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Abstract

The Pearson’s chi-squared statisti¢?) does not in general follow a chi-square distri-
bution when it is used for goodness-of-fit testing for a multinomial distribution based on
sparse contingency table data. We explore properties of Zelterman’s (D8&Tatistic and
compare them with those d€2? and we also compare these two statistics and the statistic
(L,) which is proposed by Maydeu-Olivares and Joe (2005) in the context of power of
the goodness-of-fit testing when the given contingency table is very sparse. We show that
the variance ofD? is not larger than the variance &f?> under null hypotheses where all

the cell probabilities are positive, that the distribution/of becomes more skewed as

the multinomial distribution becomes more asymmetric and sparse, and that, asfor the
statistic, the power of the goodness-of-fit testing depends on the models which are selected
for the testing. A simulation experiment strongly recommends to use béthnd L, for
goodness-of-fit testing with large sparse contingency table data.

Key words: Test power, P-value, Sample-cell ratio, Model discrepancy, Normal
approximation, Skewness

1 Introduction

A variety of statistics have been derived for goodness-of-fit testing such as the
Pearson chi-squared statisti€?) (Pearson, 1900), the log likelihood ratio statistic
(G?), the Freeman-Tukey statistic, the Neyman modifieq and the modified:>.
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Cressie and Read (1984) proposed a family of power divergence statistics, in which
all of the above statistics are embedded. All of these statistics are asymptotically
chi-squared distributed with appropriate degrees of freedom (e.g. Fienberg, 1979;
Horn, 1977; Lancaster, 1969; Moore, 1976; Watson, 1959).

Two most popular statistics among them afé and G2. Cochran (1952) gives a

nice review of the early development & and concludes that there is little to dis-
tinguish it fromG?. The chi-squared approximation #° andG? was studied by

Read (1984), and the accuracy of these approximations was examined by Koehler
and Larntz (1980) and Koehler (1986). Koehler (1986) demonstrated asymptotic
normality of G? for testing the fit of log-linear models with closed form maximum
likelihood estimates in sparse contingency tables and showed that the normal ap-
proximation can be much more accurate than the chi-squared approximatieh for

but he admitted that the bias of the estimated moments is a potential problem for
very sparse tables. A good review on goodness-of-fit tests for sparse contingency
tables is provided in Koehler (1986).

Zelterman (1987) proposed a statisfiZ and compared it withX? for testing
goodness-of-fit (GOF) to sparse multinomial distributions, where

*

D*=X?— > (nifes),

wheren, is the count in théth cell, ¢; the estimate of the cell mean of tkté cell,
andY_* is the summation over all the cells such that- 0. The D? statistic is not
a member of the family of Cressie and Read’s power divergence statistics.

The goal of this paper is to explore properties of the goodness-of-fit test [)€ing

(or the D? test for short), in comparison with the goodness-of-fit test usiAdor

the X2 test for short), other than the asymptotic properties as derived in Zelterman
(1987), to do a more rigorous comparative study on the goodness-of-fit tests using
the statisticsPD?, X2, andL,, in the context of power, and to propose an approach
to goodness-of-fit testing for a very sparse multinomial distribution.

This paper consists of six sections. Section 2 describes what happ&Rsitben

the data size: is smaller than the number of cells)(of a given contingency table
and summarizes earlier works on asymptotic properties-ofvith more attention
paid to the case that < k. Section 3 compare®? and X2 in the context of
variance, and it is shown that the variancdfis not larger than that ok 2 under

any null hypothesis of multinomial distribution. We carry out a Monte Carlo study
in Section 4 to compare the goodness-of-fit tests by uslhgX?, and L, in the
context of test power. The Monte Carlo result strongly suggests thdbtHest is

at least as good as th€? test whem < k and comparable with thé, test. We
then investigated normal approximation to the standardi2éaturve in Section

5. Section 6 concludes the paper with some further remarks on the goodness-of-fit
testing for sparse contingency tables.



2 A BRIEF REVIEW ON GOODNESS-OF-FIT TESTS USING X2 AND
SOME RELATED STATISTICS

Suppose that we have a contingency table witbells andn observations, and
consider a goodness-of-fit testing of a symmetric null hypothesis, i.e., all the cell
probabilities are the same. We will, first of all, consider the two extreme cases that
n = 1 andn = 2. Under the symmetric null hypothesi¥? = k£ — 1 whenn = 1;

and whem = 2, itis eitherk — 1 or k/2 — 1 according to whether a particular cell
frequency equals 2 or not. It is interesting to note that when &, X? is strictly
positive under any hypothesis for the contingency table. This simply shows that the
asymptotic distribution of{? can not be a chi-square distribution wher: k. This

is one of the reasons that the normal approximation was sought for in the literature
whenn < k.

While the literature on the asymptotic propertiesof abounds in regard to con-
tingency tables with large enough data (e.g., Agresti (1990); Bishop et al. (1975)),
a unifying result is yet to be explored as for the goodness-of-fit testing for sparse
contingency tables. Results from the literature concerning Pearson’s statistics are
summarily listed below in regard to sparse multinomial problems.

(i) The X? test has some optimal local power properties in the symmetrical case
when the number of cells is moderately large. HenceXfAd¢est based on the
traditional chi-squared approximation is preferred for the test of symmetry.
For the null hypothesis of symmetry, the chi-squared approximatioX fds
quite adequate at the 0.05 and 0.01 nominal levels for expected frequencies as
low as 0.25 whert > 3, n > 10, n?/k > 10 (Koehler and Larntz, 1980, p.

343)

(i) The chi-squared approximation faf?> produces inflated rejection levels for
asymmetrical null hypotheses that contain many expected frequencies smaller
than 1 (Koehler and Larntz, 1980, p. 344).

(i) The adverse effects of small expected frequencies on the chi-squared ap-
proximation are generally less severe fof than for other commonly used
goodness-of-fit statistics (Koehler, 1986, p. 483).

(iv) The asymptotic power of th®? test is moderate and at least as great as that
of the normalizedX? (Zelterman, 1987, p. 628).

(v) Forthe symmetric null hypothesis, choosing the value of the family parameter
X of Cressie and Read’s (1984) power divergence family of statistigs is]
results in a test statistic whose size can be approximated accurately by a chi-
squared distribution, provided that< 6 andn > 10. When\ € [-5, 5]\

[%, 1%], the corrected chi-square approximatiép is recommended where

F¢ is the corrected chi-square distribution for which the mean and variance

agree to second order with the mean and variance of Cressie and Read’s power

divergence statistics, since it gives reasonably accurate approximate levels and
is easy to compute. When bothand i are large (sayp > 100), then the



normal approximation should be used (Read, 1984, p. 935).

(vi) Berry and Mielke (1988) proposed non-asymptotic chi-square tests based on
X? and D? that use Pearson Typ#/ distribution approximation for testing
large sparse contingency tables.

(vii) Maydeu-Olivares and Joe (2005) proposed a statisticfor goodness-of-fit
testing using2’ contingency table data which is given in a quadratic form
based on multivariate moments up to ordend showed thak? belongs to
this family of L,.. They showed that whenis small (e.g., 2 or 3), thé, has
better small-sample properties and are asymptotically more powerfulkihan
for some multivariate binary models.

3 COMPARISON OF VARIANCES

The favorable comparison (Zelterman (1987, p. 628)Péfover the normalized
version of X2 in the context of asymptotic power in goodness-of-fit tests may be
extended to the situations of small or moderate data sizes. To see this, we will have a
closer look at the two statistics and compare their exact means and variances across
multinomial distributions, which will give us an insight into the power comparison.

Suppose that the cell probability at thté cell, p;, is equal top,; under the null
hypothesis fiy) and let it be equal tp,; under an alternative hypothesid ). We
will denote the cell means in the same manner, i.esmlyunderH, and bym,;

underH,. Throughout the rest of the paper, we will assume [hai,; > 0.

We can then re-expred3? and X? as

k
X?= Z(nz - mm‘)g/mou

i=1

D2:X2 — an/mm

We list a couple of simple facts:

k
BE(X?) :aniQi/mOi' (2)
E(D*)=EB(X?) - Zpi/pOi- (2)

The difference between the variancel/of and that ofX? is given in



Theorem 1 Under a multinomial assumption with the sample sizznd a contin-
gency table of: cells, we have

V(DY) =V(X2) +n <ZZ P 5 f’;)

i—1j=1 MoiMoj ;=7 Mo,

k k 2
pzp D;
+4n(n — 1) — .
<; le MoiMmo, ; m(2)i>
k
i 4 —1 ; 1/k
—vey A g (5 UKy,
i=1 Mo; ; Poj Poi

Proof: See Appendix A.
A couple of corollaries follow from this theorem.

Corollary 2 Under Hy, V (D?) is simplified as

V(D) =V(X*)+— =%
<V(X?),
where the equality holds if and only#f, is symmetrical.

Corollary 3 Suppose that,, = 1, for somel < h < k under anH,. Then under
the H,, we have

V(D?) = V(X?). 3)

Letd, = E(D?) — E(X?) andd, = V(D?) — V(X?). Corollary 2 implies that
02 < 0in a near neighborhood op(, . . . , poxr) When H, is not symmetrical. And
judging from Corollary 3, we can see thatis bounded on the boundary of the
k — 1 dimensional simplex ofi, . . . , px) Sinced, is continuous inxy, . . ., px)-

4 SIMULATION EXPERIMENTS

To compare theX? and D? tests, we conducted simulation experiments with small
samples, using a model of 10 binary variables whose model structure is represented
as a directed acyclic graph (DAG). We will call this model Model 0 and denote it
by M,. Ten alternative models are considered for the goodness of fit test, which are
determined by adding or deleting some edges from Model 0. They are displayed



in Figure 1 along with the true model/,, where each vertex represents a binary
variable. A brief explanation of the DAG models is given in Appendix B.

For each model, sample sizes= 50, 200, 500 are selected such thaf% is close
to 1/20,1/5,1/2. For each of the ten alternative models, sdy, we obtain an
approximate value of the p-value of the goodness-of-fit test as follows:

(i) Generate asamplgn'”, ..., n\”): 5% n® = n} of sizen from M.
(i) Estimate the cell probabilities for mod&l* based on the sample valueé?),
(0)
* ,nk .

(iif) Generate a sample of sizdfrom model)* based on the estimates of the cell
probabilities that are obtained in (ii) and compufé and D? using the sample
values and the estimates obtained in (ii).

(iv) Repeat (iii) untilt X* andD? values are obtained, and arrange#t€’ values

in an increasing sequence ©f), - - - , z(;) and similarly theD? values into the
sequence ofy), - -+, d).
(v) Compute the values of 2 andD? using the sample values.”, - -- . »!”, and

the estimates obtained in (ii), and then obtain the values ©f?) andp,(X?)
which are defined below in expression (4).

Model 9 Model 10

Fig. 1. Graphs of 11 DAG Models, Models &), 1(M;) through 10(/,). Models
M;, i = 1,2,---,10, are constructed by removing (dashed line) or adding (dot-dashed
line) arrows tolM,.



We define a pseudo p-value &%, p,(X?), as

—il-l if X2 Z f(t)

— i e S X2 <ap), 1<i<t. 4)

tl—% ifX2<I'(1)

pw(Xz) =

—_—N—————

A pseudo p-value ab?, py(D?), is defined similarly as above except tiét andx

are replaced wittD? andd, respectively. As is apparent in (4), the pseudo p-value
gets close to the actual p-value tamcreases, where the actual p-value is for the
goodness-of-fit test of modal’*. If X2 > x(1), we have

1
0 < p, — (the actual p-valuex ——,
<pe —( p e¥t+1

and
0.5

. — (the actual p-valu
Pz — ( p ¢Kt+1

otherwise. The same inequalities hold fgralso.

To compare the power of goodness-of-fit test betwBémnd X 2, we repeated the
above procedure, (i) through (v), 500 times to obtain as many values of eagh of
andp, with ¢ = 100. Table 1 lists the proportions that (p,) values are less than
a € {0.05,0.1} for three sample sizes) 50, 200, and 500.

In the table, we can see that the test is more powerful than th&? test. Model

M, is of 10 binary variables, which means a contingency tablg'df= 1,024

cells. So the sample-cell ratios (k) considered in the table af®/1024 ~ 0.05,
200/1024 = 0.195, and500,/1024 = 0.488. The power increases as the sample
size increases for both of the? and theX? tests. However, it is interesting to see

that the power does not change noticeably for some models witki thiest. As for
modelsM, andM,, the proportions that, < 0.05is not larger than 0.1 while those
for pg increase up to 0.43 and 0.79, respectively. We can see the same phenomenon
for the two models when = 0.1. We can see in the figures in Appendix C that

is less sensitive to the sample size than

We will denote byr,(a) the proportion thap, < « out of the 500p, values

and similarly form,(«). From ther values of models\i,, M3, and M,, we can

see that ther values do not change monotonically in the number of deleted edges
from modelM,. It is indicated in the table that thevalue is sensitive to how the
edge deletion affects the inter-relationship among the variables in the model. For
example, in models, variablesX;, X3, X5, and Xy are independent of the other

6 variables in the model, while no variable is isolated from the rest of the variables
in modelsM, and M.

In Table 1, we can also see that tRé is less sensitive, than the? test, to differ-
ences in model structure. For example, madgls smaller than model/; by three



edges and this difference in model structure is reflecteg}(n), (o = 0.05,0.1),
while 7, («) values remain more or less the same.

One may expect that any addition of edges between the set of variables;, X5, X,

and the set of the remaining 6 variables in modlgl might decrease the value.

But this is not the case as thevalues indicate for modeld/; and M5. We see al-

most no difference in the values between the two models. It is interesting to note
that connecting the two sets of variables by adding inappropriate edges which are
not found in the true modél/, does not affect the value. The same phenomenon
occurs for modeld/s and M.

The simulation result strongly recommends thé test in comparison with the

X? test in the sense that the? test is more sensitive to the sample size and the
difference of the model structure between the true model and a selected model.
Table 1

The proportions of the,, andp, values that are less than or equahte {0.05,0.1} out

of 500 replications for the, andp, values. The values of the proportions are rounded to
the two decimals.

a=0.05 Models D? X2
Add Delete Model n=>50 mn=200 n =>500 n=50 mn=200 n =500
0 0 0 0.00 0.00 0.00 0.00 0.02 0.01
0 -2 1 0.00 0.02 0.33 0.02 0.06 0.08
0 -3 2 0.00 0.04 0.43 0.00 0.03 0.06
0 -4 3 0.02 0.43 0.93 0.02 0.11 0.40
0 -5 4 0.00 0.13 0.79 0.03 0.05 0.09
2 -4 5 0.00 0.44 0.92 0.02 0.13 0.42
2 -7 6 0.04 0.75 0.99 0.06 0.29 0.71
3 -7 7 0.04 0.73 0.99 0.04 0.27 0.72
0 -12 8 0.35 0.97 1.00 0.08 0.69 0.96
0 -13 9 0.26 0.98 1.00 0.14 0.54 0.88
0 -16 10 0.49 1.00 1.00 0.20 0.79 0.97
a=0.1
Model n=50 mn=200 n =>500 n=50 n=200 n =500
0 0.00 0.00 0.00 0.01 0.03 0.04
1 0.00 0.06 0.49 0.06 0.11 0.16
2 0.01 0.10 0.52 0.02 0.05 0.13
3 0.03 0.57 0.96 0.04 0.23 0.62
4 0.01 0.27 0.91 0.06 0.10 0.17
5 0.01 0.55 0.95 0.03 0.24 0.63
6 0.11 0.85 1.00 0.09 0.45 0.83
7 0.09 0.82 1.00 0.07 0.40 0.86
8 0.48 0.99 1.00 0.16 0.79 0.98
9 0.44 0.99 1.00 0.25 0.69 0.97
10 0.66 1.00 1.00 0.31 0.86 0.99




However, when the sample size is too small (e:g= 50) relative to the cell size
(e.g.,k = 1,024), the D? test may not be very useful unless our interested models
are very different from the true mod#f, as the modeld/s, My, andM;,. In such

a small-sample situation, it is desirable that we use both obthand theL, tests.

A comparison between these tests follows below.

Maydeu-Olivares and Joe (2005) suggest udindgor » = 1,2, 3 for large and
sparse2’ tables. From an additional simulation experiment, where we i¥eshd

L, for testing the goodness-of-fit of the set of the models in Figure 1, we could see
that the D? test is more powerful than the, test for some of the models in the
figure and vice versa for the others in the figure.

When the sample size was as small as 25, the power df,thest became unstable
while it was not the case as for the? test. For instance, the proportion that the
p-value of the goodness-of-fit test usihg is less than 0.05 was 0.30, 0.03, and
0.24 for the models)is, My, Mo, respectively, out of 500 iterations, while they
are 0.10, 0.05, and 0.16 with the? test. Considering the structural discrepancies
of these three models from/, (see the first three columns in Table 1), the pro-
portions from theD? test reflect the structural discrepancies better thard.htest
whenn = 25. The proportions from thé, test were O or close to zero for all the
(M;, n) combinations withi = 0,1,--- , 10, n = 25, 50, 200, 500 except the com-
binations,(Ms, 200) and(Ms, 500), for which the proportions were 0.05 and 0.19
respectively.

5 THE DISTRIBUTION OF THE STANDARDIZED D?

Although the D? test is preferred, when the sample-cell ratig’X) is less than

1, to the X2 test in the goodness-of-fit testing due to its sensitivity to the sample
size and the discrepancy between model structures, it is important to investigate the
dependency of its distribution upon the sample-cell ratio and the level of asymmetry
(or non-uniformity) of the cell probabilities;, - - - , px, which is defined by

The first three moments of 2 and D? are obtained undeff, in Horn (1977) and
Mielke and Berry (1985), respectively. The mean and the variand# afre given
underH,, respectively, by

Ey(D*) = —1andVy(D?) =2(k — 1)(1 —n™ 1),



which have nothing to do with the distribution undég, while

Vo(X?) =2(k—1)(1 —n"") — K + -~

n i=1 Toi

is not (see the equation in Corollary 2.) But the skewnesses’adind D? under
H, are dependent upon the distribution undgr(e.g. Mielke and Berry, 1985, p.
792).

According to Mielke and Berry (1985), the skewnesdXfis given by

2n 1 7 6., 4 1. s
=k (2= D) 2= Dk -

2n 3 k
(k=1 Y p . ©)

n—1

Denote the two terms in the right hand side of (5)4Awnd B, respectively. Then

2 1 6 1 1 1 1
A=y ) ) o) o) @
and, as forB, we will consider asymmetric distributions pf's as given by, for
0<e<landl <g<k,

€
pr=-=bg= 7 andng:'“:Pk:k(k_g) (7)
Then we have
1
1 — 4 kf 2
;pz 9=+ ( g)l_eg/k (8)
For the cell probabilities in (7), the level of asymmetry is given by
g(1 —¢)?
A= . 9
k(k—g) ©)

From (5), (8), and (9), we can see thaja$ < g < k, increasesand 0 < ¢ < 1,
becomes smaller, both and A increases. As a matter of fact,increases as
increases. In particular, whetis > 1) is chosen so that = £ /s is an integer and
k andn satisfyk = cn for some reat, we have

]2 3+c\ 1+e(s—2) 1
b= C\/;. (1 * 2k ) " e(s—e) - O(lfz) ' (10)
Note that wherx = 1, we havep; = --- = p, = 1/k. Under the distribution as

10



given by (7), we have from (6) and (10) that

7= Z{2+1_/<;6C+C(1+32+kc)11(2(:)%}”(/32)' (1)

The last expression implies that as we have more spaall(that is, a smalles

(s > 1) with a smalle value), the skewness/) of D? gets larger. In other words,

as there are more smal}’s, the normal approximation t®? gets worse at the

tail areas. This phenomenon is observed in Tables 2 and 3. It is also noteworthy in
expression (11) that as the contingency table becomes sparser é.6€:/n gets
larger), the distribution of>? gets more skewed.

Table 2 is obtained under symmetric multinomial distributionsior 210, 214,

with varying sample sizes: as given in the table. Under each symmetric distri-
bution, 10,000D? values were generated and percentiles were obtained from them,
and after repeating this 100 times, the means and the variances of the percentiles
were obtained.

Table 3 is obtained from the same Monte Carlo experiment as for Table 2 except that
a variety of multinomial distributions were used, where each distribution is defined
by the vector of the cell probabilitiesy(, - - - , px). Here, eachy; was obtained as a
ratio given byu; / Zle u; wWhere the random quantities;’s, were confined to lie
uniformly between 0.05 and 0.95 to avoid too small cell probabilities.

Table 2

Three upper tail percentiles of the standardizetlunder symmetric multinomialg,, is the
upper100 x a percentile of the standardizdd? distribution. 1004, values were generated

for each pair ofk andn and their mean, standard deviation (sd), and skewness measure
were computedn/k = oo refers to the standard normal distribution.is the skewness
value as given by (5).

mean sd
n n/k o' a=01 a=005 «o=0.01 a=01 a=005 «o=0.01
k=210 25 275 1519 0.741 2.179 3.602 0.000 0.000 0.134
(1024) 26 2=* 0.798 1.448 1.847 2.874 0.000 0.356 0.000
27 273 0.442 1.443 1.798 2.572 0.000 0.000 0.137
28 272 0.265 1.268 1.730 2.517 0.030 0.085 0.048
29 2=l 0177 1.294 1.691 2.452 0.043 0.032 0.056
00 00 1.282 1.645 2.327
E=21% 26 2-8 2872 2.500 2.500 2.500 0.000 0.000 0.000
(16384) 27 277 1.441 0.715 2.135 3.555 0.000 0.000 0.000
28 2-6  0.730 1.423 2.039 2.840 0.000 0.239 0.000
29 275 0376 1.421 1.775 2.508 0.000 0.000 0.091
210 2-4 0,199 1.258 1.709 2.477 0.048 0.086 0.047
2t 2-3  0.110 1.302 1.678 2.398 0.042 0.027 0.043
212 272 0.066 1.291 1.666 2.364 0.021 0.026 0.040
213 2=1  0.044 1.289 1.663 2.354 0.022 0.022 0.041

11



Table 3

Three upper tail percentiles of the standardized. d,, is the uppern 00 x « percentile of
the standardized)? distribution. 100d,, values were generated for each pairfofind n
and their mean, standard deviation (sd), and skewness measure were compitedoo
refers to the standard normal distribution.

mean sd

n n/k a=01 «a=0.05 «=0.01 a=01 a=005 «o=0.01
k=27 2¢ 273 1.262 1.846 3.345 0.026 0.042 0.117
(=128) 25 272 1.286 1.809 3.022 0.022 0.036 0.079
26 o1 1.301 1.771 2.789 0.022 0.028 0.062
27 1 1.306 1.749 2.675 0.019 0.030 0.059

) oo 1.282 1.645 2.327

k=210 24 2-6 1390 1.908 3.999 0.029 0.048 0.166
(=1024) 25 25 1.264 1.892 3.489 0.029 0.043 0.123
26 2-4 1203 1.830 3.119 0.021 0.032 0.083
27 273 1.304 1.778 2.822 0.022 0.025 0.063
28 272 1.304 1.736 2.609 0.022 0.029 0.058
29 271 1.297 1.702 2.503 0.020 0.027 0.044
k=214 25 279  .0174 -0.174 4.598 0.000 0.000 0.164
(=16384) 26 2-8 1.365 1.908 4.002 0.021 0.046 0.136
27 277 1.265 1.901 3.469 0.023 0.043 0.105
28 276 1300 1.836 3.071 0.024 0.036 0.081
29 275 1.307 1.778 2.769 0.022 0.027 0.056
210 o4 1.305 1.725 2.555 0.024 0.029 0.052
21l 2-3 1208 1.692 2.452 0.020 0.026 0.041
212 92 1.290 1.667 2.396 0.018 0.023 0.043
213 o-1 1.299 1.674 2.383 0.019 0.023 0.043

We denote by, the upperl00 x «-percentile of the curve of the standardized

D? and byz, for the standard normal curve. Thig values are listed in Tables 2

and 3 fora = 0.01,0.05,0.1. We can see in Table 2 that tlk values appear,

as expected, farther away fromm as the skewness index)(increases unless the
sample size is too small relative to the table size For example, whek = 21,

we see in Table 2 that thé, values change abruptly ascomes down fron®

to 2°; and a similar phenomenon takes place, wkes 24, asn comes down

from 28 to 27 and26. In patrticular,d o1, do.o5, andd,,; are all equal t@.500 when

(k,n) = (2'4,25). It is due to an extreme sparseness of the contingency table. In
the Monte Carlo experiment, all the 100 distributions that were generated under
this sparseness yielded the same set of upper 0.99, 0.95, 0.9, 0.75, 0.5, 0.25, 0.1,
0.05, 0.01 percentile points, -0.351 for the first six points and 2.500 for the rest
three. -0.351 corresponds to the case that the cell frequencies are at most 1 and
2.500 corresponds to the case that only one cell frequency is 2 and the others are
at most 1. We will call such a phenomenon as this due to an extreme sparseness an
hyper-sparseness phenomenon.

The skewness index/) is not given in Table 3 since different setsyps may pro-

12



duce different index values for fixed values /oandn. However, we can see in

the table that thel,,; values are larger on average for asymmetric multinomials
than for symmetric multinomials. This phenomenon is a reflection of the expres-
sion (11). We also see another hyper-sparseness phenomenon in Table 3 at the row
(k,n) = (21,2°).

6 CONCLUDING REMARKS

Large scale modelling is not unusual nowadays in many research fields such as
bio-sciences, cognitive science, management sciences, etc. In the simulation exper-
iments, we considered Bayesian network models which are a useful tool for rep-
resenting causal relationship among variables. When the variables are not causally
related, log-linear modelling is an appropriate method for contingency table data.

Whether it is a Bayesian network model or a log-linear model, we can express a
model in a factorized form. Suppose that a model for a set of categorical random
variables X,, v € V, is factorized as

whereV is a set of subsets &f. We will denote the marginal table on the subset of
variables X ,, v € A,for A C V, by, and call it the configuration oA. Then we

can say that the configurations,, A € V, are sufficient for the parameters of the
model expressed in (12). This means that a large sparse contingency table may not
cause a trouble in parameter estimation as long as none of the configurations are
sparse. In this respect, the statisfi¢, which is a function of multivariate moments

of the variablesX,, v € V, is a reasonable one for goodness-of-fit testing when
the configurations in (12) satisfy thatl| < r. This is one of the reasons why

the performance of thé, test is subject to the models which are selected for the
goodness-of-fit testing with a given contingency table.

The key idea behind thB? method for goodness-of-fit testing is the same as for the
goodness-of-fit testing using the Pearson chi-square stafistj@nd for the testing
using the likelihood ratio statistici?). The latter two statistics represent a measure

of distance between the data and the model which is selected by a model builder,
where the measure is standardized by a chi-squared distribution. In the proposed
D? method, we construct a reference distribution, instead of using the chi-squared
distribution, to create a distance measure which is similar to the P-value of a test,
such ag, andp, in (4). The simulation experiment strongly recommends to use the
D? test (i.e. p, values), in comparison with th&? test, for goodness-of-fit testing

with a large sparse contingency table due to its high sensitivity to the sample size
and model discrepancy.
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This observation leads us to recommend using both af¥hand theL, tests when

the contingency table is large and sparse. Not knowing the true model for a given
contingency table, it is desirable to use both of the tests, since

(i) the L, test seems to be more powerful than fhétest whenA| < r and the
contingency table is df’ type and not too sparse,

(ii) the D? test seems to be more powerful whetj > r, and

(iii) as the contingency table becomes sparser/theest becomes unstable while
the D? test remains stable.

APPENDIX A: PROOF OF THEOREM 1

The proof is a straightforward application of algebra.

V(D) =V(X) =3 )
—V(X)+ V(Y 777;‘0 )—2% cov(;;‘;", X2). (13)

VE ) =nX lr oS B ey N (14)

As for the last term in (13), we have

n; 2 Ty n;

Cov(mm, X?) =E(X mm‘) - E(XQ)E(m—m). (15)
After a simple algebra, we have
0 2
E(XQ):nZI;;(‘;Z%—nZH%—n, (16)
EX2—y=nin— 1) 2L 4 — 1)(n - Q)ZLP? 2
mo; iA; MoiMoj iA; MoiMoj mo;
o, 1+3(n—1)p; + gn —1)(n— 2)p?' 17)

my;

Substituting equations (16) and (17) into (15) and then (14) and (15) into equation
(13) yields the desired result of the theorem.
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APPENDIX B: DAG MODEL OF CATEGORICAL VARIABLES

A DAG model of a set of variablesy,,, v € V, is a probability model whose model
structure can be represented by a directed acyclic grépday, which consists
of vertices and directed edges or arrows between vertices. For a stilndet’,
Xa = (Xy)vea, and for two subsetsl and B of V, we denote the conditional
probability P(Xp = 25| X4 = x4) BY Ppja(zp|za).

If there is an arrow from vertex to v, we callu a parent vertex of. Since a DAG

is acyclic, every vertex in a DAG has a unique set of parent vertices. We denote by
pa(v) the set of the parent vertices@fThen we can represent the joint probability

of (X,).cv as the product of conditional probabilities as in

P(Xy =uay) = H Pojpa(v) (To|Tpa(w))

veV

wherepa(v) = () if vertexv has no parent vertex.
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APPENDIX C: COMPARISON OF 7, AND 7; VALUES

Solid curves with circlesd) are form, and dashed curves with bullete) for 7.

The dotted vertical line represents that= 0.05.
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