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Abstract

We propose an algorithm for combining decomposable graphical models and apply it for
building decomposable graphical log-linear models which involve a large number of vari-
ables. A main idea in this algorithm is that we group the random variables that are in-
volved in the data into several subsets of variables, build graphical log-linear models for
the marginal data, and then combine the marginal models using graphs of prime separators
(section 2). The application of the algorithm to a data set of 40 binary variables is very
successful, yielding a model which is mostly the same as the true one.

Key words: Combined model structure, Graph-separateness, Interaction graph; Markovian
subgraph, Prime separator.

1 Introduction

Suppose that we are given a pair (call it Pair-1) of simple graphical models where
one model is of random variablesX1, X2, X3 with their inter-relationship thatX1

is independent ofX3 conditional onX2 and the other is ofX1, X2, X4 with their
inter-relationship thatX1 is independent ofX4 conditional onX2. From this pair,
we can imagine a model structure for the four variablesX1, · · · , X4. The two inter-
relationships are pictured at the left end of Figure 1. We will use the notation
[·]· · · [·] as used in Fienberg(1980) to represent a model. The graph at the top of
the two at the left is of the model [12][23] and the one at the bottom is of the model
[12][24]. X1 andX2 are shared in both models, and assuming that none of the four
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Fig. 1. Two marginal models (Pair-1) on the left and the four graphs of the models in (1)

variables are marginally independent of the others, we can see that the following
models have marginals in Pair-1:

[12][24][23], [12][24][34], [12][23][34], [12][234], (1)

which are displayed in graph in Figure 1. Note that the first three of these four
models are submodels of the last one.

We consider another pair (call it Pair-2) of simple marginals, [12][23] and [24][25],
where only one variable is shared. In this case, we have a longer list of combined
models as follows:

[12][24][23][25], [124][23][25], [124][23][35], [124][25][35], [125][23][34], [125][24][34],

[124][235], [125][234].

(2)
Model structures [124][235] and [125][234] are maximal in the sense of set inclu-
sion among these eight models.

It is important to note that some variable(s) are independent of the others, condi-
tional onX2 in each of the two pairs of marginals, Pair-1 and Pair-2, and in all the
models in (1) and (2). That conditional independence takes place conditional on the
same variable in the marginal models and also in the combined (or joint) models
underlies the main theme of the paper.

The conditional independence embedded in a distribution can be expressed to some
level of satisfaction by a graph in the form of graph-separateness [see, for example,
the separation theorem in p. 67, Whittaker (1990)]. It is shown that if we are given a
graphical model with its independence graph,G, and some of its marginal models,
then under the decomposability assumption of the model we can find a graph, say
H, which is not smaller thanG and in which the graph-separateness in the given
marginal models is preserved (Theorem 8). Based on this observation, we will pro-
pose an algorithm for combining marginal graphical models to the effect that one
can build a decomposable graphical model of a large number of random variables.

In section 2 we introduce notation and graphical terminologies to use; some of the
terminologies are prime separator and Markovian subgraph. In section 3 we de-
scribe stochastic properties concerning the relation between a graph and a type of
its Markovian subgraph and introduce basic notions and a tool for model combina-
tion and presents some important results that are instrumental for model combina-
tion. In section 4 we then define a special type of graph which is called a graph of
prime separators or GOPS for short, and describe the combining procedure that is
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proposed in this paper. The procedure is applied successfully to a simulated data
set in section 5. Finally, concluding remarks are given in section 6.

2 Notation and Preliminaries

We will consider only undirected graphs in the paper. We denote a graph byG =
(V, E), whereV is the set of the indexes of the variables involved inG andE is
a collection of ordered pairs, each pair representing that the nodes of the pair are
connected by an edge. SinceG is undirected, that(u, v) is in E is the same as that
(v, u) is in E. We say that a set of nodes ofG forms a complete subgraph ofG if
every pair of nodes in the set is connected by an edge. A maximal complete sub-
graph is called a clique ofG, where the maximality is in the sense of set-inclusion.
We denote byC(G) the set of cliques ofG.

A path of lengthn is a sequence of nodesu = v0, · · · , vn = v such that(vi, vi+1) ∈
E, i = 0, 1, · · · , n− 1 andu 6= v. If u = v, the path is called ann-cycle. If u 6= v
andu andv are connected by a path, we writeu ­ v. We define the connectivity
component ofu as

[u] = {v ∈ V ; v ­ u} ∪ {u}.
So, we have

v ∈ [u] ⇐⇒ u ­ v ⇐⇒ u ∈ [v].

ForA ⊂ V , we define aninduced subgraphof G confined toA asGind
A = (A, E ∩

(A×A)). We also define a graph, called aMarkovian subgraphof G confined toA,
which is formed fromGind

A by completing the boundaries inG of the connectivity
components of the complement ofA and denote it byGA. In other words,GA =
(A,EA) where

EA = (E∩A×A)∪{(u, v) ∈ A×A; u andv are not separated byA\{u, v} in G}.
(3)

If G = (V,E), G ′ = (V, E ′), andE ′ ⊆ E, then we say thatG ′ is an edge-subgraph
of G and writeG ′ ⊆e G. A subgraph ofG is either a Markovian subgraph, an
induced subgraph, or an edge-subgraph ofG. If G ′ is a subgraph ofG, we callG a
supergraph ofG ′.

Although decomposable graphs are well known in literature, we define them here
for completeness.

Definition 1 A triple (A,B,C) of disjoint, nonempty subsets ofV is said to form
a decomposition ofG if V = A ∪B ∪ C and the two conditions below both hold:
(i) A andB are separated byC;
(ii) Gind

C is complete.

By recursively applying the notion of graph decomposition, we can define a de-
composable graph.
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Definition 2 G is said to be decomposable if it is complete, or if there exists a
decomposition (A,B,C) into decomposable subgraphsGind

A∪C andGind
B∪C .

For a decomposable graph, we can find a sequence of cliquesC1, · · · , Ck of G
which satisfies the following condition [see Proposition 2.17 of Lauritzen (1996)]:
with C(j) = ∪j

i=1Ci andSj = Cj ∩ C(j−1) 6= ∅,

for all i > 1, there is aj < i such thatSi ⊆ Cj. (4)

By this condition for a sequence of cliques, we can see thatSj is expressed as an
intersection of neighboring cliques ofG. If we denote the collection of theseSj ’s
by χ(G), we have, for a decomposable graphG, that

χ(G) = {a ∩ b; a, b ∈ C(G), a 6= b}. (5)

It is possible for some decomposable graphG that there are sets,a andb, in χ(G)
such thata ⊂ b.

The cliques are elementary graphical components and theSj is obtained as inter-
section of neighboring cliques. So, we will call theSj ’s prime separators (PSs for
short) of the decomposable graphG. The PSs in a decomposable graph may be
extended to separators of prime graphs in any undirected graph, where the prime
graphs are defined as the maximal subgraphs without a complete separator in Cox
and Wermuth (1999).

3 Markovian Subgraphs and Combined Models

For a probability distributionP of XV , let the logarithm of the density ofP be
expanded into interaction terms and let the set of the maximal domain sets of
these interaction terms be denoted byΓ(P ), where maximality is in the sense of
set-inclusion. We will call the set,Γ(P ), the generating class ofP and denote by
G(Γ(P )) = (V,E) the interaction graph ofP which satisfies, under the hierarchy
assumption for probability models,

(u, v) ∈ E ⇐⇒ {u, v} ⊆ a for somea ∈ Γ(P ). (6)

When confusion is not likely, we will writeG(P ) instead ofG(Γ(P )).

It is well known in literature (Pearl and Paz, 1987) that if a probability distribution
onXV is positive, then the three types of Markov property, pairwise Markov (PM),
locally Markov (LM), and globally Markov (GM) properties relative to an undi-
rected graph, are equivalent. Furthermore, for any probability distribution, it holds
that

(GM) =⇒ (LM) =⇒ (PM)
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[see Proposition 3.8 in Lauritzen (1996)]. So, we will writeM(G) instead ofMG(G)
and we will simply say that a distributionP is Markov with respect toG when
P ∈ MG(G).

ForA ⊂ V , we denote byJA the collection of the connectivity components inGind
Ac

and let
β(JA) = {bd(B); B ∈ JA}.

We also definēΓ(PA) as

Γ̄(PA) = (Γ(P ) ∩ A) ∪ β(JA). (7)

From this, it follows that

β(JA) ¹ Γ̄(PA) ¹ C(G(Γ̄(PA))).

The second¹ holds since it is possible that, for someB ∈ JA, bd(B) is a strict
subset of a clique inG(Γ̄(PA)).

The following result is immediate from (7).

Theorem 3 For a distributionP of XV andA ⊆ V ,

G(Γ̄(PA)) = G(P )A.

Proof: By definition, the interaction graph corresponding to the right hand side of
(7) isG(P )A. Thus the result follows.

From this theorem and the fact thatΓ(PA) ¹ Γ̄(PA), we have

Corollary 4 For a distributionP of XV andA ⊆ V ,

PA ∈ M(G(P )A).

From Theorem 3, we can also derive a result concerning both the relationship be-
tween a distributionP and a graphG and the relationship betweenPA andGA.

Corollary 5 For a distributionP of XV andA ⊆ V , suppose thatP ∈ M(G) for
an undirected graphG. Then

PA ∈ M(GA).

Proof: SinceP ∈ M(G), we haveG(P ) ⊆e G. This implies thatG(P )A ⊆e GA.
So, by Corollary 4, we have the desired result.

If we regardG as an interaction graph of a distributionP , then Corollary 4 says
thatPA ∈ M(GA), which means thatPA is Markov with respect toGA. We callGA

a Markovian subgraph ofG in this context.
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ForA ⊆ V , we defineM(G)A andL(GA) as

M(G)A = {PA; P ∈ M(G)}

and
L(GA) = {P ; PA ∈ M(GA)}.

M(G)A is the set of the marginal distributions onXA of a distributionP which
is Markov with respect toG; L(GA) is the set of the distributions ofXV whose
marginalPA onXA is Markov with respect toGA.

By definition and Corollary 5, we have the following:

L(G) = M(G),

M(G) ⊆ L(GA), (by Corollary 5) (8)

P ∈ L(GA) ⇐⇒ PA ∈ M(GA)

and
M(G)A ⊆ M(GA).

The last expression holds since, if a distributionQ is in M(G)A, it means that
Q = PA for some distributionP in M(G), and so, by Corollary 5, it follows that
Q ∈ M(GA).

It follows from (8) that, forA,B ⊆ V ,

M(G) ⊆ L(GA) ∩ L(GB).

We will derive a generalized version of this result below.

Let V be a set of subsets ofV . We will define another collection of distributions,

L̃(GA, A ∈ V) = {P ; PA ∈ M(GA), A ∈ V}.

L̃(GA, A ∈ V) is the collection of the distributions each of whose marginals is
Markov with respect to its corresponding Markovian subgraph ofG.

Theorem 6 For a collectionV of subsets ofV with an undirected graphG,

M(G) ⊆ L̃(GA, A ∈ V).

Proof: Let P ∈ M(G). Then, by (8),P ∈ L(GA) for A ∈ V. By definition,
PA ∈ M(GA). Since this holds for allA ∈ V , it follows thatP ∈ L̃(GA, A ∈ V).
This completes the proof.

Theorem 6 lays the groundwork for model-combination since it shows the relation-
ship between a graphical model with its graphG and a collection of Markovian
subgraphs ofG. The setM(G) of the probability distributions each of which is
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Markov with respect toG is contained in the set̃L(GA, A ∈ V) of the distributions
each of which has its marginals Markov with respect to their corresponding Marko-
vian subgraphsGA, A ∈ V. This result sheds light on our efforts in searching for
M(G) since it can be found as a subset ofL̃(GA, A ∈ V).

Let G = (V,E) be the graph of a decomposable model and letV1, V2, · · · , Vm be
subsets ofV . The m Markovian subgraphs,GV1 ,GV2 , · · · ,GVm, may be regarded
as the structures ofm marginal models of the decomposable model. In this con-
text, we may refer to a Markovian subgraph as amarginal model structure. These
terms reflect that our goal is to find the model structureG based on a collection of
marginal models. For simplicity, we writeGi = GVi

.

Definition 7 Suppose there arem Markovian subgraphs,G1, · · · ,Gm. Then we say
that graphH of a set of variablesV is a combined model structure(CMS) corre-
sponding toG1, · · · ,Gm, if the following conditions hold:
(i) ∪m

i=1Vi = V.
(ii) HVi

= Gi, for i = 1, · · · ,m. That is,Gi are Markovian subgraphs ofH.

We will callH a maximal CMScorresponding toG1, · · · ,Gm if adding any edge
toH invalidates condition (ii) for at least onei = 1, · · · ,m. SinceH depends on
G1, · · · ,Gm, we denote the collection of the maximal CMSs byΩ(G1, · · · ,Gm).

Recall that ifGi, i = 1, 2, · · · ,m, are Markovian subgraphs ofG, thenG is a CMS.
For a given setS of Markovian subgraphs, there may be many maximal CMSs, and
they are related withS through PSs as in the theorem below.

Theorem 8 Let there be Markovian subgraphsGi, i = 1, 2, · · · ,m, of a decom-
posable graphG. Then

(i) ∪m
i=1χ(Gi) ⊆ χ(G);

(ii) for any maximal CMSH,

∪m
i=1χ(Gi) = χ(H).

Proof: See the proof of Theorem 4 in Kim (2006).

If G is not a maximal CMS ofGi, i = 1, 2, · · · ,m, then we can construct a
maximal CMS,H∗ say, by adding edges toG. For notational convenience, let
V = {V1, V2, · · · , Vm}. Then forA ∈ V, we haveH∗

A = G(P )A. If P is the
distribution ofXV and we putG = G(P ) in Theorem 6, then we end up with the
summarizing expression

M(G(P )) ⊆ M(H∗) ⊆ L̃ (G(P )A, A ∈ V) , (9)
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where the first inequality follows sinceG(P ) ⊆e H∗. SinceP ∈ M(G(P )), expres-
sion (9) implies thatP is also Markov relative to the maximal CMS,H∗, andPA’s
are Markov relative to their correspondingG(P )A’s.

While Theorem 8 shows the relationship amongG, H∗, and{GA, A ∈ V} from
a graphical point of view, the inequalities in expression (9) say that the true prob-
ability model lies in the set of the probability models that are obtained based on
{GA, A ∈ V}.

4 Combining Procedure

We will begin this section with introducing a graph of PSs which consists of PSs
and edges connecting them. The graph is the same as the undirected graphs that
are considered so far in this paper, the nodes being replaced with PSs. Given a
decomposable graphG, the graph of the PSs ofG is defined as follows:

LetA = ∪a∈χ(G)a. Then the graph of the prime separators (GOPS for short)
of G is obtained fromGA by replacing every PS and all the edges between
every pair of neighboring PSs inGA with a node and an edge, respectively.

For three sets,A,B, andC, of PSs of an interaction graphG, if A andB are sepa-
rated byC, then we have that

(∪a∈Aa) ∩ (∪b∈Bb) ⊆ (∪c∈Cc) . (10)

WhenA,B, andC are all singletons of PSs, the set-inclusion is expressed as

A ∩B ⊆ C. (11)

This is analogous to the set-inclusion relationship among cliques in a junction tree
of a decomposable graph (Lauritzen, 1996). A junction tree is a tree-like graph of
cliques and intersection of them, where the intersection of neighboring cliques lies
on the path which connects the neighboring cliques. As for a junction tree, the sets
in (11) are either cliques or intersection of cliques. We will call the property in (10)
the PS junction property.

Suppose that we have a contingency table of a large number of random variables
whose model structure is graphical and that we cannot handle the whole table at
once for modelling. In this situation, we propose to develop several marginal log-
linear models and use them for building a model for the whole data set.

In selecting subsets of random variables, it is important to have the random vari-
ables associated more highly within subsets than between subsets. This way of
subset-selection would end up with subsets of random variables where random vari-
ables that are neighbors in the graph of the model structure of the whole data set
are more likely to appear in the same marginal model. Once marginal models are
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obtained, we construct a maximal CMS based on the collection of the GOPS’s of
the marginal models.

Suppose there arem marginal models. For operational convenience, it is recom-
mended that we start combining a pair of marginal models which shares more ran-
dom variables than any other pairs of marginal models. As more random variables
are shared between a pair of marginal models, sayG1 andG2, it is more likely
that the model-combination gets easier, since the shared variables restrict the loca-
tions of the other random variables inV1 ∪ V2 in the model-combination. Once the
first pair of marginal models are combined, it is desirable that a marginal model
is selected which shares most random variables withV1 ∪ V2, continue model-
combination until all the marginal models are combined into a model which is a
maximal CMS of them marginal models.

A rule of thumb of model-combination is that we connect two nodes each from
different Markovian subgraphs in a given set, sayM, of Markovian subgraphs if
the two nodes are not separated by any other nodes inM. We will formally describe
this condition below:

[Separateness condition] Let M be a set of Markovian subgraphs ofG andH a
maximal CMS ofM. If two nodes are in a graph inM and they are not adjacent
in the graph, then neither are they inH. Otherwise, adjacency of the nodes inH
is determined by checking separateness of the nodes inM.

Suppose thatM consists ofm Markovian subgraphs,G1, · · · ,Gm, of G and we
denote byai a PS ofGi. We can then combine the models ofM as follows:

Step 1. We arrange the subgraphs intoGi1 , · · · ,Gim such that|Vij∩Vij+1
| ≥ |Vij+1

∩
Vij+2

| for j = 1, 2, · · · ,m− 2. For convenience, letij = j, j = 1, 2, · · · ,m. We
defineη1 = {G1}.

Step 2a. We first put an edge between every pair of PSsa1 anda2 if

a1 ∩ a2 6= ∅, (12)

in such a way that the Separateness condition is satisfied with regard toM. We
denote the resulting GOPS byH.

Step 2b. Once the node-sharing PSs are all considered in Step 2a, we need to con-
sider all the PSsa1 anda2 such that

a1 ∩
�
∪a∈χ(G2)a

�
= ∅ and a2 ∩

�
∪a∈χ(G1)a

�
= ∅ (13)

and put edges betweenai, i = 1, 2, and every PS inG3−i that is acceptable under
the Separateness condition, in addition to the GOPS which is obtained in Step
2a. For example, for eacha1 satisfying (13), we add edges toH between thea1

and every possible PS inG2 under the Separateness condition, and similarly for
each ofa2 that satisfy (13). We denote the result of the combination byη2.
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Step 3. Let ηi be the GOPS obtained from the preceding step. Note thatηi can be
a set of GOPS’s. For each GOPSH in ηi, we combineH with Gi+1 as in Step
2, where we replaceG1 andG2 with H andGi+1, respectively. We repeat this
combination withGi+1 for all the graphsH in ηi, which results in the set,ηi+1,
of newly combined graphs.

Step 4. If i + 1 = m, then stop the process. Otherwise, repeat Step 3.

Figure 1 is obtained by applying this procedure to Pair-1 in section 1. Since{2}
is the only PS in both of the marginal models, the resulting GOPS consists of{2}
only. Node 1 is shared between the marginal models. So the maximal CMS, which
is at the right end of Figure 1, is obtained by applying the Separateness condition
to the nodes 3 and 4.

In combining a pair of Markovian subgraphs, sayG1 andG2, suppose that an edge
is added between a PS,a1, in G1 and another PS,a2, in G2 and letNi, i = 1, 2, be
the set of the PSs which are adjacent toai in Gi. Then, under the decomposability
assumption and the Separateness condition, further edge-additions are possible be-
tween the PSs in the({ai} ∪ Ni)’s only. If the two subgraphs share no nodes, it is
desirable to find a marginal model from given data which shares variables (nodes)
with both of the subgraphs rather than simply make a list of all the possible pat-
terns of edge-additions between the subgraphs,G1 andG2, under the Separateness
condition.

5 Application

We use a simulated data set of 40 binary variables which is obtained from the
graphical log-linear model as in Figure 2, and apply the combining procedure to
the data. The model in Figure 2, without the thick edges, is decomposable, and, by
Theorem 7 of Pearl (1988, p. 112), the graph can be transformed into a directed
acyclic graph. So the simulated data can be generated by following the direction of
the arrows in the directed graph.

The number of categorical variables that can be handled at once for log-linear mod-
elling and the complexity of a model are limited up to the computational capacity
of a computer. Our computer (IBM PC) could handle up to 10 binary variables at
once at a relatively good speed of a few seconds or minutes. For any larger model
with more than 10 variables, it would take hours or days with the computer. So, we
applied the proposed combining procedure.

We grouped the 40 variables into 6 subsets of 10 variables in such a way that the
variables share more variables as regressor variables within subsets of variables
than the variables share between subsets. The grouping can be carried out by ap-
plying the regression tree method (Chambers and Hastie, 1992), and we ended up
with the six subsets as listed in Table 1. We find, by the regression tree method, a
subset,bi say, of variables which are mostly informative forXi, i = 1, 2 · · · , 40.
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We then have 40 subsets of variables,bi∪{i}, i = 1, 2, · · · , 40. Arranging these 40
subsets so that those subsets which share more variables among themselves are put
together yields Table 1. We may also use the mutual information or the Kullback-
Leibler information divergence method (Whittaker, 1990) for this grouping.
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Fig. 2. The true model, without the thick edges, used for application. The thick edges which
are additional to the true model are resulted from the combining process.

Table 1
The indexes of the variables in the 6 subsets,V1, · · · , V6.

V1 = {1, 2, 3, 4, 5, 6, 7, 8, 11, 12}
V2 = {8, 9, 10, 11, 12, 14, 15, 16, 17, 18}
V3 = {10, 13, 14, 15, 19, 20, 21, 22, 23, 24}
V4 = {13, 20, 21, 22, 25, 26, 27, 28, 29, 34}
V5 = {28, 29, 30, 31, 32, 34, 35, 36, 37, 38}
V6 = {30, 31, 32, 33, 35, 36, 37, 38, 39, 40}

Table 2
Goodness-of-fit levels of the six marginal models

Marginal model d.f. Pearsonχ2 p-value

1 567 547.50 0.714

2 645 667.41 0.263

3 601 589.07 0.628

4 649 679.25 0.199

5 617 591.89 0.760

6 604 621.53 0.302
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Fig. 3. Marginal models of the model in Figure 2 for the 6 subsets of variables which are
listed in Table 1.Gi is the decomposable log-linear model for subsetVi. PSs are represented
by thick lines.

As noted in the table, subsetsi andi + 1, i = 1, 2, · · · , 5, share a nonempty set of
variables. In particular, subsets 5 and 6 share as many as 7 variables. The marginal
models corresponding to the 6 sets of variables are given in Figure 3. We obtained
these models by applying the backward deletion method starting from an allk-way
interaction model whose goodness-of-fit level was acceptable. The p-values of the
goodness-of-fit tests of the models in the figure are all larger than or equal to 0.199
as shown in Table 2.

The true model structure in Figure 2 is fully recovered in the maximal CMS except
the 5 thick edges. These additional edges were created becauseX4 were missing in
V2. Also seeG2 in Figure 3. IfX4 had been added toV2, thenX{4,9} would have
separatedX11, X12, andX{8,10} from each other, making those additional edges
unnecessary. This phenomenon of additional edges leads us to recommend that the
variables be grouped into marginal models so that the association between variables
is higher within a marginal model than between marginal models.

6 Concluding Remarks

In combining marginal models, it is important to make use of the locations of the
variables that are shared by the marginal models to be combined. While we use
GOPS’s of marginal models to construct another GOPS, the locations of the non-PS
nodes that are shared by the marginal models to be combined are as important as the
PSs in the marginal models. When two marginal models,G1 = (V1, E1) andG2 =
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(V2, E2), do not share any variables, the overall time complexity of this method
is of order|V1|2(O(|V2| + |E2|) + |V2|2(O(|V1| + |E1|) (Tarjan, 1972). When the
two models share nodes, the time complexity can be expressed by|ÜV1|2(O(|ÜV2| +
|ÜE2|) + |ÜV2|2(O(|ÜV1|+ |ÜE1|) whereÜGi = (ÜVi, ÜEi) = (Gi)V1∩V2, i = 1, 2.

The PS junction property (10) and the Separateness condition are instrumental for
locating PSs in model-combination. When more than one combined model are cre-
ated, we can reduce the ambiguity or the number of combined models by modelling
for a marginal set of the variables which are involved in the ambiguity or by ex-
amining which of the variables that are involved in the ambiguity belong to which
marginal models.

The proposed method is developed for combining decomposable marginal models
but it can be extended to combining general forms of undirected graphs provided
that prime subgraphs (Olesen and Madsen, 2002) of the marginal models may be
transformed into cliques. Since the theorems in section 3 hold for a variety of dis-
tributions, the proposed method is not limited to contingency table data only. When
combining large marginal models, we may use parts of them which are useful for
the combining including those that are shared by the models, which will reduce the
time complexity of the proposed method.
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