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Abstract

The main goal of this paper is to investigate the mechanism of a conservation law
that gives the N-wave like asymptotics. It turns out that the positivity of the flux
function provides certain invariance of solutions which singles out the right asymp-
totics among two parameter family of N-waves. Two kinds of optimal convergence
orders in L1-norm to the N-wave are proved using a potential comparison technique.
The first one is of the magnitude of the N-wave itself and the second one is of order
1/t. One may easily see that these asymptotic convergence orders are related to
space and time translation of potentials.
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1 Introduction

This paper is devoted to a study of the long time asymptotics of bounded L1

solutions to a general scalar conservation law,

ut + f(u)x = 0, u(x, 0) = u0(x), x ∈ R, t > 0, (1)
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where u0 ∈ L1(R)∩L∞(R) is compactly supported. We assume that the flux
is continuously differentiable and that

f(0) = f ′(0) = 0. (2)

One can get this normalization assumption without loss of generality after a
suitable change of variables. In this paper we consider a non-convex flux that
satisfies the following hypotheses:

f(u) ≥ 0 for all u ∈ R,

f(u) has a finite number of inflection points,

f(u)/|u| → ∞ as |u| → ∞.

(H)

Notice that the first assumption implies that u = 0 is a global minimum point
of the flux. The other two hypotheses are technical. The second one about
a finite number of inflection points has been used to construct source-type
solutions in [11] and that is why we have it here. If one considers a bounded
solution, the value of the flux at |u| near infinity does not make any difference
and therefore one may assume the third one. In fact we assume that the
divergence is monotone for |u| large.

It is well known that N -waves are the long time asymptotics of sign-changing
solutions to a general conservation law with a convex flux. In this paper we will
see that the first hypothesis in (H) is the essential feature of a conservation
law that produce the N -wave like long time asymptotics. The asymptotic
convergence order depends on the structure of initial value and one can not
expect any L1 convergence order with the generality of L1 initial value. In this
paper we consider compactly supported initial value such that

∫
u0(x)dx = M < ∞, spt(u0) ⊂ [−L,L], L ∈ R. (3)

Under the hypotheses in (H) the well-posedness of the fundamental or source-
type solutions are obtained in [18]. One can easily find the explicit formula
of an N-wave for a convex case. For a general non-convex case under (H)
fundamental solutions have been recently constructed in [11]. N-waves are
two parameters family of functions and we denote them by np,q(x, t). The N-
waves are non-negative np,q(x, t) ≥ 0 for x ≥ 0 and non-positive np,q(x, t) ≤ 0
for x ≤ 0. We set two parameters of the N-wave as

p = −
0∫

−∞
np,q(y, t)dy, q =

∞∫

0

np,q(y, t)dy. (4)
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Notice Hypothesis (H) provides certain invariance property to the solutions
and makes the integrals in (4) be constant for all t > 0.

In this paper we show two kinds of convergence orders of a general solution
u(x, t) to the N-wave np,q(x, t). First we show that if the initial value satisfies

p = − inf
x

x∫

−∞
u0(y)dy > 0, q = M + p > 0, (5)

the solution u(x, t) converges to the N-wave np,q(x, t) as t → ∞ with the
convergence order

‖u(t)− np,q(t)‖1 = O
(
‖np,q(t)‖∞

)
as t →∞. (6)

One may expect a higher convergence order by placing the N-wave at the
correct location. In fact under an extra condition on the initial value (15), we
will show that there exists c ∈ R such that

‖u(t)− nc
p,q(t)‖1 = O(‖f(np,q(t))‖∞) as t →∞, (7)

where nc
p,q is a space translation nc

p,q(x, t) = np,q(x − c, t). This convergence
order turns out to be order O(1/t) under a general assumption

lim inf
u→0

uf ′(u)

f(u)
= γ > 1. (H1)

Similar convergence orders in L1-norm can be found from the literature. For
example the Barenblatt-type solution is a source solution of a nonlinear diffu-
sion equation and decays with certain order depending on the dimension and
the flux. The L1 convergence of exactly this order can be found in various
cases [3,4,9,16,20]. The convergence order O(1/t) has been obtained for radial
solutions, for solutions to fast diffusion equations [5,14,19,21] and for solutions
to its linearized problems [7,22].

For solutions to scalar conservation laws the L1 convergence order in (6)
has been observed for convex cases [2,8,15,12,23]. Convergence order of (7)
are found in [10,12]. For the case with a non-convex flux one can find well-
posedness and other estimates from [1,6,24]. However, the behavior of the
solution is not well understood. Recently N-waves for the non-convex case has
been suggested in [11] and the convergence orders in (6,7) have been obtained
for positive solutions [13].

The rest of the paper consists as followings. In Section 2 several preliminaries
are given including the definition of entropy solutions, their potentials and
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the potential comparison principle. The main results are given in Theorem 1
which consists of three parts. In the succeeding three sections each of these
three are proved. In Section 3 the invariance property of conservation laws is
shown under Hypotheses in (H). The convergence orders in (6) and (7) are
obtained in Sections 4 and 5, respectively.

2 Preliminaries and main results

We consider a weak solution u(x, t) of (1) that satisfies

∫ ∫
(uφt + f(u)φx )dxdt +

∫
u0(x)φ(x, 0)dx = 0 (8)

for any test function φ ∈ C∞
0 (R×[0,∞) ). If a weak solution has a discontinuity

at x = ξ(t), then its propagation speed is given by the Rankine-Hugoniot jump
condition

ξ′(t) =
f(ul)− f(ur)

ul − ur

, ul = lim
y↑x

u(y, t), ur = lim
y↓x

u(y, t). (9)

Since a weak solution is not unique, one should consider a weak solution with
a suitable admissibility condition to single out the physically right one. For a
non-convex flux the Oleinik entropy condition is the one which satisfies

l(u) ≤ f(u) for all ul < u < ur, and l(u) ≥ f(u) for all ur < u < ul,(10)

where l(u) is the linear function connecting two states ur and ul, i.e.,

l(u) = f(ul) +
f(ul)− f(ur)

ul − ur

(u− ul).

It is well known that the problem is well-posed under the entropy admissibil-
ity condition in the class of bounded and measurable solutions (see [1]) and
we consider this unique solution only. It is also known that u(x, t) is a solu-
tion if and only if it satisfies the conditions (9-10) at discontinuities and the
conservation law in smooth regions.

Our approach for the asymptotic convergence is based on a potential compar-
ison technique. We take the primitive of the solution,

U(x, t) =

x∫

−∞
u(y, t)dy, U0(x) =

x∫

−∞
u0(y)dy, (11)
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as the potential of the solution u(x, t). The potential of the N-wave np,q(x, t)
is similarly given by

Np,q(x, t) =

x∫

−∞
np,q(y, t)dy. (12)

Notice that N-waves are usually denoted using the capital letter N . However,
we denote an N-wave as np,q(x, t) to denote its potential with a capital letter.
Now we are ready to state the main results of this paper:

Theorem 1 Let u(x, t) be the entropy solution of (1) with initial value u0 ∈
L1(R)∩L∞(R) that satisfies (3,5). Let np,q(x, t) be the N-wave satisfying (4)
and −p =

∫ c
−∞ u0(y)dy for certain c ∈ R. If the smooth flux f satisfies (2)

and (H), then the followings hold.

(i) For all t > 0,

−p = inf
x

x∫

−∞
u(y, t)dy =

c∫

−∞
u(y, t)dy, q =

∞∫

c

u(y, t)dy. (13)

(ii)

‖u(x, t)− np,q(x, t)‖1 = O(max
x
|np,q(x, t)| ) as t →∞. (14)

(iii) Furthermore, if the point c ∈ R satisfying −p =
∫ c
−∞ u0(y)dy is unique,

p, q > 0 and there exist constants α, ε > 0 satisfying

u0(x + c) ≥ np,q(x, α), 0 ≤ x ≤ ε,

u0(x + c) ≤ np,q(x, α), −ε ≤ x ≤ 0,
(15)

then there exist constants T, C > 0 such that

‖u(t)− np,q(·+ c, t)‖1 ≤ C‖f(np,q(t))‖∞ for t > T. (16)

The proof of the theorem is based on a potential comparison technique, which
has been developed for nonlinear diffusion [14] and then applied to positive
solution of conservation laws. The proof of the following comparison principle
is given in [13] for positive solutions and it can be directly employed for sign
changing cases. In the following we present the proof briefly.
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Proposition 2 (Potential comparison) Let Ui(x, t), i = 1, 2, be the poten-
tials of two integrable solutions ui, i = 1, 2, respectively. If U1(x, 0) ≤ U2(x, 0)
for all x ∈ R, then U1(x, t) ≤ U2(x, t) for all x ∈ R, t > 0.

PROOF. Roughly speaking, after an integration of (1) on interval −∞ <
y < x, one obtains Ut + f(u) = 0 in a weak sense and, hence, E(x, t) =
U1(x, t)− U2(x, t) is a weak solution of

Et + a(x, t)Ex = 0, a(x, t) = (f(u1)− f(u2))/(u1 − u2),

where a(x, t) is understood as the derivative of the smooth flux if u1 = u2.
Hence the characteristic for E is same as the ones of solutions u1 and u2 if
u1 = u2 and, otherwise, it is between them. Since E is constant along the
characteristics and E(x, 0) ≥ 0, we have E(x, t) ≥ 0, i.e., U1(x, t) ≤ U2(x, t)
for all x ∈ R, t > 0. 2

3 Invariance property

Theorem 1(i) claims two invariant quantities, which are the global minimum
value p of the potential U(·, t) and the minimum point x = c. For the proof
we study how does a local extremum of a potential evolve. For the convex flux
case the invariance has been shown in [17] using the fact that discontinuities
that satisfy the Oleinik entropy condition are decreasing ones. Without the
convexity the solution has more complicate structures.

Proof of Theorem 1(i): Let t0 < t1 and x ∈ R be given. Then, since the
wave speed is finite and the initial support is compact, there exists x0 < x
such that u(y, s) = 0 for all y < x0 and s < t1. Let Ω := [x0, x] × [t0, t1]
and consider the characteristic function φ(y, t) = χ|Ω. Since φ is not smooth,
we may not directly apply φ to (8). However, using classical approximation
arguments with smooth functions, φε → φ, one may obtain

U(x, t1)− U(x, t0) = −
t1∫

t0

f(u(x, s))ds. (17)

Then, the Lebesgue differentiation theorem implies that, if u is continuous at
a point (x, t), then

Ut(x, t) = −f(u(x, t)).

The derivative of the potential function with respect to the space variable is
simply

Ux(x, t) = u(x, t)
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as long as u is continuous at the point (x, t).

Suppose that x = ξ(t) is the (global) minimum point of U(·, t) and u(·, t) is
continuous at the point. Then Ux(ξ, t) = u(ξ, t) = 0 and hence x = ξ(t) is a
characteristic line carrying the zero value, which implies that ξ′(t) = f ′(0) = 0.
Therefore, the minimum −p(t) = U(ξ(t), t) satisfies

−p′(t) =
d

dt
U(ξ(t), t) = ξ′(t) u(ξ(t), t)− f(u(ξ(t), t)) = 0,

which implies that the minimum value p is constant. Notice that the invariance
of p does not depend on the assumptions (H) if the solution is continuous at
the minimum point of the potential. Furthermore, since ξ′(t) = 0 and p is
constant, we have U(c, t) = p for c = ξ(0) as long as u is continuous at the
point.

Now we consider the case when u(·, t) has a discontinuity at the minimum point
x = ξ(t). Let ul and ur be the left and the right hand side limits, respectively,
and l(u) be their linear connection. Then, since U(·, t) has minimum at the
point ξ(t), it is clear that ul ≤ 0 ≤ ur and ul 6= ur. Then since u = 0 is a
global minimum point of the flux, one can easily see that the Oleinik entropy
condition (10) holds only if ul 6= ur are global minimum points and hence
f(ul,r) = f ′(ul,r) = 0. Therefore, we still have p′(t) = ξ′(t) = 0.

Since the total mass M is preserved, the other quantity q in (5) is also constant
and the proof of Theorem 1(i) is complete. 2

The previous approach also shows how does a local extremum of the potential
evolve. Let U(x, t) have a local extremum at x = ξ(t) and u(·, t) be continuous
at the point. Then, u(ξ(t), t) = 0 and

d

dt
U(ξ(t), t) = ξ′(t) u(ξ(t), t)− f(u(ξ(t), t)) = 0.

Therefore, the local extremum is constant until it meets a shock discontinuity.
In the previous proof it is shown that the minimum point of the potential
meets only a harmless shock discontinuity under the assumption that the flux
has a global minimum at u = 0. If the minimum point is assumed to be
unique (i.e., f(u) > 0 for all u 6= 0), then the minimum does not meet a shock
discontinuity and hence one may say that the entropy condition basically
prohibits discontinuities at a local minimum point of the potential under the
hypothesis (H).

Suppose that the solution u(·, t) has a shock discontinuity at x = ξ(t) and
hence U(·, t) has a local maximum at the point. Let

ul(t) = lim
y↑ξ(t)

u(y, t), ur(t) = lim
y↓ξ(t)

u(y, t).
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Then, the limits satisfy ul ≥ 0 ≥ ur and ul 6= ur. The wave speed of the
discontinuity is given by the Rankine-Hugoniot jump condition which is

ξ′(t) =
f(ul)− f(ur)

ul − ur

.

Clearly, there exists ε > 0 small such that u(·, t) is continuous on (ξε(t), ξ(t)),
where ξε(t) = ξ(t)− ε. Then, ξ′ε(t) = ξ′(t) and

d

dt
U(ξε(t), t) = Ux(ξε(t), t)ξ

′(t) + Ut(ξε(t), t) = u(ξε(t), t)ξ
′(t)− f(u(ξε(t), t)).

Taking ε → 0 gives

d

dt
U(ξ(t), t) = ul

f(ul)− f(ur)

ul − ur

− f(ul) =
f(ul)ur − f(ur)ul

ul − ur

≤ 0.

Therefore, the local maximum decreases. One can easily check that d
dt

U(ξ(t), t) =
0 if one of the one sided limits is zero. Suppose that the point (ξ(t), t) is a lo-
cal minimum point of the potential and u is discontinuous at the point. Then,
ul ≤ 0 ≤ ur and the local minimum also decreases. However, the Oleinik en-
tropy condition excludes such a case. Now we summarize the properties of the
critical values of a potential in the following Proposition:

Proposition 3 Let u(x, t) be the solution to (1-3) and U(x, t) be its potential
function, where the flux f(u) satisfies (H). Then,

(i) If the potential U has a local minimum at (ξ(t), t), then u is continuous at
the point, ξ′(t) = 0 and d

dt
U(ξ(t), t) = 0, i.e., the local minimum is constant

as long as it survives.

(ii) If the potential U has a local maximum at (ξ(t), t) and ul := limy↑ξ(t) u(y, t) 6=
ur := limy↓ξ(t) u(y, t), then ul ≥ 0 ≥ ur and the maximum decreases as

d

dt
U(ξ(t), t) =

f(ul)ur − f(ur)ul

ul − ur

≤ 0. (18)

Remark 4 The non-negativity of the flux is essential for the invariance prop-
erty. If u = 0 is not a global minimum point of the flux f , then the solution
may have a discontinuity at the global minimum point of the potential U such
that ul < 0 < ur. Then the derivative in (18) can be strictly positive and hence
the global minimum of the potential may strictly increase. Therefore, one may
conclude that the non-negativity of the flux is equivalent to the invariance
property of a conservation law.
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4 The convergence order O(maxx |np,q(x, t)|)

Now we show Theorem 1(ii). Since the global minimum point of the potential
U is invariant, we may assume U has its minimum at the origin (c = 0), i.e.,

U(0, t) = −p, U(x, t) ≥ −p for all x ∈ R, t > 0

after an appropriate space shift. Then, as discussed earlier, u(t) is continuous
at x = 0 and u(0, t) = 0 for all t > 0.

Consider the convex envelope of the flux given by

h(u) := sup
η∈A

η(u), A := {η : η′′(u) ≥ 0, η(u) ≤ f(u) for u ∈ R}. (19)

Since there are only finite number of inflection points, the convex envelope is
obtained by simply connecting the humps of the graph of the flux with tangent
lines. The convex envelope h(u) is continuously differentiable and is linear on
intervals on which f(u) 6= h(u).

It is clear that h′ is not invertible. However, one may consider a function g(x)
given by an inverse relation

g(0) = 0, h′(g(x)) = x, x ∈ R. (20)

Then g(x) is piecewise continuous. Under (2) and the hypotheses in (H) there
exists a maximal open interval 0 ∈ (−a, b) such that

f(u) = h(u), for u ∈ (−a, b).

Since the long time asymptotics of a solution depends on the structure of the
flux near the origin, the interval (−a, b) will play an important role asymptot-
ically and hence will appear several times in the rest of the paper. Now define
N-wave like functions as

ñp,q(x, t) =





g(x/t) , −ap(t) < x < bq(t),

0 , otherwise,
(21)

where ap(t), bq(t) > 0 satisfy

p = −
0∫

−ap(t)

g(y/t)dy , q =

bq(t)∫

0

g(y/t)dy . (22)
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One can easily check that ñp,q(x, t) is a weak solution of both of the conserva-
tion laws ut+f(u)x = 0 and ut+h(u)x = 0. However, ñp,q(x, t) does not satisfy
the entropy condition (10) in general and hence it is not a solution. On the
other hand, under Hypothesis (H), it is shown in [11] that np,q(x, t) = ñp,q(x, t)
for t > 0 small or t À 1 large. In particular there exists T > 0 such that

np,q(x, t) = ñp,q(x, t) ∈ (−a, b) for all x ∈ R, t > T. (23)

Since our interest in this paper is the long time behavior of the solution, we
employ the explicit formula for the N-wave like function ñp,q(x, t) for t > T .

Lemma 5 There exists T > 0 such that, for all t > T ,

u(x, t) ≤ np,q(x, t), 0 < x < bq(t), and u(x, t) ≥ 0, x > bq(t), (24)

u(x, t) ≥ np,q(x, t),−ap(t) < x < 0, and u(x, t) ≤ 0, x < −ap(t), (25)

‖np,q(t)− u(t)‖1 ≤ 4‖Np,q(t)− U(t)‖∞. (26)

PROOF. We take T > 0 that satisfies (23). Since ap(t), bq(t) →∞ as t →∞,
we may assume ap(t), bq(t) > L by taking larger T > 0 if needed. Consider
the backward characteristic ξ(s), 0 < s < t, that emanates from a continuity
point (x0, t) with 0 < x0 < bq(t) and t > T . Then ξ(s) conveys the value
u(x0, t) ∈ (−a, b) with speed ξ′(s) = f ′(u(x0, t)). A backward characteristic
does not intersect a discontinuity if the flux is convex, which is not our case.
However, one can easily check that if the value u(x0, t) is in the convex region
(−a, b), then the characteristic line does not intersect a shock curve.

Suppose it does and the discontinuity connects the value u(x0, t) to ū at the
intersection point. If ū > u(x0, t), then the Oleinik entropy condition implies
that ur := u(x0, t) and ul := ū are right and left hand side limits, respectively.
The convexity of the flux on (−a, b) also implies that

f ′(u(x0, t)) < (f(ur)− f(ul))/(ur − ul).

Clearly, it is not possible that the slower backward characteristic line inter-
sects a faster shock curve from the right hand side. One can derive similar
contradiction if ū < u(x0, t) and hence one can conclude that ξ(s) does not in-
tersect a discontinuity for all 0 < s < t. Furthermore, the invariance property
implies that x = 0 is a characteristic line of u(x, t) and hence ξ(0) ≥ 0.

Now consider another backward characteristic ξ̃(s), 0 < s < t, that emanates
from the same point (x0, t) related to the N-wave np,q(x, t). Then ξ̃(s) is a
line with speed f ′(np,q(x0, t)) and ξ̃(0) = 0 since the N-wave is a rarefaction
wave centered at x = 0. Therefore, f ′(u(x0, t)) ≤ f ′(np,q(x0, t)) and hence
u(x0, t) ≤ np,q(x0, t). Since the characteristics for negative values have negative

10



speed and bq(t) > L we have u(x, t) ≥ 0 for x > bq(t), which completes (24).
One may similarly obtain (25).

The relations in (24) and (25) imply that

‖u(t)− np,q(t)‖1 = −
−ap∫

−∞
u(x, t)dx +

0∫

−ap

(
u(x, t)− np,q(x, t)

)
dx

+

bq∫

0

(
np,q(x, t)− u(x, t)

)
dx +

∞∫

bq

u(x, t)dx.

Since U(0, t) = Np,q(0, t) = p, one can easily see that

‖u(t)− np,q(t)‖1 = −2

−ap∫

−∞
u(x, t)dx + 2

∞∫

bq

u(x, t)dx.

Since − ∫−ap

−∞ u(x, t)dx,
∫∞
bq

u(x, t)dx ≤ ‖U(t)−Np,q(t)‖∞, the inequality in (26)
is now clear. 2

Lemma 6 (Trapped between space translations) There exists T > 0
such that, for all x ∈ R and t > T ,

Np,0(x + L, t) + N0,q(x− L, t) ≤ U(x, t) ≤ Np,q(x, t). (27)

PROOF. One can easily check that

Np,0(x + L, 0) + N0,q(x− L, 0) ≤ U(x, 0),

and hence the comparison principle gives the first inequality in (27). Now let

p̄ = max
x<0

U(x, 0), q̄ = max
x>0

U(x, 0).

Then, since U(x, 0) → 0 as x → −∞ and U(x, 0) → M as x →∞, we clearly
have p̄ ≥ 0 and q̄ ≥ M . Consider a summation of three N-waves

n0,p̄(x + L, t) + np̄+p,q̄+p(x, t) + nq̄−M,0(x− L, t).

Then the N-waves have disjoint supports for t > 0 small, say 0 < t < t0. Let
n(x, t) be a solution with this summation of N-waves as its initial value and
N(x, t) as its potential. Then clearly, U(x, 0) ≤ N(x, 0) and hence the poten-
tial comparison principle implies that U(x, t) ≤ N(x, t) for all t > 0. Therefore,
the inequality (27) is completed if it is shown that n(x, t) = np,q(x, t) for all
t > T , where T > 0 is the one in Lemma 5 with n(x, t) in the place of u(x, t).
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Suppose that there exists x0 > bq(t) such that n(x0, t) > 0. Then, since
n(x0, t) ∈ (−a, b), the backward characteristic ξ(s), 0 < s < t, that em-
anates from the point (x0, t) does not intersect a shock curve and ξ(0) ≥ 0
as discussed in the proof of Lemma 5. Since nq̄−M,0(x − L, t) is negative and
np̄+p,q̄+p(x, t) has rarefaction waves centered at the origin, we have ξ(0) = 0.
Therefore, for any characteristic ξ̄(s) that emanates from a point (x, t) with
0 < x < bq(t), we have ξ̄(0) = 0 and hence comparison of characteristic speed
gives n(x, t) = np,q(x, t) for all 0 < x < bq(t). Therefore limx→∞ N(x, t) >
limx→∞ Np,q(x, t) = M , which is a contradiction. Therefore, n(x, t) = 0 for
all x > bq(t) and hence n(x, t) = np,q(x, t) for all x > 0. One can show the
equality for x < 0 similarly and obtain N(x, t) = Np,q(x, t) for all x ∈ R and
t > T . 2

Notice that the inequality (26) transfers the convergence order between two
potentials to the one between their derivatives. This is one of the essential
steps that make the potential comparison technique work. Now we show the
second part of Theorem 1 as a corollary of previous lemmas.

Proof of Theorem 1(ii) : Let t > T . Then, Lemma 6 implies that

|Np,q(x, t)− U(x, t)| ≤ |Np,q(x, t)−Np,0(x + L, t)−N0,q(x− L, t)|

=




| ∫ x+L

x np,0(y, t)dy|, x < 0,

| ∫ x
x−L n0,q(y, t)dy|, x > 0.

Therefore,

‖Np,q(t)− U(t)‖∞ ≤ L max
x

(np,q(x, t)), t > T,

and (26) in Lemma 5 implies that

‖np,q(t)− u(t)‖1 ≤ 4L max
x

(np,q(x, t)), t > T,

which completes the proof of Theorem 1(ii). 2

5 The convergence order 1/t

Now we show Theorem 1(iii). Remember that we assume U has its minimum
at the origin after an appropriate space shift (c = 0). Furthermore, since the
minimum point is unique, we may set

U(0, t) = −p, U(x, t) > −p for all x 6= 0, t > 0.
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Lemma 7 (Trapped between time translations) Let u be the solution of
(1), np,q be the N-wave satisfying (4), and U,Np,q be their potentials, respec-
tively. If the flux f satisfies (H) and the initial value u(x, 0) satisfies the con-
ditions in (15) (with c = 0), then there exist T, T1 > 0 such that, for all
t ≥ T ,

Np,q(x, T1 + t) ≤ U(x, t) ≤ Np,q(x, t). (28)

PROOF. The second inequality in (28) has been shown in Lemma 6 and we
show the first one in the followings. Due to the invariance property in Theorem
1(i), U(0, t) + p = Np,q(0, t) + p = 0 for all t > 0. Therefore, we may split
the domain for x > 0 and x < 0 and show the inequality on each domains
separately.

One can clearly see that

p + Np,q(L, t) =

L∫

0

np,q(x, t)dx → 0 as t →∞.

Therefore, there exists T1 > α such that p + Np,q(L, T1) ≤ p + U(ε, 0). Since
U(x, 0) has a unique minimum point at x = 0, we may assume that U(x, 0) ≥
U(ε, 0) for all x > ε by taking smaller ε > 0 if needed. Therefore, Np,q(x, T1) ≤
U(x, 0) for all 0 < x < L. Furthermore, since p + U(x, 0) = q for all x ≥ L
and p + Np,q(x, T1) ≤ q for all x ∈ R, we obtain Np,q(x, T1) ≤ U(x, 0) for
all x > 0. For x < 0 we may similarly obtain the estimate and obtain the
initial comparison Np,q(x, T1) ≤ U(x, 0). Therefore, the comparison principle
completes that Np,q(x, T1 + t) ≤ U(x, t) for all x ∈ R, t > T , which is the first
inequality of the lemma. 2

Theorem 1(iii) is obtained as a corollary of the potential comparison principle.
Note once again that for our convenience we set the constant c in (15) be c = 0.

Proof of Theorem 1(iii) : Using the comparison inequality (28) and the
evolution equation for potentials (17), we obtain

|U(x, t)−Np,q(x, t)| ≤ |Np,q(x, T1 + t)−Np,q(x, t)|

=

t+T1∫

t

f(np,q(x, s))ds ≤ T1‖f(np,q(t))‖∞.

Since the right hand side is independent of x ∈ R, the estimate is uniform. This
uniform estimate is naturally transferred to the L1 estimate of the difference
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between solutions using (26), i.e.,

‖u(x + c, t)− np,q(x, t)‖1 ≤ 4T1‖f(np,q(t))‖∞. (29)

Therefore, the proof of Theorem 1(iii) is completed with C = 4T1. 2

In Lemma 7 the potential U(x, t) has been sandwiched between Np,q(x, t) and
its time delay Np,q(x, T1 + t) with T1 ≥ α. Basically we may take T1 = α after
takeing larger T > 0 if needed. In the followings we consider a brief sketch of
it.

First we may assume

max
x

np,q(x, T ) ≤ max
0<x<ε

np,q(x, α)

by taking larger T > 0 if needed. Consider a backward characteristic ξ(s), 0 <
s < t, related to the N-wave np,q(x, t + α) that emanates from a continuity
point (x0, t) with 0 < x0 < bq(t) and t > T . As discussed in the proof of
Lemma 6 it does not meet a discontinuity all the way to s = 0 and hence it is a
straight line with speed f ′(np,q(x0, t+α)). Similarly consider another backward
characteristic ξ̃(s), 0 < s < t, that emanates from the same point (x0, t) related
to the solution u(x, t). Then ξ̃(s) is also a line with speed f ′(u(x0, t)). By taking
larger T > 0 if needed we may expect that 0 ≤ ξ̃(0) ≤ ε if u(x0, t) 6= 0.

Now we show the order between ξ(0) and ξ̃(0). Suppose that ξ(0) < ξ̃(0).
Then the speed of the characteristic lines should be ordered by f ′(u(x0, t)) <
f ′(np,q(x0, t + α)). Since f is convex near u = 0 (or u ∈ (−a, b)) and solutions
are constant along the characteristics, we have u(ξ̃(0), 0) < np,q(ξ(0), α). Since
np,q(x, α) is an increasing function on the interval (−a, b), we have

u(ξ̃(0), 0) < np,q(ξ(0), α) < np,q(ξ̃(0), α)

which contradicts to the initial condition (15). Therefore we have ξ(0) ≥ ξ̃(0)
and hence u(x0, t) > np,q(x0, t) if u(x0, t) 6= 0. Therefore,

x∫

0

u(y, t)dy ≥
x∫

0

np,q(y, t + α)dy.

One may obtain similar estimate for x < 0 and may complete the comparison

Np,q(x, t + α) ≤ U(x, t).

Therefore, we may take T1 = α which is reasonable in the sense that the α
measures the age of the initial value and hence it should control the conver-
gence speed.

14



In the followings we compute the order of the supremum norm ‖f(np,q(t))‖∞
for t large to obtain an algebraic convergence order, which turns out to be the
order O(1/t). For that purpose we take a hypothesis

lim inf
u→0

uf ′(u)

f(u)
= γ > 1. (H1)

Corollary 8 (Convergence order O(1/t)) If the flux function f satisfies
(H1), then

lim
t→∞ t ‖u(x, t)− np,q(x, t)‖1 ≤ 4T1 max(p, q)/(γ − 1). (30)

PROOF. Since |np,q(·, t)| has its supremum at x = −ap(t) or x = bq(t) for t
large, we only need to check the order of |f(np,q(·, t))| at these two points to
estimate ‖f(np,q(t))‖∞. Let ur = g(bq(t)/t) and hence f ′(ur) = bq(t)/t. One
can easily check that g(x/t) and tf ′(x) satisfy the inverse relation for any fixed
t. Therefore,

bq(t)∫

0

g(x/t)dx +

ur∫

0

tf ′(x)dx = urbq(t).

Using these relations one can easily see that

q =
∫ bq(t)
0 g(x

t
)dx = urbq(t)−

∫ ur
0 tf ′(x)dx = t(urf

′(ur)− f(ur))

= t
(

urf ′(ur)
f(ur)

− 1
)
f(ur).

(31)

This equality shows that urf
′(ur)/f(ur) > 1. Therefore, the flux that satisfies

the assumptions in (H) satisfies lim infu→0
uf ′(u)
f(u)

=: γ ≥ 1. Under the extra

hypothesis (H1), one obtains from (31) that

lim
t→∞ tf(ur) ≤ q/(γ − 1).

We may similarly estimate that limt→∞ tf(ul) ≤ p/(γ−1) for ul = g(−ap(t)/t)
and obtain

lim
t→∞ t‖f(np,q(t))‖∞ ≤ max(p, q)/(γ − 1).

Therefore, the estimate (29) gives the convergence order O(1/t) in (30). 2

Even if it is natural to ask that if the assumptions in (H) imply (H1), we do
not have a proof nor a counter example. However, there are many examples
that satisfy (H1). First, the power law f(u) = |u|γ, γ > 1 is a typical example.
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Suppose that f is C2 and f ′′(0) 6= 0. Then, using the Lehopital’s rule, one
obtains

lim
u→0

uf ′(u)

f(u)
= 1 + lim

u→0

u

f ′(u)
f ′′(u) = 2.

Suppose f is C2 and f ′′(0) = 0. Then, one can easily see that f ′(u)/u < f ′′(u)
for |u| small, i.e., 1 < uf ′′(u)/f ′(u). Therefore, if the flux is C2 and f ′′(0) = 0,
then one has

lim inf
u→0

uf ′(u)

f(u)
≥ 2.

If f(u) = exp( −1
|u|) for |u| < 1, then one can easily check that uf ′(u)/f(u) →∞

as u → 0. This example indicates that, if the flux f is very flat near the origin,
the ratio uf ′(u)/f(u) may diverge. However, the hypothesis (H1) is satisfied
and we still have the convergence order O(1/t).
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