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Abstract

The Pearson’s chi-squared statistic (X2) does not in general follow a chi-square distri-
bution when it is used for goodness-of-fit testing for a multinomial distribution based on
sparse contingency table data. We explore properties of Zelterman’s (1987)D2 statistic and
compare them with those ofX2 and we also compare these two statistics and the statistic
(Lr) which is proposed by Maydeu-Olivares and Joe (2005) in the context of power of
the goodness-of-fit testing when the given contingency table is very sparse. We show that
the variance ofD2 is not larger than the variance ofX2 under null hypotheses where all
the cell probabilities are positive, that the distribution ofD2 becomes more skewed as
the multinomial distribution becomes more asymmetric and sparse, and that, as for theLr

statistic, the power of the goodness-of-fit testing depends on the models which are selected
for the testing. A simulation experiment strongly recommends to use bothD2 andLr for
goodness-of-fit testing with large sparse contingency table data.

Key words: Test power, P-value, Sample-cell ratio, Model discrepancy, Normal
approximation, Skewness

1 Introduction

A variety of statistics have been derived for goodness-of-fit testing such as the
Pearson chi-squared statistic (X2) (Pearson, 1900), the log likelihood ratio statistic
(G2), the Freeman-Tukey statistic, the Neyman modifiedX2, and the modifiedG2.
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Cressie and Read (1984) proposed a family of power divergence statistics, in which
all of the above statistics are embedded. All of these statistics are asymptotically
chi-squared distributed with appropriate degrees of freedom (e.g. Fienberg, 1979;
Horn, 1977; Lancaster, 1969; Moore, 1976; Watson, 1959).

Two most popular statistics among them areX2 andG2. Cochran (1952) gives a
nice review of the early development ofX2 and concludes that there is little to dis-
tinguish it fromG2. The chi-squared approximation toX2 andG2 was studied by
Read (1984), and the accuracy of these approximations was examined by Koehler
and Larntz (1980) and Koehler (1986). Koehler (1986) demonstrated asymptotic
normality ofG2 for testing the fit of log-linear models with closed form maximum
likelihood estimates in sparse contingency tables and showed that the normal ap-
proximation can be much more accurate than the chi-squared approximation forG2,
but he admitted that the bias of the estimated moments is a potential problem for
very sparse tables. A good review on goodness-of-fit tests for sparse contingency
tables is provided in Koehler (1986).

Zelterman (1987) proposed a statisticD2 and compared it withX2 for testing
goodness-of-fit (GOF) to sparse multinomial distributions, where

D2 = X2 −
∗X

(ni/ei),

whereni is the count in theith cell,ei the estimate of the cell mean of theith cell,
and

P∗ is the summation over all the cells such thatei > 0. TheD2 statistic is not
a member of the family of Cressie and Read’s power divergence statistics.

The goal of this paper is to explore properties of the goodness-of-fit test usingD2

(or theD2 test for short), in comparison with the goodness-of-fit test usingX2 (or
theX2 test for short), other than the asymptotic properties as derived in Zelterman
(1987), to do a more rigorous comparative study on the goodness-of-fit tests using
the statistics,D2, X2, andLr, in the context of power, and to propose an approach
to goodness-of-fit testing for a very sparse multinomial distribution.

This paper consists of six sections. Section 2 describes what happens toX2 when
the data sizen is smaller than the number of cells (k) of a given contingency table
and summarizes earlier works on asymptotic properties ofX2 with more attention
paid to the case thatn < k. Section 3 comparesD2 and X2 in the context of
variance, and it is shown that the variance ofD2 is not larger than that ofX2 under
any null hypothesis of multinomial distribution. We carry out a Monte Carlo study
in Section 4 to compare the goodness-of-fit tests by usingD2, X2, andLr in the
context of test power. The Monte Carlo result strongly suggests that theD2 test is
at least as good as theX2 test whenn < k and comparable with theLr test. We
then investigated normal approximation to the standardizedD2 curve in Section
5. Section 6 concludes the paper with some further remarks on the goodness-of-fit
testing for sparse contingency tables.
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2 A BRIEF REVIEW ON GOODNESS-OF-FIT TESTS USING X2 AND
SOME RELATED STATISTICS

Suppose that we have a contingency table withk cells andn observations, and
consider a goodness-of-fit testing of a symmetric null hypothesis, i.e., all the cell
probabilities are the same. We will, first of all, consider the two extreme cases that
n = 1 andn = 2. Under the symmetric null hypothesis,X2 = k − 1 whenn = 1;
and whenn = 2, it is eitherk− 1 or k/2− 1 according to whether a particular cell
frequency equals 2 or not. It is interesting to note that whenn < k, X2 is strictly
positive under any hypothesis for the contingency table. This simply shows that the
asymptotic distribution ofX2 can not be a chi-square distribution whenn < k. This
is one of the reasons that the normal approximation was sought for in the literature
whenn < k.

While the literature on the asymptotic properties ofX2 abounds in regard to con-
tingency tables with large enough data (e.g., Agresti (1990); Bishop et al. (1975)),
a unifying result is yet to be explored as for the goodness-of-fit testing for sparse
contingency tables. Results from the literature concerning Pearson’s statistics are
summarily listed below in regard to sparse multinomial problems.

(i) TheX2 test has some optimal local power properties in the symmetrical case
when the number of cells is moderately large. Hence theX2 test based on the
traditional chi-squared approximation is preferred for the test of symmetry.
For the null hypothesis of symmetry, the chi-squared approximation forX2 is
quite adequate at the 0.05 and 0.01 nominal levels for expected frequencies as
low as 0.25 whenk ≥ 3, n ≥ 10, n2/k ≥ 10 (Koehler and Larntz, 1980, p.
343)

(ii) The chi-squared approximation forX2 produces inflated rejection levels for
asymmetrical null hypotheses that contain many expected frequencies smaller
than 1 (Koehler and Larntz, 1980, p. 344).

(iii) The adverse effects of small expected frequencies on the chi-squared ap-
proximation are generally less severe forX2 than for other commonly used
goodness-of-fit statistics (Koehler, 1986, p. 483).

(iv) The asymptotic power of theD2 test is moderate and at least as great as that
of the normalizedX2 (Zelterman, 1987, p. 628).

(v) For the symmetric null hypothesis, choosing the value of the family parameter
λ of Cressie and Read’s (1984) power divergence family of statistics in[1

3
, 11

2
]

results in a test statistic whose size can be approximated accurately by a chi-
squared distribution, provided thatk ≤ 6 andn ≥ 10. Whenλ ∈ [−5, 5] \
[1
3
, 11

2
], the corrected chi-square approximationFC is recommended where

FC is the corrected chi-square distribution for which the mean and variance
agree to second order with the mean and variance of Cressie and Read’s power
divergence statistics, since it gives reasonably accurate approximate levels and
is easy to compute. When bothn andk are large (say,n > 100), then the
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normal approximation should be used (Read, 1984, p. 935).
(vi) Berry and Mielke (1988) proposed non-asymptotic chi-square tests based on

X2 andD2 that use Pearson TypeIII distribution approximation for testing
large sparse contingency tables.

(vii) Maydeu-Olivares and Joe (2005) proposed a statistic,Lr, for goodness-of-fit
testing using2J contingency table data which is given in a quadratic form
based on multivariate moments up to orderr and showed thatX2 belongs to
this family of Lr. They showed that whenr is small (e.g., 2 or 3), theLr has
better small-sample properties and are asymptotically more powerful thanX2

for some multivariate binary models.

3 COMPARISON OF VARIANCES

The favorable comparison (Zelterman (1987, p. 628)) ofD2 over the normalized
version ofX2 in the context of asymptotic power in goodness-of-fit tests may be
extended to the situations of small or moderate data sizes. To see this, we will have a
closer look at the two statistics and compare their exact means and variances across
multinomial distributions, which will give us an insight into the power comparison.

Suppose that the cell probability at theith cell, pi, is equal top0i under the null
hypothesis (H0) and let it be equal topai under an alternative hypothesis (Ha). We
will denote the cell means in the same manner, i.e., bym0i underH0 and bymai

underHa. Throughout the rest of the paper, we will assume that
Q

i p0i > 0.

We can then re-expressD2 andX2 as

X2 =
kX

i=1

(ni −m0i)
2/m0i,

D2 = X2 −X
i

ni/m0i.

We list a couple of simple facts:

E(X2) =
kX

i=1

npiqi/m0i. (1)

E(D2) = E(X2)−X
i

pi/p0i. (2)

The difference between the variance ofD2 and that ofX2 is given in
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Theorem 1 Under a multinomial assumption with the sample sizen and a contin-
gency table ofk cells, we have

V (D2) = V (X2) + n

�
kX

i=1

kX
j=1

pipj

m0im0j

−
kX

i=1

pi

m2
0i

�
+4n(n− 1)

�
kX

i=1

kX
j=1

pip
2
j

m0im0j

−
kX

i=1

p2
i

m2
0i

�
= V (X2) +

kX
i=1

pi + 4(n− 1)p2
i

m0i

kX
j=1

�
pj

p0j

− 1/k

p0i

�
.

Proof: See Appendix A.

A couple of corollaries follow from this theorem.

Corollary 2 UnderH0, V (D2) is simplified as

V (D2) = V (X2) +
k2

n
−

kX
i=1

1

m0i

≤V (X2),

where the equality holds if and only ifH0 is symmetrical.

Corollary 3 Suppose thatpah = 1, for some1 ≤ h ≤ k under anHa. Then under
theHa, we have

V (D2) = V (X2). (3)

Let δ1 = E(D2) − E(X2) andδ2 = V (D2) − V (X2). Corollary 2 implies that
δ2 < 0 in a near neighborhood of (p01, . . . , p0k) whenH0 is not symmetrical. And
judging from Corollary 3, we can see thatδ2 is bounded on the boundary of the
k − 1 dimensional simplex of (p1, . . . , pk) sinceδ2 is continuous in (p1, . . . , pk).

4 SIMULATION EXPERIMENTS

To compare theX2 andD2 tests, we conducted simulation experiments with small
samples, using a model of 10 binary variables whose model structure is represented
as a directed acyclic graph (DAG). We will call this model Model 0 and denote it
by M0. Ten alternative models are considered for the goodness of fit test, which are
determined by adding or deleting some edges from Model 0. They are displayed
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in Figure 1 along with the true model,M0, where each vertex represents a binary
variable. A brief explanation of the DAG models is given in Appendix B.

For each model, sample sizesn = 50, 200, 500 are selected such thatn/k is close
to 1/20, 1/5, 1/2. For each of the ten alternative models, sayM∗, we obtain an
approximate value of the p-value of the goodness-of-fit test as follows:

(i) Generate a sample{(n(0)
1 , . . . , n

(0)
k ) :

Pk
i=1 n

(0)
i = n} of sizen from M0.

(ii) Estimate the cell probabilities for modelM∗ based on the sample values,n
(0)
1 ,

· · · , n
(0)
k .

(iii) Generate a sample of sizen from modelM∗ based on the estimates of the cell
probabilities that are obtained in (ii) and computeX2 andD2 using the sample
values and the estimates obtained in (ii).

(iv) Repeat (iii) untilt X2 andD2 values are obtained, and arrange thet X2 values
in an increasing sequence ofx(1), · · · , x(t) and similarly theD2 values into the
sequence ofd(1), · · · , d(t).

(v) Compute the values ofX2 andD2 using the sample values,n
(0)
1 , · · · , n

(0)
k , and

the estimates obtained in (ii), and then obtain the values ofpx(X
2) andpd(X

2)
which are defined below in expression (4).
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Fig. 1. Graphs of 11 DAG Models, Models 0(M0), 1(M1) through 10(M10). Models
Mi, i = 1, 2, · · · , 10, are constructed by removing (dashed line) or adding (dot-dashed
line) arrows toM0.
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We define a pseudo p-value ofX2, px(X
2), as

px(X
2) =

8>>><>>>: 1
t+1

if X2 ≥ x(t)

1− i
t+1

if x(i) ≤ X2 < x(i+1), 1 ≤ i < t

1− 0.5
t+1

if X2 < x(1)

. (4)

A pseudo p-value ofD2, pd(D
2), is defined similarly as above except thatX2 andx

are replaced withD2 andd, respectively. As is apparent in (4), the pseudo p-value
gets close to the actual p-value ast increases, where the actual p-value is for the
goodness-of-fit test of modelM∗. If X2 ≥ x(1), we have

0 ≤ px − (the actual p-value)<
1

t + 1
,

and

|px − (the actual p-value)| < 0.5

t + 1
otherwise. The same inequalities hold forpd also.

To compare the power of goodness-of-fit test betweenD2 andX2, we repeated the
above procedure, (i) through (v), 500 times to obtain as many values of each ofpx

andpd with t = 100. Table 1 lists the proportions thatpx (pd) values are less than
α ∈ {0.05, 0.1} for three sample sizes(n) 50, 200, and 500.

In the table, we can see that theD2 test is more powerful than theX2 test. Model
M0 is of 10 binary variables, which means a contingency table of210 = 1, 024
cells. So the sample-cell ratios (n/k) considered in the table are50/1024 ≈ 0.05,
200/1024 = 0.195, and500/1024 = 0.488. The power increases as the sample
size increases for both of theD2 and theX2 tests. However, it is interesting to see
that the power does not change noticeably for some models with theX2 test. As for
modelsM2 andM4, the proportions thatpx ≤ 0.05 is not larger than 0.1 while those
for pd increase up to 0.43 and 0.79, respectively. We can see the same phenomenon
for the two models whenα = 0.1. We can see in the figures in Appendix C thatpx

is less sensitive to the sample size thanpd.

We will denote byπx(α) the proportion thatpx ≤ α out of the 500px values
and similarly forπd(α). From theπ values of modelsM2,M3, andM4, we can
see that theπ values do not change monotonically in the number of deleted edges
from modelM0. It is indicated in the table that theπ value is sensitive to how the
edge deletion affects the inter-relationship among the variables in the model. For
example, in modelM3, variablesX1, X3, X5, andX9 are independent of the other
6 variables in the model, while no variable is isolated from the rest of the variables
in modelsM2 andM4.

In Table 1, we can also see that theX2 is less sensitive, than theD2 test, to differ-
ences in model structure. For example, modelM4 is smaller than modelM1 by three
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edges and this difference in model structure is reflected inπd(α), (α = 0.05, 0.1),
while πx(α) values remain more or less the same.

One may expect that any addition of edges between the set of variables,X1, X3, X5, X9

and the set of the remaining 6 variables in modelM3 might decrease theπ value.
But this is not the case as theπ values indicate for modelsM3 andM5. We see al-
most no difference in theπ values between the two models. It is interesting to note
that connecting the two sets of variables by adding inappropriate edges which are
not found in the true modelM0 does not affect theπ value. The same phenomenon
occurs for modelsM6 andM7.

The simulation result strongly recommends theD2 test in comparison with the
X2 test in the sense that theD2 test is more sensitive to the sample size and the
difference of the model structure between the true model and a selected model.
Table 1
The proportions of thepx andpd values that are less than or equal toα ∈ {0.05, 0.1} out
of 500 replications for thepx andpd values. The values of the proportions are rounded to
the two decimals.

α = 0.05 Models D2 X2

Add Delete Model n = 50 n = 200 n = 500 n = 50 n = 200 n = 500

0 0 0 0.00 0.00 0.00 0.00 0.02 0.01

0 -2 1 0.00 0.02 0.33 0.02 0.06 0.08

0 -3 2 0.00 0.04 0.43 0.00 0.03 0.06

0 -4 3 0.02 0.43 0.93 0.02 0.11 0.40

0 -5 4 0.00 0.13 0.79 0.03 0.05 0.09

2 -4 5 0.00 0.44 0.92 0.02 0.13 0.42

2 -7 6 0.04 0.75 0.99 0.06 0.29 0.71

3 -7 7 0.04 0.73 0.99 0.04 0.27 0.72

0 -12 8 0.35 0.97 1.00 0.08 0.69 0.96

0 -13 9 0.26 0.98 1.00 0.14 0.54 0.88

0 -16 10 0.49 1.00 1.00 0.20 0.79 0.97

α = 0.1

Model n = 50 n = 200 n = 500 n = 50 n = 200 n = 500

0 0.00 0.00 0.00 0.01 0.03 0.04

1 0.00 0.06 0.49 0.06 0.11 0.16

2 0.01 0.10 0.52 0.02 0.05 0.13

3 0.03 0.57 0.96 0.04 0.23 0.62

4 0.01 0.27 0.91 0.06 0.10 0.17

5 0.01 0.55 0.95 0.03 0.24 0.63

6 0.11 0.85 1.00 0.09 0.45 0.83

7 0.09 0.82 1.00 0.07 0.40 0.86

8 0.48 0.99 1.00 0.16 0.79 0.98

9 0.44 0.99 1.00 0.25 0.69 0.97

10 0.66 1.00 1.00 0.31 0.86 0.99
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However, when the sample size is too small (e.g.,n = 50) relative to the cell size
(e.g.,k = 1, 024), theD2 test may not be very useful unless our interested models
are very different from the true modelM0 as the modelsM8, M9, andM10. In such
a small-sample situation, it is desirable that we use both of theD2 and theLr tests.
A comparison between these tests follows below.

Maydeu-Olivares and Joe (2005) suggest usingLr for r = 1, 2, 3 for large and
sparse2J tables. From an additional simulation experiment, where we usedD2 and
Lr for testing the goodness-of-fit of the set of the models in Figure 1, we could see
that theD2 test is more powerful than theLr test for some of the models in the
figure and vice versa for the others in the figure.

When the sample size was as small as 25, the power of theLr test became unstable
while it was not the case as for theD2 test. For instance, the proportion that the
p-value of the goodness-of-fit test usingL2 is less than 0.05 was 0.30, 0.03, and
0.24 for the models,M8,M9, M10, respectively, out of 500 iterations, while they
are 0.10, 0.05, and 0.16 with theD2 test. Considering the structural discrepancies
of these three models fromM0 (see the first three columns in Table 1), the pro-
portions from theD2 test reflect the structural discrepancies better than theL2 test
whenn = 25. The proportions from theL1 test were 0 or close to zero for all the
(Mi, n) combinations withi = 0, 1, · · · , 10, n = 25, 50, 200, 500 except the com-
binations,(M8, 200) and(M8, 500), for which the proportions were 0.05 and 0.19
respectively.

5 THE DISTRIBUTION OF THE STANDARDIZED D2

Although theD2 test is preferred, when the sample-cell ratio (n/k) is less than
1, to theX2 test in the goodness-of-fit testing due to its sensitivity to the sample
size and the discrepancy between model structures, it is important to investigate the
dependency of its distribution upon the sample-cell ratio and the level of asymmetry
(or non-uniformity) of the cell probabilities,p1, · · · , pk, which is defined by

λ =
kX

i=1

(pi − 1

k
)2.

The first three moments ofX2 andD2 are obtained underH0 in Horn (1977) and
Mielke and Berry (1985), respectively. The mean and the variance ofD2 are given
underH0, respectively, by

E0(D
2) = −1 andV0(D

2) = 2(k − 1)(1− n−1),
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which have nothing to do with the distribution underH0, while

V0(X
2) = 2(k − 1)(1− n−1)− k2

n
+

kX
i=1

1

m0i

is not (see the equation in Corollary 2.) But the skewnesses ofX2 andD2 under
H0 are dependent upon the distribution underH0 (e.g. Mielke and Berry, 1985, p.
792).

According to Mielke and Berry (1985), the skewness ofD2 is given by

γ =

s
2n

n− 1
k−

1
2{(2− 7

n
)− (2− 6

n
)k−1}(1− 1

k
)−

3
2

+

s
2n

n− 1
(k − 1)−

3
2

kX
i=1

p−1
i /n. (5)

Denote the two terms in the right hand side of (5) byA andB, respectively. Then

A =

Ê
2

k

�
2 +

1

k
− 6

n

�
+

1√
k

�
O
�

1

kn

�
+ O

�
1

k2

�
+ O

�
1

n2

��
(6)

and, as forB, we will consider asymmetric distributions ofpi’s as given by, for
0 < ε < 1 and1 ≤ g < k,

p1 = · · · = pg =
ε

k
and pg+1 = · · · = pk =

k − εg

k(k − g)
. (7)

Then we have
kX

i=1

p−1
i = g

k

ε
+ (k − g)2 1

1− εg/k
. (8)

For the cell probabilities in (7), the level of asymmetry is given by

λ =
g(1− ε)2

k(k − g)
. (9)

From (5), (8), and (9), we can see that asg, 1 ≤ g ≤ k, increases andε, 0 < ε < 1,
becomes smaller, bothγ and λ increases. As a matter of fact,γ increases asλ
increases. In particular, whens(s > 1) is chosen so thatg = k/s is an integer and
k andn satisfyk = cn for some realc, we have

B = c

Ê
2

k
·
�
1 +

3 + c

2k

�
· 1 + ε(s− 2)

ε(s− ε)
+ o
�

1

k2

�
. (10)

Note that whenε = 1, we havep1 = · · · = pk = 1/k. Under the distribution as
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given by (7), we have from (6) and (10) that

γ =

Ê
2

k

¨
2 +

1− 6c

k
+ c

�
1 +

3 + c

2k

�
1 + ε(s− 2)

ε(s− ε)

«
+ o
�

1

k2

�
. (11)

The last expression implies that as we have more smallpi’s (that is, a smallers
(s > 1) with a smallε value), the skewness (γ) of D2 gets larger. In other words,
as there are more smallpi’s, the normal approximation toD2 gets worse at the
tail areas. This phenomenon is observed in Tables 2 and 3. It is also noteworthy in
expression (11) that as the contingency table becomes sparser (i.e.,c = k/n gets
larger), the distribution ofD2 gets more skewed.

Table 2 is obtained under symmetric multinomial distributions fork = 210, 214,
with varying sample sizes (n) as given in the table. Under each symmetric distri-
bution, 10,000D2 values were generated and percentiles were obtained from them,
and after repeating this 100 times, the means and the variances of the percentiles
were obtained.

Table 3 is obtained from the same Monte Carlo experiment as for Table 2 except that
a variety of multinomial distributions were used, where each distribution is defined
by the vector of the cell probabilities (p1, · · · , pk). Here, eachpi was obtained as a
ratio given byui/

Pk
j=1 uj where the random quantities,uj ’s, were confined to lie

uniformly between 0.05 and 0.95 to avoid too small cell probabilities.

Table 2
Three upper tail percentiles of the standardizedD2 under symmetric multinomials.dα is the
upper100×α percentile of the standardizedD2 distribution. 100dα values were generated
for each pair ofk andn and their mean, standard deviation (sd), and skewness measure
were computed.n/k = ∞ refers to the standard normal distribution.γ is the skewness
value as given by (5).

mean sd

n n/k γ α = 0.1 α = 0.05 α = 0.01 α = 0.1 α = 0.05 α = 0.01

k = 210 25 2−5 1.519 0.741 2.179 3.602 0.000 0.000 0.134

(1024) 26 2−4 0.798 1.448 1.847 2.874 0.000 0.356 0.000

27 2−3 0.442 1.443 1.798 2.572 0.000 0.000 0.137

28 2−2 0.265 1.268 1.730 2.517 0.030 0.085 0.048

29 2−1 0.177 1.294 1.691 2.452 0.043 0.032 0.056

∞ ∞ 1.282 1.645 2.327

k = 214 26 2−8 2.872 2.500 2.500 2.500 0.000 0.000 0.000

(16384) 27 2−7 1.441 0.715 2.135 3.555 0.000 0.000 0.000

28 2−6 0.730 1.423 2.039 2.840 0.000 0.239 0.000

29 2−5 0.376 1.421 1.775 2.508 0.000 0.000 0.091

210 2−4 0.199 1.258 1.709 2.477 0.048 0.086 0.047

211 2−3 0.110 1.302 1.678 2.398 0.042 0.027 0.043

212 2−2 0.066 1.291 1.666 2.364 0.021 0.026 0.040

213 2−1 0.044 1.289 1.663 2.354 0.022 0.022 0.041
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Table 3
Three upper tail percentiles of the standardizedD2. dα is the upper100 × α percentile of
the standardizedD2 distribution. 100dα values were generated for each pair ofk andn
and their mean, standard deviation (sd), and skewness measure were computed.n/k = ∞
refers to the standard normal distribution.

mean sd

n n/k α = 0.1 α = 0.05 α = 0.01 α = 0.1 α = 0.05 α = 0.01

k = 27 24 2−3 1.262 1.846 3.345 0.026 0.042 0.117

(=128) 25 2−2 1.286 1.809 3.022 0.022 0.036 0.079

26 2−1 1.301 1.771 2.789 0.022 0.028 0.062

27 1 1.306 1.749 2.675 0.019 0.030 0.059

∞ ∞ 1.282 1.645 2.327

k = 210 24 2−6 1.390 1.908 3.999 0.029 0.048 0.166

(=1024) 25 2−5 1.264 1.892 3.489 0.029 0.043 0.123

26 2−4 1.293 1.830 3.119 0.021 0.032 0.083

27 2−3 1.304 1.778 2.822 0.022 0.025 0.063

28 2−2 1.304 1.736 2.609 0.022 0.029 0.058

29 2−1 1.297 1.702 2.503 0.020 0.027 0.044

k = 214 25 2−9 -0.174 -0.174 4.598 0.000 0.000 0.164

(=16384) 26 2−8 1.365 1.908 4.002 0.021 0.046 0.136

27 2−7 1.265 1.901 3.469 0.023 0.043 0.105

28 2−6 1.300 1.836 3.071 0.024 0.036 0.081

29 2−5 1.307 1.778 2.769 0.022 0.027 0.056

210 2−4 1.305 1.725 2.555 0.024 0.029 0.052

211 2−3 1.298 1.692 2.452 0.020 0.026 0.041

212 2−2 1.290 1.667 2.396 0.018 0.023 0.043

213 2−1 1.299 1.674 2.383 0.019 0.023 0.043

We denote bydα the upper100 × α-percentile of the curve of the standardized
D2 and byzα for the standard normal curve. Thedα values are listed in Tables 2
and 3 forα = 0.01, 0.05, 0.1. We can see in Table 2 that thedα values appear,
as expected, farther away fromzα as the skewness index (γ) increases unless the
sample size is too small relative to the table size (k). For example, whenk = 210,
we see in Table 2 that thedα values change abruptly asn comes down from26

to 25; and a similar phenomenon takes place, whenk = 214, asn comes down
from 28 to 27 and26. In particular,d0.01, d0.05, andd0.1 are all equal to2.500 when
(k, n) = (214, 26). It is due to an extreme sparseness of the contingency table. In
the Monte Carlo experiment, all the 100 distributions that were generated under
this sparseness yielded the same set of upper 0.99, 0.95, 0.9, 0.75, 0.5, 0.25, 0.1,
0.05, 0.01 percentile points, -0.351 for the first six points and 2.500 for the rest
three. -0.351 corresponds to the case that the cell frequencies are at most 1 and
2.500 corresponds to the case that only one cell frequency is 2 and the others are
at most 1. We will call such a phenomenon as this due to an extreme sparseness an
hyper-sparseness phenomenon.

The skewness index (γ) is not given in Table 3 since different sets ofpi’s may pro-
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duce different index values for fixed values ofk andn. However, we can see in
the table that thed0.01 values are larger on average for asymmetric multinomials
than for symmetric multinomials. This phenomenon is a reflection of the expres-
sion (11). We also see another hyper-sparseness phenomenon in Table 3 at the row
(k, n) = (214, 25).

6 CONCLUDING REMARKS

Large scale modelling is not unusual nowadays in many research fields such as
bio-sciences, cognitive science, management sciences, etc. In the simulation exper-
iments, we considered Bayesian network models which are a useful tool for rep-
resenting causal relationship among variables. When the variables are not causally
related, log-linear modelling is an appropriate method for contingency table data.

Whether it is a Bayesian network model or a log-linear model, we can express a
model in a factorized form. Suppose that a model for a set of categorical random
variables,Xv, v ∈ V , is factorized as

P (x) =
Y
A∈V

PA(xA) (12)

whereV is a set of subsets ofV . We will denote the marginal table on the subset of
variables,Xv, v ∈ A, for A ⊂ V , by τA and call it the configuration onA. Then we
can say that the configurations,τA, A ∈ V, are sufficient for the parameters of the
model expressed in (12). This means that a large sparse contingency table may not
cause a trouble in parameter estimation as long as none of the configurations are
sparse. In this respect, the statistic,Lr, which is a function of multivariate moments
of the variablesXv, v ∈ V , is a reasonable one for goodness-of-fit testing when
the configurations in (12) satisfy that|A| ≤ r. This is one of the reasons why
the performance of theLr test is subject to the models which are selected for the
goodness-of-fit testing with a given contingency table.

The key idea behind theD2 method for goodness-of-fit testing is the same as for the
goodness-of-fit testing using the Pearson chi-square statistic,X2, and for the testing
using the likelihood ratio statistic (G2). The latter two statistics represent a measure
of distance between the data and the model which is selected by a model builder,
where the measure is standardized by a chi-squared distribution. In the proposed
D2 method, we construct a reference distribution, instead of using the chi-squared
distribution, to create a distance measure which is similar to the P-value of a test,
such aspx andpd in (4). The simulation experiment strongly recommends to use the
D2 test (i.e.,pd values), in comparison with theX2 test, for goodness-of-fit testing
with a large sparse contingency table due to its high sensitivity to the sample size
and model discrepancy.
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This observation leads us to recommend using both of theD2 and theLr tests when
the contingency table is large and sparse. Not knowing the true model for a given
contingency table, it is desirable to use both of the tests, since
(i) the Lr test seems to be more powerful than theD2 test when|A| ≤ r and the
contingency table is of2J type and not too sparse,
(ii) the D2 test seems to be more powerful when|A| > r, and
(iii) as the contingency table becomes sparser, theLr test becomes unstable while
theD2 test remains stable.

APPENDIX A: PROOF OF THEOREM 1

The proof is a straightforward application of algebra.

V (D2) = V (X2)−X ni

m0i

)

= V (X2) + V (
X ni

m0i

)− 2
X

Cov(
ni

m0i

, X2). (13)

V (
X ni

m0i

) = n
X piqi

m2
0i

− n
X

i

X
j

pipj

m0im0j

+ n
X p2

i

m2
0i

. (14)

As for the last term in (13), we have

Cov(
ni

m0i

, X2) = E(X2 ni

m0i

)− E(X2)E(
ni

m0i

). (15)

After a simple algebra, we have

E(X2) = n
X piqi

m0i

+ n2 p2
i

m0i

− n, (16)

E(X2 ni

m0i

) = n(n− 1)
X
i 6=j

pipj

m0im0j

+ n(n− 1)(n− 2)
X
i6=j

pip
2
j

m0im0j

− n2 pi

m0i

+npi
1 + 3(n− 1)pi + (n− 1)(n− 2)p2

i

m2
0i

. (17)

Substituting equations (16) and (17) into (15) and then (14) and (15) into equation
(13) yields the desired result of the theorem.2
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APPENDIX B: DAG MODEL OF CATEGORICAL VARIABLES

A DAG model of a set of variables,Xv, v ∈ V , is a probability model whose model
structure can be represented by a directed acyclic graph,G say, which consists
of vertices and directed edges or arrows between vertices. For a subsetA of V ,
XA = (Xv)v∈A, and for two subsetsA andB of V , we denote the conditional
probabilityP (XB = xB|XA = xA) by PB|A(xB|xA).

If there is an arrow from vertexu to v, we callu a parent vertex ofv. Since a DAG
is acyclic, every vertex in a DAG has a unique set of parent vertices. We denote by
pa(v) the set of the parent vertices ofv. Then we can represent the joint probability
of (Xv)v∈V as the product of conditional probabilities as in

P (XV = xV ) =
Y
v∈V

Pv|pa(v)(xv|xpa(v))

wherepa(v) = ∅ if vertexv has no parent vertex.
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APPENDIX C: COMPARISON OF πx AND πd VALUES

Solid curves with circles (◦) are forπd and dashed curves with bullets (•) for πx.
The dotted vertical line represents thatα = 0.05.
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