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Abstract

We propose an algorithm for combining decomposable graphical models and apply it for
building decomposable graphical log-linear models which involve a large number of vari-
ables. A main idea in this algorithm is that we group the random variables that are in-
volved in the data into several subsets of variables, build graphical log-linear models for
the marginal data, and then combine the marginal models using graphs of prime separators
(section 2). The application of the algorithm to a data set of 40 binary variables is very
successful, yielding a model which is mostly the same as the true one.

Key words: Combined model structure, Graph-separateness, Interaction graph; Markovian
subgraph, Prime separator.

1 Introduction

Suppose that we are given a pair (call it Pair-1) of simple graphical models where
one model is of random variables§,, X,, X3 with their inter-relationship thak;

is independent o3 conditional onX, and the other is oX;, X5, X, with their
inter-relationship thaf(; is independent o, conditional onX,. From this pair,

we can imagine a model structure for the four variabigs: - - , X,. The two inter-
relationships are pictured at the left end of Figure 1. We will use the notation
[]-- - [] as used in Fienberg(1980) to represent a model. The graph at the top of
the two at the left is of the model [12][23] and the one at the bottom is of the model
[12][24]. X; and X, are shared in both models, and assuming that none of the four
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Fig. 1. Two marginal models (Pair-1) on the left and the four graphs of the models in (1)

variables are marginally independent of the others, we can see that the following
models have marginals in Pair-1:

[12][24][23], [12][24][34], [12][23][34], [12][234], (1)

which are displayed in graph in Figure 1. Note that the first three of these four
models are submodels of the last one.

We consider another pair (call it Pair-2) of simple marginals, [12][23] and [24][25],
where only one variable is shared. In this case, we have a longer list of combined
models as follows:

[12][24][23][25], [124][23][25], [124][23][35], [124][25][35], [125][23][34], [125][24][34],

[124][235], [125][234].

(2)
Model structures [124][235] and [125][234] are maximal in the sense of set inclu-
sion among these eight models.

It is important to note that some variable(s) are independent of the others, condi-
tional on X, in each of the two pairs of marginals, Pair-1 and Pair-2, and in all the
models in (1) and (2). That conditional independence takes place conditional on the
same variable in the marginal models and also in the combined (or joint) models
underlies the main theme of the paper.

The conditional independence embedded in a distribution can be expressed to some
level of satisfaction by a graph in the form of graph-separateness [see, for example,
the separation theorem in p. 67, Whittaker (1990)]. It is shown that if we are given a
graphical model with its independence graghand some of its marginal models,

then under the decomposability assumption of the model we can find a graph, say
‘H, which is not smaller thag and in which the graph-separateness in the given
marginal models is preserved (Theorem 8). Based on this observation, we will pro-
pose an algorithm for combining marginal graphical models to the effect that one
can build a decomposable graphical model of a large number of random variables.

In section 2 we introduce notation and graphical terminologies to use; some of the
terminologies are prime separator and Markovian subgraph. In section 3 we de-
scribe stochastic properties concerning the relation between a graph and a type of
its Markovian subgraph and introduce basic notions and a tool for model combina-
tion and presents some important results that are instrumental for model combina-
tion. In section 4 we then define a special type of graph which is called a graph of
prime separators or GOPS for short, and describe the combining procedure that is



proposed in this paper. The procedure is applied successfully to a simulated data
set in section 5. Finally, concluding remarks are given in section 6.

2 Notation and Preliminaries

We will consider only undirected graphs in the paper. We denote a grapgh-by

(V, E), whereV is the set of the indexes of the variables involvedjiand £ is

a collection of ordered pairs, each pair representing that the nodes of the pair are
connected by an edge. SinGds undirected, thatu, v) is in E is the same as that
(v,u) is in E. We say that a set of nodes @fforms a complete subgraph &fif

every pair of nodes in the set is connected by an edge. A maximal complete sub-
graph is called a clique @, where the maximality is in the sense of set-inclusion.
We denote by’ (G) the set of cliques of.

A path of lengthn is a sequence of nodes= vy, - - - , v, = v such thatv;, v;41) €
E,i=0,1,--- ,n—1andu # v. If u = v, the path is called an-cycle. Ifu # v
andu andv are connected by a path, we write= v. We define the connectivity
component of: as
[u ={veV; v=u}U{u}.
So, we have
vEU] = u=v <= ue€.

For A C V, we define aiinduced subgrapbf G confined to4 asGi*® = (A, EN
(Ax A)). We also define a graph, called/iarkovian subgraplof G confined toA4,
which is formed fromG¢ by completing the boundaries @ of the connectivity
components of the complement @fand denote it by 4. In other wordsG, =
(A, E4) where

Ej=(ENAxA)U{(u,v) € AxA; uandv are not separated by\{u, v} in G}.
3

If G =(V,E),G = (V,E'),andE’ C FE, then we say tha¥’ is an edge-subgraph
of G and writeG’ C°¢ G. A subgraph ofG is either a Markovian subgraph, an
induced subgraph, or an edge-subgrapt.of G’ is a subgraph of/, we callG a
supergraph of’.

Although decomposable graphs are well known in literature, we define them here
for completeness.

Definition 1 A triple (A, B, C) of disjoint, nonempty subsets &f is said to form
a decomposition ofj if V = AU B U C and the two conditions below both hold:
(i) A andB are separated by;

(i) Ginis complete.

By recursively applying the notion of graph decomposition, we can define a de-
composable graph.



Definition 2 G is said to be decomposable if it is complete, or if there exists a
decomposition 4, B, C) into decomposable subgrapf$ <. andG#d,..

For a decomposable graph, we can find a sequence of cliques- ,C} of G
which satisfies the following condition [see Proposition 2.17 of Lauritzen (1996)]:
with C(j) = nglCi ande = Cj N C(j—l) 7A @,

forall i > 1, there is @ < i such thatS; C C;. 4)

By this condition for a sequence of cliques, we can seeS$hat expressed as an
intersection of neighboring cliques ¢f If we denote the collection of thesg’s
by x(G), we have, for a decomposable graphthat

X(G) ={anb; a,beC(G), a#b}. (5)

It is possible for some decomposable gr&pthat there are sets,andb, in x(G)
such that C b.

The cliques are elementary graphical components and tie obtained as inter-
section of neighboring cliques. So, we will call thg's prime separators (PSs for
short) of the decomposable graph The PSs in a decomposable graph may be
extended to separators of prime graphs in any undirected graph, where the prime
graphs are defined as the maximal subgraphs without a complete separator in Cox
and Wermuth (1999).

3 Markovian Subgraphs and Combined Models

For a probability distribution” of Xy, let the logarithm of the density o be
expanded into interaction terms and let the set of the maximal domain sets of
these interaction terms be denotedIiy”), where maximality is in the sense of
set-inclusion. We will call the set;(P), the generating class @ and denote by
G(I'(P)) = (V, E) the interaction graph aP which satisfies, under the hierarchy
assumption for probability models,

(u,v) € B <= {u,v} Ca forsomea € I'(P). (6)
When confusion is not likely, we will writ€/(P) instead ofG(I'(P)).

It is well known in literature (Pearl and Paz, 1987) that if a probability distribution
on Xy is positive, then the three types of Markov property, pairwise Markov (PM),
locally Markov (LM), and globally Markov (GM) properties relative to an undi-
rected graph, are equivalent. Furthermore, for any probability distribution, it holds
that

(GM) = (LM) = (PM)



[see Proposition 3.8 in Lauritzen (1996)]. So, we will wit§G ) instead ofM/;(G)
and we will simply say that a distributio® is Markov with respect t@ when
P e Mg(g)

For A C V, we denote by, the collection of the connectivity componentgi’
and let

B(Ja) ={bd(B); B € Ja}.
We also defind’(P,) as

[(Pa) = (T(P) N A) U B(Ta). (7)

From this, it follows that
B(Ta) 2 T(Pa) 2 C(G(T(Pa))).

The second= holds since it is possible that, for somtie € 74, bd(B) is a strict
subset of a clique i (I'(Pa4)).

The following result is immediate from (7).
Theorem 3 For a distribution” of X,y andA C V,

G(T(P4)) = G(P)a
Proof: By definition, the interaction graph corresponding to the right hand side of
(7) iIsG(P) 4. Thus the result follows.
From this theorem and the fact tHatP,) < I'(P,), we have
Corollary 4 For a distributionP of X, andA C V,

Py € M(G(P)a4).

From Theorem 3, we can also derive a result concerning both the relationship be-

tween a distributior? and a graply and the relationship betwedty, andg 4.

Corollary 5 For a distributionP of Xy, and A C V, suppose thaP € M (G) for
an undirected grap§i. Then
Py e M(QA>

Proof: SinceP € M(G), we haveG(P) C° G. This implies thaiG(P)4 C¢ G4.
So, by Corollary 4, we have the desired result.

If we regardG as an interaction graph of a distributidty then Corollary 4 says
that P4 € M(G4), which means thaP, is Markov with respect tg 4. We callG 4
a Markovian subgraph @ in this context.



For A C V, we defineM (G)4 andL(G4) as
M(G)a={Pa; PeM(G)}

and

L(Ga) ={P; Pa€ M(Ga)}.
M (G) 4 is the set of the marginal distributions &6, of a distribution P which
is Markov with respect t@j; L(G,) is the set of the distributions &K, whose
marginalP, on X 4 is Markov with respect tg; 4.

By definition and Corollary 5, we have the following:

M(G) C L(Ga), (by Corollary 5)  (8)
P e L(Gs) < Py M(Ga)
and
M(G)a € M(Ga).
The last expression holds since, if a distributi@Qnis in M(G) 4, it means that
@ = P4 for some distribution? in M (G), and so, by Corollary 5, it follows that

Q € M(Gy).
It follows from (8) that, forA, B C V,
M(G) € L(Ga) N L(GB).
We will derive a generalized version of this result below.
LetV be a set of subsets &f. We will define another collection of distributions,
L(Ga, A€ V) ={P; Pye M(Ga), AcV}.

L(Ga, A € V) is the collection of the distributions each of whose marginals is
Markov with respect to its corresponding Markovian subgrap@.of

Theorem 6 For a collectionV of subsets oF with an undirected graply,
M(G) C L(Ga, A€ V).
Proof: Let P € M(G). Then, by (8),P € L(Ga) for A € V. By definition,

P, € M(G,). Since this holds for ald € V, it follows thatP € L(G4, A € V).
This completes the proof.

Theorem 6 lays the groundwork for model-combination since it shows the relation-
ship between a graphical model with its gragghand a collection of Markovian
subgraphs ofj. The setM(G) of the probability distributions each of which is



Markov with respect t@; is contained in the sdt(G4, A € V) of the distributions
each of which has its marginals Markov with respect to their corresponding Marko-
vian subgraphg/4, A € V. This result sheds light on our efforts in searching for
M (G) since it can be found as a subsetigfi4, A € V).

Let G = (V, E) be the graph of a decomposable model and/ets, - -- ,V,, be
subsets oft’. The m Markovian subgraphsyy,, Gy,,- - - ,Gy,,, may be regarded
as the structures ofi marginal models of the decomposable model. In this con-
text, we may refer to a Markovian subgraph amarginal model structureThese
terms reflect that our goal is to find the model struc@itgased on a collection of
marginal models. For simplicity, we writg, = Gy..

Definition 7 Suppose there anme Markovian subgraphgyi, - - - , G,,. Then we say
that graph’H of a set of variabled” is a combined model structur€MS) corre-
sponding tagy, - - - , G, if the following conditions hold:

() U Vi = V.

(i) Hy, = G, fori =1,--- ,m. That is,G; are Markovian subgraphs Gf.

We will call H a maximal CMScorresponding ta@7,, - - - , G,, if adding any edge
to H invalidates condition (ii) for at least one= 1, -- , m. SinceH depends on
Gi, -+ ,Gm, we denote the collection of the maximal CMS$M¢, - - - , G,.).

Recall that ifG;, i = 1,2, --- ,m, are Markovian subgraphs 6f theng is a CMS.
For a given se& of Markovian subgraphs, there may be many maximal CMSs, and
they are related witls through PSs as in the theorem below.

Theorem 8 Let there be Markovian subgraplis, : = 1,2,--- ,m, of a decom-
posable grapy. Then

(i) Uiz x(Gi) € x(9);
(1) for any maximal CMSH,

UiZix(Gi) = x(H).

Proof: See the proof of Theorem 4 in Kim (2006).

If G is not a maximal CMS ofG;, « = 1,2,---,m, then we can construct a
maximal CMS,H* say, by adding edges t@. For notational convenience, let
V = {WV,---,V,}. Then forA € V, we haveH’ = G(P)4. If P is the
distribution of X, and we putG = G(P) in Theorem 6, then we end up with the
summarizing expression

M(G(P)) € M(H") € L(G(P)a, A€V), (9)

\‘



where the first inequality follows sing® P) C¢ H*. SinceP € M (G(P)), expres-
sion (9) implies that” is also Markov relative to the maximal CM&,*, andP4’s
are Markov relative to their correspondiggP) 4’s.

While Theorem 8 shows the relationship amangH*, and{G4, A € V} from

a graphical point of view, the inequalities in expression (9) say that the true prob-
ability model lies in the set of the probability models that are obtained based on
{Ga, A€V}

4 Combining Procedure

We will begin this section with introducing a graph of PSs which consists of PSs
and edges connecting them. The graph is the same as the undirected graphs that
are considered so far in this paper, the nodes being replaced with PSs. Given a
decomposable gragh the graph of the PSs ¢f is defined as follows:

Let A = Uuey(g)a. Then the graph of the prime separators (GOPS for short)
of G is obtained fron 4 by replacing every PS and all the edges between
every pair of neighboring PSs @ with a node and an edge, respectively.

For three sets4, B, andC, of PSs of an interaction graggh if A andB are sepa-
rated byC', then we have that

(UaeAa) n (UbeBb) - (Ucecc) . (10)
When A, B, andC are all singletons of PSs, the set-inclusion is expressed as
ANnBCC. (12)

This is analogous to the set-inclusion relationship among cliques in a junction tree
of a decomposable graph (Lauritzen, 1996). A junction tree is a tree-like graph of
cliques and intersection of them, where the intersection of neighboring cliques lies
on the path which connects the neighboring cliques. As for a junction tree, the sets
in (11) are either cliques or intersection of cliques. We will call the property in (10)
the PS junction property.

Suppose that we have a contingency table of a large number of random variables
whose model structure is graphical and that we cannot handle the whole table at
once for modelling. In this situation, we propose to develop several marginal log-
linear models and use them for building a model for the whole data set.

In selecting subsets of random variables, it is important to have the random vari-

ables associated more highly within subsets than between subsets. This way of
subset-selection would end up with subsets of random variables where random vari-
ables that are neighbors in the graph of the model structure of the whole data set
are more likely to appear in the same marginal model. Once marginal models are



obtained, we construct a maximal CMS based on the collection of the GOPS'’s of
the marginal models.

Suppose there ar@ marginal models. For operational convenience, it is recom-
mended that we start combining a pair of marginal models which shares more ran-
dom variables than any other pairs of marginal models. As more random variables
are shared between a pair of marginal models, Gagnd G,, it is more likely

that the model-combination gets easier, since the shared variables restrict the loca-
tions of the other random variableslifi U V5 in the model-combination. Once the

first pair of marginal models are combined, it is desirable that a marginal model
is selected which shares most random variables Wijtku V;, continue model-
combination until all the marginal models are combined into a model which is a
maximal CMS of then marginal models.

A rule of thumb of model-combination is that we connect two nodes each from
different Markovian subgraphs in a given set, et of Markovian subgraphs if
the two nodes are not separated by any other nod&s.iwe will formally describe

this condition below:

[Separateness conditior Let M be a set of Markovian subgraphs @fandH a
maximal CMS of M. If two nodes are in a graph i and they are not adjacent
in the graph, then neither are they#h Otherwise, adjacency of the nodesHn
is determined by checking separateness of the nod&4.in

Suppose that\ consists ofm Markovian subgraphgyy, - - - ,G,,, of G and we

denote by:’ a PS ofg;. We can then combine the models.bf as follows:

Step 1. We arrange the subgraphsidig, - - - , G;,, suchthatV; NV, . | > |V N
Vil forj=1,2,--- m—2.For convenience, lgt = j,j =1,2,--- ,m. We
definen; = {G }.

Step 2a. We first put an edge between every pair of RSanda? if

a' Na® 0, (12)

in such a way that the Separateness condition is satisfied with regartd We
denote the resulting GOPS 13¥.

Step 2b. Once the node-sharing PSs are all considered in Step 2a, we need to con-
sider all the PSa! anda? such that

a' N (Uaex(gg)@) = and a’ N (Uaex(g1)a) =10 (13)

and put edges betweeh i = 1,2, and every PS ig_; that is acceptable under

the Separateness condition, in addition to the GOPS which is obtained in Step
2a. For example, for eaelt satisfying (13), we add edges 6 between the:!

and every possible PS @, under the Separateness condition, and similarly for
each ofa? that satisfy (13). We denote the result of the combinationsby



Step 3. Let 7; be the GOPS obtained from the preceding step. Notejthan be
a set of GOPS’s. For each GOPRSIn 7;, we combineH with G;,; as in Step
2, where we replac¢; and G, with H and g, respectively. We repeat this
combination withg, ., for all the graphsH in 7;, which results in the set; ., 1,
of newly combined graphs.

Step 4. If i + 1 = m, then stop the process. Otherwise, repeat Step 3.

Figure 1 is obtained by applying this procedure to Pair-1 in section 1. Sihce

is the only PS in both of the marginal models, the resulting GOPS consi$gs of
only. Node 1 is shared between the marginal models. So the maximal CMS, which
is at the right end of Figure 1, is obtained by applying the Separateness condition
to the nodes 3 and 4.

In combining a pair of Markovian subgraphs, sayandgG,, suppose that an edge

is added between a P&, in G, and another PS;2, in G, and let\;, i = 1,2, be

the set of the PSs which are adjacenttin G;. Then, under the decomposability
assumption and the Separateness condition, further edge-additions are possible be-
tween the PSs in thg{a'} U NV;)'s only. If the two subgraphs share no nodes, it is
desirable to find a marginal model from given data which shares variables (nodes)
with both of the subgraphs rather than simply make a list of all the possible pat-
terns of edge-additions between the subgraghsndg,, under the Separateness
condition.

5 Application

We use a simulated data set of 40 binary variables which is obtained from the

graphical log-linear model as in Figure 2, and apply the combining procedure to

the data. The model in Figure 2, without the thick edges, is decomposable, and, by
Theorem 7 of Pearl (1988, p. 112), the graph can be transformed into a directed
acyclic graph. So the simulated data can be generated by following the direction of
the arrows in the directed graph.

The number of categorical variables that can be handled at once for log-linear mod-
elling and the complexity of a model are limited up to the computational capacity
of a computer. Our computer (IBM PC) could handle up to 10 binary variables at
once at a relatively good speed of a few seconds or minutes. For any larger model
with more than 10 variables, it would take hours or days with the computer. So, we
applied the proposed combining procedure.

We grouped the 40 variables into 6 subsets of 10 variables in such a way that the
variables share more variables as regressor variables within subsets of variables
than the variables share between subsets. The grouping can be carried out by ap-
plying the regression tree method (Chambers and Hastie, 1992), and we ended up
with the six subsets as listed in Table 1. We find, by the regression tree method, a
subsetp; say, of variables which are mostly informative f&g, : = 1,2--- | 40.

10



We then have 40 subsets of variablgs/{i}, i = 1,2, --- ,40. Arranging these 40
subsets so that those subsets which share more variables among themselves are put
together yields Table 1. We may also use the mutual information or the Kullback-
Leibler information divergence method (Whittaker, 1990) for this grouping.

Fig. 2. The true model, without the thick edges, used for application. The thick edges which
are additional to the true model are resulted from the combining process.

Table 1

The indexes of the variables in the 6 subs®is; - - , V;.
Vi={1,2,3,4,5,6,7,8,11,12}

Vo ={8,9,10,11,12,14,15,16,17, 18}

Vs ={10,13,14,15,19,20,21,22, 23, 24}
Vi ={13,20,21,22,25,26,27,28,29, 34}
Vs = {28,29, 30, 31, 32, 34, 35, 36, 37, 38}
Ve ={30,31,32, 33,35, 36, 37, 38,39, 40}

Table 2
Goodness-of-fit levels of the six marginal models

Marginal model d.f. Pearsog? p-value

1 567 547.50 0.714
2 645 667.41 0.263
3 601 589.07 0.628
4 649 679.25 0.199
5 617 591.89 0.760
6 604 621.53 0.302

11



Fig. 3. Marginal models of the model in Figure 2 for the 6 subsets of variables which are
listed in Table 1¢; is the decomposable log-linear model for sul$ePSs are represented
by thick lines.

As noted in the table, subsetand: + 1,7 = 1,2, --- , 5, share a nonempty set of
variables. In particular, subsets 5 and 6 share as many as 7 variables. The marginal
models corresponding to the 6 sets of variables are given in Figure 3. We obtained
these models by applying the backward deletion method starting from &mwaly
interaction model whose goodness-of-fit level was acceptable. The p-values of the
goodness-of-fit tests of the models in the figure are all larger than or equal to 0.199
as shown in Table 2.

The true model structure in Figure 2 is fully recovered in the maximal CMS except
the 5 thick edges. These additional edges were created bekauggEre missing in

Va. Also seeg, in Figure 3. If X; had been added t,, thenX, o, would have
separated;;, X2, andXys 9y from each other, making those additional edges
unnecessary. This phenomenon of additional edges leads us to recommend that the
variables be grouped into marginal models so that the association between variables
is higher within a marginal model than between marginal models.

6 Concluding Remarks

In combining marginal models, it is important to make use of the locations of the
variables that are shared by the marginal models to be combined. While we use
GOPS’s of marginal models to construct another GOPS, the locations of the non-PS
nodes that are shared by the marginal models to be combined are as important as the
PSs in the marginal models. When two marginal modgls;- (V;, F;) andG, =

12



(Va, E,), do not share any variables, the overall time complexity of this method
is of order|V; [2(O(|Va] + | E2|) + |V2|*(O(|VA| + |Ey]) (Tarjan, 1972). When the
two models share nodes, the time complexity can be expressgd |B{O(|V4| +

|E|) + Va2 (O(IVi] + |E1]) whereG; = (Vi, Ei) = (Gi)vinvg, @ = 1,2.

The PS junction property (10) and the Separateness condition are instrumental for
locating PSs in model-combination. When more than one combined model are cre-
ated, we can reduce the ambiguity or the number of combined models by modelling
for a marginal set of the variables which are involved in the ambiguity or by ex-
amining which of the variables that are involved in the ambiguity belong to which
marginal models.

The proposed method is developed for combining decomposable marginal models
but it can be extended to combining general forms of undirected graphs provided
that prime subgraphs (Olesen and Madsen, 2002) of the marginal models may be
transformed into cliques. Since the theorems in section 3 hold for a variety of dis-
tributions, the proposed method is not limited to contingency table data only. When
combining large marginal models, we may use parts of them which are useful for
the combining including those that are shared by the models, which will reduce the
time complexity of the proposed method.
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