∂I

∂x

∂I

∂y
∂I

∂x

∂I

∂y

(
∂I

∂y

)2

 . (2.1)

It contains all first derivative information of an image because the maximum eigenvalue and
the corresponding eigenvector provide strength of edges and a direction of the gradient of
the image, respectively. There have been many different types of diffusion for regularizing a
tensor data with applications to optical flow estimation [7–9] and diffusion tensor magnetic
resonance imaging [10–13]. In these works, diffusion coefficients for regularizing a tensor
data depend on derivatives of the tensor data. If a regularized tensor data with such
diffusion coefficients is used in a diffusivity matrix of denoising an image, it is not desirable
to preserve edges and corners in a denoised image.

If a regularized tensor is used as diffusion coefficients of image denoising, the desirable
features of the tensor are as follows: the maximum eigenvalue has a larger value on edges
than on homogeneous regions, it has the local maximum on edges, and the corresponding
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(a) (b) (c)

Figure 2.1: (a) is an one-dimensional image data I(x). The point x = e is an edge in (a).
(b) is u(x, 0) =

(
dI
dx(x)

)2
. (c) is

∣∣∂u
∂x(x, 0)

∣∣2.

eigenvector near edges is orthogonally aligned to edges of an image. For a clear explanation,
we consider an image data I as a function defined on a closed interval [0, 1] in Figure 2.1-
(a). Let us write the corresponding formulation to typical tensor regularization in [9, 14]
(see (B.2) and (B.3) in Appendix B):

∂u

∂τ
(x, τ) =

∂

∂x

(
h

(∣∣∣∣∂u∂x
∣∣∣∣2
)
∂u

∂x

)
in [0, 1]× (0, T2] ,

∂u

∂x
(0, τ) =

∂u

∂x
(1, τ) = 0 on (0, T2] ,

u(x, 0) =
(
dI

dx
(x)
)2

on [0, 1].

(2.2)

The point x = e in Figure 2.1-(a) is an edge of the image data I which is characterized by
a local maximum of the derivative of the image. In order to keep the edge in a denoised
image, the value u(e, T2) should be as large as possible. However, a regularized u near
the edge at x = e is easily smeared out since |∂u∂x |

2 has a local minimum at the edge. It
explains that the function |∂u∂x |

2 in the diffusion coefficient for regularizing u does not help
to preserve a large value of u at edges of an image when end time T2 become large; see
Figure 2.1. Instead of using such a function, we propose a diffusion process of u whose
diffusion coefficient consists of the diffused quantity u itself:

∂u

∂τ
(x, τ) =

∂

∂x

(
h
(
u2
)∂u
∂x

)
in [0, 1]× (0, T2] ,

∂u

∂x
(0, τ) =

∂u

∂x
(1, τ) = 0 on (0, T2] ,

u(x, 0) =
(
dI

dx
(x)
)2

on [0, 1].

(2.3)

Then a regularized u near the edge at x = e is not easily smeared out since u2 has a local
maximum at the edge. Even if there is noise in a given image, a solution of the proposed
PDE (2.3) outperforms a solution of the PDE (2.2) since it has larger value at x = e; see
Figure 2.2.
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(a) (b) (c)

Figure 2.2: (a) is an one-dimensional noisy image data I(x) (green) and an original data
(red). (b) is an initial data of (2.3) (green) and the square of derivative of the original data
(red). (c) is regularized derivatives at T2 = 600 using different PDEs. The green curve is a
result of the proposed PDE (2.3) and the blue curve is a result of (2.2).

Now, by extending an image data I in the PDE (2.3) to a gray image, we propose a
noble nonlinear PDE for regularizing a tensor which contains derivatives of the image:

∂uij
∂τ

(x, τ) = ∇ ·
(
g
(
Uσ
)
∇uij

)
in Ω× (0, T2] ,(

g
(
Uσ
)
∇uij

)
· n = 0 on ∂Ω× (0, T2] ,

uij(x, 0) =
(
∇I(x)∇I(x)T

)
ij

on Ω.

(2.4)

The function g is defined on a set S of real symmetric 2× 2 matrices:

g(M) ≡ g̃(Λ)vΛvΛ
T + g̃(λ)vλvλT, (2.5)

where (Λ, vΛ) and (λ, vλ) are eigenpairs of M ∈ S, Λ ≥ λ, and g̃ is even symmetric to the
function (1.1). Note that it is easily extended to a color image in Section 3. Comparing (2.4)
with nonlinear PDEs (B.2) and (B.3) for regularizing a tensor, the only difference is a
diffusivity matrix depending upon the tensor itself, not derivatives of the tensor. The key
point is that the maximum eigenvalue and the corresponding eigenvector of a tensor in
the proposed PDE provides regularized strength of edges of an image and a regularized
direction of the gradient of the image. That is, the tensor is diffused fast along edges
of an image but slowly across them. Note that the tensor in (B.2) or (B.3) is diffused
fast along edges of a tensor data but slowly across them. In the next section, we will
show that a regularized tensor from (2.4) helps to preserve edges and corners in a denoised
image and it represents derivative information of an image better than regularized tensors
from (B.1), (B.2), and (B.3).

2.2 Quality of the nonlinear structure tensor

In this section, we show distinctive features of a regularized tensor from the proposed
PDE (2.4). Two examples are presented to show a superiority of the proposed method by
comparing it with other methods. The first is image denoising with different end time for
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(a)

(b)

(c) (d) (e)

Figure 2.3: (a) is a clean image Ic. In (b), we add the Gaussian white noise with zero mean
and the standard deviation 70 (SNR ' 7.62). (c), (d), and (e) are obtained by different
PDEs for image denoising (A.1), (A.2), and (A.3) at T1 = 30, respectively (see Appendix A).
From top to bottom, different end time T2 for regularizing a tensor is used as 1, 5, and 10.
SNR (2.6) and relative H1 norm error (2.7) are shown in Table 2.1. Note that denoised
images in (e) from (A.3) which uses our regularized tensor (2.4) preserve geometric features
such as edges and corners in the original image (a) and have steady and high SNR with
various end time T2.

regularizing a tensor and the second is to check how well a regularized tensor represents
derivative information of an image. For a comparison, we list PDEs for image denoising
using different regularized derivative information of an image in Appendix A and PDEs for
regularizing a tensor in Appendix B.

In Figure 2.3, the Gaussian white noise with the zero mean and the standard deviation
70 is added to a clean image Ic. The quality of regularized images is measured by two
different methods in Table 2.1. The first is signal-to-noise ratio (SNR):

SNR = 10 log10

V (Ir)
V (Ir − Ic)

, (2.6)

where V (·) is the variance of an image and Ir is the solution at t = T1 of PDEs in Ap-
pendix A. The second is relative H1 norm error:

Rel.H1 =
‖Ir − Ic‖H1

‖Ic‖H1

, where ‖I‖2H1 =
∫

Ω
I2 +

∫
Ω
|∇I|2. (2.7)

End time for image denoising is fixed as T1 = 30 and denoised images are presented by using
different end time T2 = 1, 5, and 10 for regularizing a tensor in Figure 2.3. As it is expected,
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Comparison of the solution to different PDEs for image denoising

T2

(A.1) (A.2) (A.3)
SNR Rel. H1 SNR Rel. H1 SNR Rel. H1

1 16.19 0.260 16.92 0.251 17.54 0.242
5 12.98 0.314 15.56 0.271 17.38 0.244
10 10.89 0.357 14.87 0.281 17.26 0.245

Table 2.1: We use different image denoising methods (A.1), (A.2), and (A.3) of the noisy
image in Figure 2.3-b.

the PM model (A.1) gives wiggly image with small T2 and too smeared image with large T2.
Regularized images from (A.2) look clean, but SNR is smaller and relative H1 norm error
is larger than results from the proposed method. Denoised images from (A.3) which uses
the proposed PDE (2.4) for regularizing a tensor have steady and high SNR and robust to
various end time T2. Considering with the necessity of choosing a proper noise scale in (A.1)
which depends on an amount of noise, results from (A.3) are practically useful because it
is hard to measure an amount of noise in a given image. Denoised images from (A.3) also
preserve geometric features such as edges and corners in the original image. It explains
that a regularized tensor by our method has distinctive information of derivatives of image
which improves the quality of image denoising.

Now, we show how well a regularized tensor in the proposed PDE (2.4) represents
derivative information near edges in an image, as time τ evolves. Since we regularize a
tensor U(·, 0) whose the maximum eigenvalue and the corresponding eigenvector are |∇I|2
and ∇I, respectively, the maximum eigenvalue Λ and the corresponding unit eigenvector vΛ

of a tensor U(·, τ) are considered as regularized strength of edges and a regularized direction
of the gradient of an image, respectively. In order to check that both Λ and vΛ near edges
are properly obtained, we compute a normalized vector field V which points a local maxima
of Λ along a direction of vΛ:

V ≡ sgn (∇Λ · vΛ) vΛ, (2.8)

where sgn(·) is the sign function. If an original image I is smooth and a regularized tensor
of the proposed PDE (2.4) preserves an initial condition very well, we have,

V ' sgn
(
∇
(
|∇I|2

)
· ∇I
|∇I|

)
∇I
|∇I|

= sgn
(
∇
(
|∇I|

)
· ∇I
|∇I|

)
∇I
|∇I|

= sgn
(
D2
∇I
|∇I|

I

)
∇I
|∇I|

,

where D2
v(·) is the second directional derivative along the direction v. In this case, if we

restrict V on a set of points in the pixel resolution, which is defined by

R ≡
{
x ∈ Ω | V(x∗) · V(x) < 0 and x∗ = x+ V(x)

}
, (2.9)

then vectors in V|R, the restriction of V on R, should have two properties. First, they are
placed in the closest pixel to edges which are defined by zeros of the second directional
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(a) (b) (c) (d) (e)

Figure 2.4: (a) is a given image and the red curve in (b) is the exact location of edges. (c) is
the vector field V in (2.8) obtained by the regularized tensor of the proposed PDE (2.4) at
T2 = 10. Vectors on the set R in (2.9) are highlighted in yellow. (d) and (e) are magnified
images from both the red curve in (b) and vectors in (c) on green square regions. Note that
vectors in highlighted in yellow are placed in pixels close to edges. They also point to edges
and are aligned orthogonally to edges.

derivative of an image along a direction of the gradient of the image. Second, they point
to edges and are aligned orthogonally to edges. Therefore, if V|R from a regularized tensor
does not have these properties, the regularized tensor does not properly represents derivative
information near edges in an original image.

In Figure 2.4, we obtain the vector field V (2.8) from our regularized tensor (2.4) at
T2 = 10. Vectors on the set R in (2.9) are highlighted in yellow. They are placed in
pixels close to edges. They also point to edges and are aligned orthogonally to edges. A
regularized tensor from the proposed PDE correctly represents derivative information near
edges in an image. In Figure 2.5, we use the same image in Figure 2.4-(a) to compare a
vector field V|R from our regularized tensor (B.4) with vector fields from different regu-
larized tensors obtained by (B.1), (B.2), and (B.3). More interestingly, we also compare a
vector field V|R from a tensor ∇Ĩ∇ĨT, where a regularized image Ĩ is obtained by the PM
model (A.1). The last comparison raises a question that which one is better to preserve
derivative information of an image between the method of regularizing an image first and
taking derivative of the regularized image later and the method of taking derivative of an
image first and regularizing it later. Weickert [3] already mentioned that the latter is better
in the case of a flow-like image by comparing ∇(Gσ ∗ I) with eigenvector which corresponds
to maximum eigenvalue in a structure tensor Gσ ∗

(
∇I∇IT

)
. We put the problem in more

difficult situation. The image in Figure 2.4 has weak edges and we use more advanced
regularization of the image (A.1) instead of using an isotropic linear regularization of the
image. For the comparison, end time T1 for an image diffusion in (A.1) and T2 for tensor
diffusions (B.1), (B.2), (B.3), and (B.4) are taken as the same value. A vector field V|R from
our regularized tensor (B.4) gives the best quality for preserving derivative information near
edges in an image, as time τ evolves. It also shows the better performance than a result
from regularizing an image first and taking derivative of the regularized image later.
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(a) (b) (c) (d) (e)

Figure 2.5: A restricted vector field V|R is obtained by (2.8) and (2.9) from a tensor.
Vectors in (a) are V|R from a tensor ∇Ĩ∇ĨT, where a regularized image Ĩ is obtained
by the PM model (A.1). Vectors in (b), (c), (d), and (e) are V|R from the regularized
tensors of (B.1), (B.2), (B.3) and (B.4), respectively. From top to bottom, end time T1 for
regularizing an image and T2 for regularizing a tensor are taken as same values, 11, 33, and
55. Apparently, vectors from our regularized tensor (B.4) show the best result for preserving
derivative information near edges in an image as time evolves.
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3 Existence and uniqueness of the proposed PDE

In this section, we extend the proposed PDE (2.4) for a color image and provide math-
ematical justification to use the extended PDE. The proof of the existence and uniqueness
of solution to the extended PDE follows the main argument in [2] with an extension to a
multidimensional data. Since the PDE for image denoising (A.3) has the solution when a
diffusivity matrix is positive definite, we will also prove a solution of the proposed PDE is
positive definite if an initial data is.

Recall that S is a set of real symmetric 2× 2 matrices. Any matrix X ∈ S is diagonal-
izable, i.e.,

X =
(
x1 −x2

x2 x1

)(
ΛX 0
0 λX

)(
x1 −x2

x2 x1

)T

,

where
(
ΛX , (x1, x2)T

)
and

(
λX , (−x2, x1)T

)
are eigenpairs of X and ΛX ≥ λX . Note that

x2
1 + x2

2 = 1. The existence and uniqueness of solution to the proposed PDE (2.4) are based
on a simple property of a Lipschitz function defined on S.

Lemma 1. Let f be a function from S to S defined by

f(X) ≡
(
x1 −x2

x2 x1

)(
f̃
(
ΛX
)

0
0 f̃

(
λX
) )( x1 −x2

x2 x1

)T

,

where f̃ is a Lipschitz function on R. Then f is also a Lipschitz function on S.

Proof. It is enough to show that f is a Lipschitz function on S with the Frobenius norm
‖·‖F . Let X and Y be two elements in S. Since X and Y are diagonalizable, we have

X − Y =
(

ΛXx2
1 + λXx2

2 − ΛY y2
1 − λY y2

2

(
ΛX − λX

)
x1x2 −

(
ΛY − λY

)
y1y2(

ΛX − λX
)
x1x2 −

(
ΛY − λY

)
y1y2 ΛXx2

2 + λXx2
1 − ΛY y2

2 − λY y2
1

)
,

where
(
ΛX , (x1, x2)

)
and

(
λX , (−x2, x1)

)
are eigenpairs ofX with ΛX ≥ λX and

(
ΛY , (y1, y2)

)
and

(
λY , (−y2, y1)

)
are eigenpairs of Y with ΛY ≥ λY . Note that we have two identities

x2
1 + x2

2 = 1 and y2
1 + y2

2 = 1. (3.1)

If we denote components of X − Y by a, b, and c, then

‖X − Y ‖2F =
∥∥∥∥( a b

b c

)∥∥∥∥2

F

= a2 + 2b2 + c2 =
1
2
(
(a+ c)2 + (a− c)2 + 4b2

)
. (3.2)

For the simplicity of notation, we define

α ≡ ΛX − λX , β ≡ ΛY − λY , γ ≡ ΛX − ΛY , and δ ≡ λX − λY ,

then we obtain, by (3.1),

(a+ c)2 = (γ + δ)2, (3.3)

(a− c)2 + 4b2 = α2 + β2 + 2αβ
(
(x2y1 − x1y2)2 − (x1y1 + x2y2)2

)
.
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Let θ be an angle between (x1, x2) and (y1, y2). Since (x1, x2) and (−x2, x1) are orthogonal,
we get

(a− c)2 + 4b2 = α2 + β2 + 2αβ
(
2 sin2 θ − 1

)
. (3.4)

From (3.2), (3.3) and (3.4), we deduce

‖X − Y ‖2F =
1
2
(
(γ + δ)2 + (α− β)2 + 4αβ sin2 θ

)
.

By using α− β = γ − δ, we finally obtain

‖X − Y ‖2F =
(
ΛX − ΛY

)2
+
(
λX − λY

)2
+ 2
(
ΛX − λX

)(
ΛY − λY

)
sin2 θ. (3.5)

Now, we show that f is a Lipschitz function on S. From (3.5), it is obvious that

‖f(X)− f(Y )‖2F =
(
f̃
(
ΛX
)
− f̃

(
ΛY
))2

+
(
f̃
(
λX
)
− f̃

(
λY
))2

+ 2
(
f̃
(
ΛX
)
− f̃

(
λX
))(

f̃
(
ΛY
)
− f̃

(
λY
))

sin2 θ.

Since we have ΛX ≥ λX and ΛY ≥ λY ,

‖f(X)− f(Y )‖F ≤ C‖X − Y ‖F ,

where a constant C is a Lipschitz constant of f̃ .

Now, we extend the proposed PDE (2.4) for a color image. Let Ω be (0, 1)× (0, 1) ⊂ R2

and h: R → R+ be smooth, decreasing on [0,∞), even, h(0) = 1, lim
s→∞

h(s) = 0, and

s 7−→ h(
√
|s|) smooth. Note that a typical choice of function h is even symmetric to the

function (1.1). For the simplicity of notation, we define

ua ≡ aT

(
u11 u12

u21 u22

)
a,

where a vector a ∈ R2 is constant with |a| = 1. Let us consider a color image I: Ω ⊂ R2 →
(R+)3 as a function whose components Ik are smooth enough to compute

M =
(
m11 m12

m21 m22

)
≡

3∑
k=1

∇Ik∇IkT. (3.6)

An extension of the proposed PDE (2.4) for a color image is a system of nonlinear parabolic
partial differential equations

∂uij
∂τ

= ∇ ·
(
g(Uσ)∇uij

)
in Ω× (0, T ),(

g(Uσ)∇uij
)
· n = 0 on ∂Ω× (0, T ), (3.7)

uij(x, 0) = mij(x) on Ω,
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where a function g from S to S was defined in (2.5). In order to prove existence and
uniqueness, we introduce standard function spaces. Let H1(Ω) be the Sobolev space of
functions u ∈ L2(Ω) with its distributional derivatives Dsu of order |s| =

∑2
j=1 sj ≤ 1

being in L2(Ω). It is a Hilbert space with the norm

‖u‖H1(Ω) =

∑
|s|≤1

‖Dsu‖2L2(Ω)

 1
2

and we denote by
(
H1(Ω)

)′ its dual space. For a given Banach space B with a norm ‖ · ‖B,
we denote by Lp((0, T );B) the set of all strongly measurable functions u: [0, T ]→ B with

‖u‖Lp((0,T );B) ≡
(∫ T

0
‖u(τ)‖pB dτ

) 1
p

<∞

for 1 ≤ p <∞, and

‖u‖L∞((0,T );B) ≡ ess sup
0≤t≤T

‖u(τ)‖B <∞.

We also denote by C ([0, T ];B) the set of all continuous functions u: [0, T ]→ B with

‖u‖C ([0,T ];B) ≡ max
[0,T ]
‖u(τ)‖B <∞.

In a similar way, we denote by L∞((0, T );C∞(Ω)) the set of all functions such that u(τ) ∈
C∞(Ω) for almost every τ ∈ (0, T ) with

‖u‖L∞((0,T );C∞(Ω)) ≡ inf
α

{
‖u(τ)‖C∞(Ω) ≤ α, for almost every τ ∈ (0, T )

}
<∞.

See [15] for more details of function spaces. Now, we prove following statements for the
proposed PDE (3.7).

Theorem 1. If mij ∈ L2(Ω), then there exist unique solutions

uij ∈ C ([0, T ];L2(Ω)) ∩ L2((0, T );H1(Ω)) with
∂uij
∂τ
∈ L2((0, T );

(
H1(Ω)

)′)
satisfying (3.7) in the distributional sense. Moreover,

uij ∈ C∞((0, T )× Ω̄) and ‖uij‖L∞((0,T );L2(Ω)) ≤ ‖mij‖L2(Ω).

Proof. Part 1: Uniqueness. Let uij and vij be two solutions of (3.7). That is, we have

∂uij
∂τ

= ∇ ·
(
g(Uσ)∇uij

)
,
(
g(Uσ)∇uij

)
· n = 0, uij(x, 0) = mij(x),

∂vij
∂τ

= ∇ ·
(
g(Vσ)∇vij

)
,
(
g(Vσ)∇vij

)
· n = 0, vij(x, 0) = mij(x).

Denoting wij ≡ uij − vij , we obtain

∂wij
∂τ
−∇ ·

(
g(Uσ)∇wij

)
= ∇ ·

(
(g(Uσ)− g(Vσ))∇vij

)
.

12



For a constant vector a ∈ R2 with |a| = 1, from above equations we have

∂wa
∂τ
−∇ ·

(
g(Uσ)∇wa

)
= ∇ ·

(
(g(Uσ)− g(Vσ))∇va

)
.

Multiplying it by wa and integrating over Ω, we get

1
2
d

dτ

∫
Ω
|wa(x, τ)|2dx+

∫
Ω

(
∇g(Uσ)(x, τ)∇wa(x, τ)

)
· wa(x, τ)dx =

−
∫

Ω

((
g(Uσ)− g(Vσ)

)
(x, τ)∇va(x, τ)

)
· ∇wa(x, τ)dx, a.e τ ∈ (0, T ).

(3.8)

Now, we claim following statements that will be proved at the end of Part 1,

L-1. The diffusivity matrix g(Uσ) is uniformly positive definite almost everywhere, i.e.,
there exists a constant ν independent of (x, τ) such that aTg(Uσ)a ≥ ν > 0 almost
everywhere in Ω× (0, T ) for all a ∈ R2 with |a| = 1.

L-2. There exits a constant K, depending only on Gσ such that∫
Ω

((
g(Uσ)− g(Vσ)

)
(x, τ)∇va(x, τ)

)
· ∇wa(x, τ)dx

≤ KF (τ)‖∇va(τ)‖L2(Ω)‖∇wa(τ)‖L2(Ω),

where F (τ) = max
a∈R2

|a|=1

∥∥aTW (τ)a
∥∥
L2(Ω)

and W ≡ U − V .

From (3.8), we use L-1 to obtain

1
2
d

dτ
‖wa(τ)‖2L2(Ω) + ν‖∇wa(τ)‖2L2(Ω)

≤
∫

Ω

((
g(Uσ)− g(Vσ)

)
(x, τ)∇va(x, τ)

)
· ∇wa(x, τ)dx, a.e τ ∈ (0, T ).

Using L-2 and Young’s inequality, we deduce

1
2
d

dτ
‖wa(τ)‖2L2(Ω) + ν‖∇wa(τ)‖2L2(Ω)

≤ K2

2ν
{F (τ)}2‖∇va(τ)‖2L2(Ω) +

ν

2
‖∇wa(τ)‖2L2(Ω), a.e τ ∈ (0, T ).

Then, we obtain

d

dτ
‖wa(τ)‖2L2(Ω) ≤

K2

ν
{F (τ)}2‖∇va(τ)‖2L2(Ω), a.e τ ∈ (0, T ). (3.9)

Since the inequality (3.9) holds for an arbitrarily given constant vector a ∈ R2 with |a| = 1,
we deduce

d

dτ
{F (τ)}2 ≤ φ(τ){F (τ)}2, a.e τ ∈ (0, T ), (3.10)

13



where φ(τ) ≡ K2

ν
max
a∈R2

|a|=1

‖∇va(τ)‖2L2(Ω).

Now, we apply Gronwall’s inequality to (3.10),

{F (τ)}2 ≤ {F (0)}2 exp
∫ τ

0
φ(s)ds,

By using F (0) = 0, we obtain

F (τ) = max
a∈R2

|a|=1

∥∥aTW (τ)a
∥∥2

L2(Ω)
= 0, a.e. τ ∈ (0, T ).

Finally, we conclude

aTW (x, τ)a = 0, a.e. (x, τ) ∈ Ω× (0, T ),

for all constant vectors a ∈ R2 with |a| = 1. It implies that

uij(x, τ) = vij(x, τ), a.e. (x, τ) ∈ Ω× (0, T ), ∀i, j ∈ {1, 2}.

Proof of L-1. Since the function h is decreasing, it is enough to show that all eigenvalues
of Uσ are bounded almost everywhere in Ω× (0, T ). Since uij ∈ L∞((0, T );L2(Ω)) from the
result of existence, we get Gσ ∗uij ∈ L∞((0, T );C∞(Ω)) for all i, j. Then we have aTUσa ∈
L∞((0, T );C∞(Ω)) for any constant vectors a ∈ R2 with |a| = 1. That is, there exits a
constant K̃, depending only on Gσ and ‖mij‖L2(Ω), such that

∣∣aTUσa
∣∣ =

∣∣Gσ ∗ aTUa
∣∣ ≤ K̃,

almost everywhere in Ω× (0, T ).

Proof of L-2. First, we simply obtain∫
Ω

((
g(Uσ)− g(Vσ)

)
(x, τ)∇va(x, τ)

)
· ∇wa(x, τ)dx

≤ max
x∈Ω
‖(g(Vσ)− g(Uσ))(x, τ)‖2‖∇va(τ)‖L2(Ω)‖∇wa(τ)‖L2(Ω),

where ‖·‖2 is a matrix norm as the spectral radius for symmetric matrices. We have a norm
equivalence between ‖·‖2 and the Frobenius norm ‖·‖F such that

1√
2
‖A‖F ≤ ‖A‖2 ≤ ‖A‖F . (3.11)

By Lemma 1 and (3.11), there exits a constant C(h) such that

‖g(Vσ)− g(Uσ)‖2 ≤ C(h)‖Vσ − Uσ‖2.

Then there is a constant K depending on Gσ and h such that

‖g(Vσ)− g(Uσ)‖2 ≤ K(h,Gσ) max
a∈R2

|a|=1

∥∥aT(U − V )(τ)a
∥∥
L2(Ω)

.
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Note that the constant K is independent of (x, τ) ∈ Ω× (0, T ). Therefore, we obtain∫
Ω

((
g(Uσ)− g(Vσ)

)
(x, τ)∇va(x, τ)

)
· ∇wa(x, τ)dx

≤ K(h,Gσ) max
a∈R2

|a|=1

∥∥aTW (τ)a
∥∥
L2(Ω)

‖∇va(τ)‖L2(Ω)‖∇wa(τ)‖L2(Ω),

where W ≡ U − V .

Part 2: Existence. Let us define a Hilbert space

S ≡
{
w ∈ L2((0, T );H1(Ω))

∣∣∣∣ ∂w∂τ ∈ L2((0, T );
(
H1(Ω)

)′)}
with a norm

‖w‖S ≡

(
‖w‖2L2((0,T );H1(Ω)) +

∥∥∥∥∂w∂τ
∥∥∥∥2

L2((0,T );(H1(Ω))′)

) 1
2

.

We choose a fixed matrix W =
(
w11 w12

w21 w22

)
which satisfies

wij ∈ S ∩ L∞((0, T );L2(Ω)) and ‖wij‖L∞((0,T );L2(Ω)) ≤ ‖mij‖L2(Ω).

Consider a linear system of variational problems〈
∂uij
∂τ

(τ), v
〉

(H1(Ω))′×H1(Ω)

+
∫

Ω

(
g(Wσ(x, τ))∇uij(x, τ)

)
· ∇vdx = 0, (3.12)

for all v ∈ H1(Ω) and almost every τ ∈ (0, T ). From the proof of L-1 in Part 1, there exists a
constant ν such that aTg(Wσ)a ≥ ν > 0 almost everywhere in Ω× (0, T ) for all a ∈ R2 with
|a| = 1. Therefore, by classical results on parabolic partial differential equations in [15],
equations (3.12) have unique solutions uWij of satisfying following estimates∥∥uWij ∥∥L2((0,T );H1(Ω))

≤ C,∥∥∥∥∥∂uWij∂τ

∥∥∥∥∥
L2((0,T );(H1(Ω))′)

≤ C,

∥∥uWij ∥∥L∞((0,T );L2(Ω))
≤ ‖mij‖L2(Ω),

where C is a constant depending only on h, Gσ, and ‖mij‖L2(Ω). From these estimates, we

define a subspace Sij0 of S

Sij0 ≡

wij ∈ S
∣∣∣∣∣∣∣∣∣
wij(0) = mij , ‖wij‖L2((0,T );H1(Ω)) ≤ C,∥∥∥∥∂wij∂τ

∥∥∥∥
L2((0,T );(H1(Ω))′)

≤ C,

‖wij‖L∞((0,T );L2(Ω)) ≤ ‖mij‖L2(Ω)

 .
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We denote S0 ≡
∏

(i,j)∈I S
ij
0 ⊂ S4, where I ≡ Z2 × Z2. By the construction of Sij0 , we have

a well-defined mapping

(w11, w12, w21, w22) 7→ Q(w11, w12, w21, w22) ≡
(
uW11 , u

W
12 , u

W
21 , u

W
22

)
from S0 to S0. Following the argument in [2], S0 is a nonempty, convex, weakly compact in
S4 and the mapping Q is weakly continuous. By the Schauder-Tychonoff’s fixed-point theo-
rem, there exits (w11, w12, w21, w22) ∈ S0 such that (w11, w12, w21, w22) = Q(w11, w12, w21, w22).
Since each component of Q(w11, w12, w21, w22) solves (3.12), it proves the existence of a so-
lution of (3.7) in the distributional sense. The regularity is also proved from a general
theory of parabolic partial differential equations.

At last, we prove that the positive definiteness of a regularized tensor U(x, τ) in (3.7) is
guaranteed if an initial tensor M in (3.6) is positive definite. It is crucial condition to solve
the PDE for image denoising (A.3) numerically.

Theorem 2. If mij ∈ L∞(Ω), then the solutions uij of (3.7) satisfy

ess inf
x∈Ω

λ(x) ≤ ua(x, τ) ≤ ess sup
x∈Ω

Λ(x) on Ω× (0, T ],

where a is any constant vector in R2 with |a| = 1 and Λ(x) and λ(x) are maximum and
minimum eigenvalues of M(x) given by (3.6), respectively.

Proof. This proof follows Stampacchia’s truncation method in [16] and is done by the same
method in [3]. We denote a constant

C ≡ ess sup
x∈Ω

Λ(x).

and show the maximum principle first. Let ψ ∈ C1(R) be a function with ψ(s) = 0 on
(−∞, 0] and 0 < ψ′(s) ≤ K on (0,∞) for some constant K. For a constant vector a ∈ R2

with |a| = 1, we define

ϕ(s) ≡
∫ s

0
ψ(r)dr and φ(τ) ≡

∫
Ω
ϕ(ua(x, τ)− C)dx, τ ∈ [0, T ].

Since ψ(ua(τ)− C) ∈ H1(Ω) and
∂ua
∂τ

(τ) ∈
(
H1(Ω)

)′, we have∣∣∣∣∫
Ω
ψ(ua(x, τ)− C)

∂ua
∂τ

(x, τ)dx
∣∣∣∣ ≤ ‖ψ(ua(τ)− C)‖H1(Ω)

∥∥∥∥∂ua∂τ (τ)
∥∥∥∥

(H1(Ω))′
<∞.

So, the function φ(τ) is differentiable for τ ∈ (0, T ). Now, we obtain the sign of φ′(τ) using
the statement L-1:

d

dτ
φ(τ) =

∫
Ω
ψ(ua(x, τ)− C)

∂ua
∂τ

(x, τ)dx

=
∫

Ω
ψ(ua(x, τ)− C)∇ ·

(
g(Uσ)(x, τ)∇ua(x, τ)

)
dx

= −
∫

Ω
ψ′(ua(x, τ)− C)

(
g(Uσ)(x, τ)∇ua(x, τ)

)
· ∇ua(x, τ)dx ≤ 0.
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By means of ϕ(s) ≤ K

2
s2, we have

0 ≤ φ(τ) ≤
∫

Ω
ϕ(ua(x, τ)−ma)dx ≤

K

2
‖ua(τ)−ma‖2L2(Ω).

Since ua ∈ C ([0, T ];L2(Ω)), we get

‖ua(τ)−ma‖L2(Ω) → 0 as τ → 0+.

It proves the continuity of φ(τ) at τ = 0.
Now, from φ ∈ C[0, T ], φ(0) = 0, φ(τ) ≥ 0 on [0, T ], and φ′(τ) ≤ 0, we deduce that

φ(τ) = 0 on [0, T ]. Hence, for all τ ∈ [0, T ], we obtain ua(x, τ)− C ≤ 0 almost everywhere
on Ω. Due to the smoothness of ua for τ > 0, we finally obtain ua(x, τ) ≤ C on Ω× (0, T ].
Similarly, the minimum principle is proved from the maximum principle when we apply the
initial tensor −M .

4 Applications

A regularized tensor from proposed PDEs (2.4) and (3.7) is useful to low-level topics in
computer vision such as corner detection, image denoising, image enhancement, and ramp
preserving denoising process. Since a regularized tensor by our method adapts to the first
derivative information of an image as time evolves, it is interesting to apply our regularized
tensor to applications where the first derivative information of the image has been used in
a PDE-based method so far. In Section 2.2, we already showed that our regularized tensor
improves the quality of image denoising. In this section, we show more examples in order
to see how a regularized tensor by the proposed PDE works in applications.

4.1 Corner detection

To find out locations of corners in an image is one of primitive tasks as a preprocess
of high-level topics in computer vision such as motion tracking, object recognition, and
registration. Many methods have been studied for finding locations of corners in an image
and we use a method based on a structure tensor of the image. Since an initial tensor
in proposed PDEs (2.4) and (3.7) is regularized along edges of an image, the minimum
eigenvalue of a regularized tensor at a corner which is a junction of more than two edges is
increased at the corner. In [17], corners are detected where a local maximum of minimum
eigenvalues in a structure tensor occurs.

In Figure 4.1, we show that a regularized tensor by our method has more effective
directional smoothing than regularized tensors by other methods. From (c) to (f), they
are profiles of minimum eigenvalues from different regularized tensors in (B.1), (B.2), (B.3),
and (B.4) at end time T2 = 70, respectively. The profile (c) loses the feature which identifies
positions of corners. The profile (d) does not show any information yet. Note that, in a
numerical experiment, end time in (B.2) should be taken roughly 100 times larger than end
time in (B.4) in order to obtain similar information in (f). However, a problem is that such
large end time T2 cannot be used in Figure 2.5 which has very delicate weak edges in an
image. The profile (e) has peaks at corners but too bumpy shape (e-1) which gives false
information for finding positions of corners. The profile (f-1) shows the best result which
has four sharp peaks at corners and flatter shape on homogeneous regions in the image.
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(a) (b) (c) (d) (e) (f)

(c-1) (d-1) (e-1) (f-1)

Figure 4.1: (a) is an original image. In (b), we add the Gaussian white noise with zero
mean and the standard deviation 50 (SNR ' 14.49). From (c) to (f), they are profiles of
minimum eigenvalues from different regularized tensors in (B.1), (B.2), (B.3), and (B.4) at
end time T2 = 70, respectively. Images from (c-1) to (f-1) are magnified from a part on the
top right rectangle from (c) to (f) and we plot intensity graphs of the minimum eigenvalue
with the part of the image. The profile (f-1) shows the best result which has four sharp
peaks at corners and flatter shape on homogeneous regions in the image.
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(a) (b) (c) (d)

Figure 4.2: (a) is an original clean image. In (b), we add the Gaussian white noise with
zero mean and the standard deviation 50 (SNR ' 11.97). We use end time T2 = 5 for
obtaining a diffusivity matrix in (4.2). The result (c) is a combination of the Perona-Malik
model for a color image with a fidelity term and a shock filter. (d) is the result of proposed
method (4.2) which preserves corners and edges very well. In the second and the third row,
we magnify two parts in the first row.

4.2 Image denoising and enhancement

In Section 3, we extended the proposed PDE (2.4) for a color image by changing an initial
condition. The maximum eigenvalue of a regularized tensor from the extended PDE (3.7)
is the rate of maximum change and the corresponding eigenvector provides a direction of
maximal change, which is not in the tensor but in the color image. In this section, we
extend the image denoising PDE (A.3) for a color image and we combine it with a fidelity
term in [18] and a shock filter [19] to enhance and denoise the color image simultaneously.
In a research of image enhancement, this kind of combination was introduced in [20] to
overcome a problem that a PDE-based shock filter in [21] enhances some noise in an image.
Alvarez and Mazorra [22] combined a shock filter and an anisotropic diffusion to solve
the same problem. Weickert [19] used a structure tensor to find out more accurate gradient
information of an image and used it to enhance the image coherently based on a shock filter.
In these formulations, the first derivative information of an image is crucial to enhance and
denoise an image simultaneously.

Now, we extend the image denoising PDE (A.3) for a color image with a given noisy
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(a) (b) (c) (d)

Figure 4.3: (a) is an original image which has jpeg artifacts. In (b), we add the Gaussian
white noise with zero mean and the standard deviation 10. We use the end time T2 = 10
for obtaining a diffusivity matrix in (4.2). (c) and (d) are obtained in the same way as
in Figure 4.2-(c) and 4.2-(d), respectively. The result in (d) from the proposed method
preserves significant features around the frame of glasses. In the second row, we magnify a
region around the right eye in the first row.

image I0: Ω ⊂ R2 →
(
R+
)3:

∂Ik
∂t

(x, t) = ∇ ·
(
g
(
U(x, T2)

)
∇Ik

)
in Ω× (0, T1],

Ik(x, 0) = I0
k(x) on Ω,

∂uij
∂τ

(x, τ) = ∇ ·
(
g
(
Uσ
)
∇uij

)
in Ω× (0, T2] ,

uij(x, 0) =

(
3∑

k=1

wk(x, t)wk(x, t)T

)
ij

on Ω,

(4.1)

where wk(x, t) = ∇(Gρ ∗ Ik(x, t)) for k ∈ {1, 2, 3}. We combine the first equation with a
fidelity term in [18] and a shock filter [19] to enhance and denoise a color image simultane-
ously:

∂Ik
∂t

(x, t) = ∇ ·
(
g
(
U(x, T2)

)
∇Ik

)
+ Cf

(
Ik − I0

k

)
− Cs sgn

(
D2
vΛ
Ik
)
|∇Ik|, (4.2)

where Cs and Cf are constants and vΛ is the eigenvector corresponding to the maximum
eigenvalue of U(x, T2). Note that the PDE in [20] used an weighted constant Cs depending
on a position in an image. In Figures 4.2 and 4.3, we show the quality of image enhancement
using our regularized tensor. Since an initial image has large noise, we need large end time
T2 for regularizing a tensor in (4.1). Cs = 0.02 and Cf = 255 × 10−6 are chosen in all
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(a) (b)

Figure 4.4: Images in (a) are an original clean image at the top row and an image at the
bottom row with the Gaussian white noise with zero mean and the standard deviation 20
(SNR ' 14.56). (b) is a result of the proposed model (4.3) at T1 = 17. We use different
end time T2 = 1 at the top row and T2 = 5 at the bottom row. The result preserves ramp
structure of the original image.

computations. Instead of the diffusivity matrix g(U(x, T2)) in (4.2), if we use

h

(
3∑

k=1

∣∣∇G√2T2
∗ Ik

∣∣2),
then it becomes a combination of the PM model for a color image with a fidelity term and
a shock filter. Note that our regularized tensor improves the quality of image enhancement
because it properly represents derivative information of a color image.

4.3 Ramp preserving denoising

In medical image processing, regularizing a data I0: Ω ⊂ R2 → R+, that preserves ramp
structure of the data is useful [23]. To obtain ramp preserving denoising, we take a different
initial condition for tensor regularization in (A.3). Let w = (w1, w2) = ∇I and regard w
as an image with two channels. Then a jump of slope in the data I is considered as an
edge of w. Ramp preserving denoising means that a data I is smoothed fast along edges of
w and slowly across them. Therefore, we need a tensor whose maximum eigenvalue has a
local maximum on edges of w along a direction of the corresponding eigenvector. Now, we
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(a) (b) (c)

Figure 4.5: (a) is same images in Figure 4.4-(b). (c) is a vector field obtained by (2.8)
and (2.9) from a tensor in (4.3). The position of yellow vector field indicates where the
maximum eigenvalue of a tensor has a local maximum. The noisy data in Figure 4.4-(a)
is diffused slowly across yellow regions in the proposed model (4.3) and ramp structure is
preserved. In (b), we show both the left of (a) and the right of (c).

propose the following denoising scheme:

∂I

∂t
(x, t) = ∇ ·

(
g
(
U(x, T2)

)
∇I
)

in Ω× (0, T1],

I(x, 0) = I0(x) on Ω,
∂uij
∂τ

(x, τ) = ∇ ·
(
g
(
Uσ
)
∇uij

)
in Ω× (0, T2] ,

uij(x, 0) =

(
2∑

k=1

∇wk(x, t)∇wk(x, t)T

)
ij

on Ω,

(4.3)

where
(
w1(x, t), w2(x, t)

)
= ∇I(x, t). A regularized tensor has an advantage of a directional

smoothing with respect to structure of ∇I while a regularized tensor in (2.4) is smoothed
with respect to structure of I. The maximum eigenvalue of the tenor in (4.3) has a local
maximum on edges of w, i.e., a jump of slope in a data, and it regularizes the data while
preserving structure of ramps. On the contrary, the maximum eigenvalue of the tensor
in (2.4) has a local maximum on edges of I and it regularizes image while preserving
structure of edges.

In Figure 4.4, we show a result of the proposed model (4.3). A result of the proposed
model preserves ramp structure in an original data even though we use different end time
T2 = 1 and T2 = 5 for regularizing a tensor. In Figure 4.5, we show the vector field which
is obtained by (2.8) and (2.9) from a tensor in (4.3). The position of yellow vector field
indicates where the maximum eigenvalue of a tensor has a local maximum. Therefore, the
noisy data in Figure 4.4-(a) is diffused slowly across yellow regions and ramp structure is
preserved in the proposed model.
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5 Conclusions

We proposed a nonlinear PDE for regularizing a tensor which contains the first derivative
information of an image such as strength of edges and a direction of the gradient of the
image. Unlike a typical diffusivity matrix which consists of derivatives of a tensor data, we
proposed a diffusivity matrix which consists of the tensor data itself. This allows directional
smoothing for a tensor along edges which are not in the tensor but in the image. That
is, the tensor data is diffused fast along edges of image but slowly across them. The
proposed PDE provides a regularized tensor which adapts to the first derivative information
of an image as time evolves. We also proved the uniqueness and existence of solution to
the proposed PDE. Since we obtained a regularized tensor which properly represents the
first derivative information of an image, our regularized tensor improves the quality of
image denoising, image enhancement, and corner detection. Moreover, we obtained a ramp
preserving denoising process by simply changing an initial condition for regularizing a tensor.

Appendix

A PDEs for image denoising

We list PDEs for image denoising using different regularized derivative information of
an image with an initial noisy image I0: Ω ⊂ R2 → R+.

1. The Perona-Malik model for image denoising (1.2):

∂I

∂t
(x, t) = ∇ ·

(
h
(∣∣∇G√2T2

∗ I
∣∣2)∇I) in Ω× (0, T1],

I(x, 0) = I0(x) on Ω.
(A.1)

2. The nonlinear PDE model for image denoising with a structure tensor (1.3):

∂I

∂t
(x, t) = ∇ · (g(U(x, T2))∇I) in Ω× (0, T1],

I(x, 0) = I0(x) on Ω,
∂uij
∂τ

(x, τ) = 4uij in Ω× (0, T2] ,

uij(x, 0) =
(
∇Iρ(x, t)∇Iρ(x, t)T

)
ij

on Ω.

(A.2)

Note that U(x, T2) = G√2T2
∗
(
∇Iρ∇IρT

)
. This model is one of variant of models in [3,

9, 14,24].

3. The nonlinear PDE model for image denoising with our regularized tensor (2.4):

∂I

∂t
(x, t) = ∇ · (g(U(x, T2))∇I) in Ω× (0, T1],

I(x, 0) = I0(x) on Ω,
∂uij
∂τ

(x, τ) = ∇ ·
(
g
(
Uσ
)
∇uij

)
in Ω× (0, T2] ,

uij(x, 0) =
(
∇Iρ(x, t)∇Iρ(x, t)T

)
ij

on Ω.

(A.3)
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A boundary condition of diffusion processes for an image and a tensor is the free flux
condition. The value ρ is taken small enough to compute ∇Iρ.

B PDEs for tensor regularization

We summarize PDEs for tensor regularization with a given image I: Ω ⊂ R2 → R+.
A boundary condition is the free flux condition and an initial condition is a tensor which
contains derivative information of an image:

U(x, 0) = ∇I(x)∇I(x)T on Ω.

1. The linear PDE model [3]:

∂uij
∂τ

(x, τ) = 4uij in Ω× (0, T2] . (B.1)

Note that U(x, T2) is exactly same as the structure tensor G√2T2
∗
(
∇I(x)∇I(x)T

)
.

2. The nonlinear PDE model [9]:

∂uij
∂τ

(x, τ) = ∇ ·

h
∑

i,j

|∇uij |2
∇uij

 in Ω× (0, T2] . (B.2)

3. The nonlinear PDE model with a structure tensor [9]:

∂uij
∂τ

(x, τ) = ∇ ·

g
∑

i,j

∇uij∇uijT

∇uij
 in Ω× (0, T2] . (B.3)

4. The proposed PDE model (2.4):

∂uij
∂τ

(x, τ) = ∇ ·
(
g
(
Uσ
)
∇uij

)
in Ω× (0, T2] . (B.4)
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[17] U. Köthe, “Edge and junction detection with an improved structure tensor,” In B.
Michaelis, G. Krell (Eds.): Pattern Recognition, Proc. of 25th DAGM Symposium,
Magdeburg, Lecture Notes in Computer Science 2781, 2003, pp. 25–32.

[18] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal
algorithms,” Physica D, Vol. 60, pp. 259–268, 1992.

[19] J. Weickert, “Coherence-enhancing shock filters,” In B. Michaelis, G. Krell (Eds.):
Pattern Recognition, Proc. of 25th DAGM Symposium, Magdeburg, Lecture Notes in
Computer Science 2781, 2003, pp. 1–8.

25



[20] P. Kornprobst, R. Deriche, and G. Aubert. “Image coupling, restoration and enhace-
ment via PDE’s.” In Proc. of the International Conference on Image Processing, vol.
2, Santa Barbara, California, 1997, pp. 458–261.

[21] S. Osher and L. I. Rudin, “Feature-oriented image enhancement using shock filters,”
SIAM J. Numer. Anal., Vol. 27, pp. 919–940, 1990.

[22] L. Alvarez and L. Mazorra, “Signal and image restoration using shock filters and
anisotropic diffusion.” SIAM J. Numer. Anal., Vol. 31, pp. 590–605, 1994.

[23] S. Lee, J.K. Seo, C. Park, B.I. Lee, E.J. Woo, S.Y. Lee, O. Kwon, and J. Hahn, “Con-
ductivity image reconstruction from defective data in MREIT: Numerical simulation
and animal experiment,” IEEE Trans. Med. Imaging, Vol. 25, pp. 168–176, 2006.

[24] J. Weickert, “Scale-space properties of nonlinear diffsusion filtering with a diffusion ten-
sor,” Tech. Rep. 110, Laboratory of Technomathematics, University of Kaiserslautern,
Germany, Oct. 1994.

26


