An Algorithm for Constructing Symmetric Dual Filters

by

Hong Oh Kim, Rae Young Kim, and Ja Seung Ku

Applied Mathematics Research Report 07-07 October 25, 2007

DEPARTMENT OF MATHEMATICAL SCIENCES

An algorithm for constructing symmetric dual filters *

Hong Oh Kim[†], Rae Young Kim[‡], Ja Seung Ku[§]

October 25, 2007

Abstract

The symmetric dual filters are essential for the construction of biorthogonal multiresolution analyses and wavelets. We propose an algorithm to seek for dual symmetric trigonometric filters \tilde{m}_0 for the given symmetric trigonometric filter m_0 and illustrate our algorithm by examples.

2000 Mathematics Subject Classification: 42C15, 42C40.

Key words and phrases: Dual filters, wavelet, scaling function, multiresolution analysis.

1 Introduction

Two trigonometric polynomials m_0 and \tilde{m}_0 with

$$m_0(0) = \tilde{m}_0(0) = 1, \quad m_0(\pi) = \tilde{m}_0(\pi) = 0$$
 (1.1)

are called dual filters each other if

$$\overline{m_0(\cdot)}\tilde{m}_0(\cdot) + \overline{m_0(\cdot+\pi)}\tilde{m}_0(\cdot+\pi) = 1.$$
(1.2)

A pair of dual filters are used as a pair of analysis filter and synthesis filter in signal processing. Also they are essential to construct biorthogonal multiresolution analyses and biorhogonal wavelets.

^{*}This work was supported by Korea Research Foundation under Grant KRF-2006-311-D00190 (the first author) and by the Yeungnam University Research Grants in 2006 (the second author).

[†]Department of Mathematical Sciences, KAIST, 373-1, Guseong-dong, Yuseong-gu, Daejeon, 305-701, Republic of Korea (hkim@amath.kaist.ac.kr)

[‡]Department of Mathematics, Yeungnam University, 214-1, Dae-dong, Gyeongsan-si, Gyeongsangbuk-do, 712-749, Republic of Korea (rykim@ynu.ac.kr)

[§]Samsung SDI Co. LTD, 428-5, Gongse-dong, Giheung-gu, Yongin-si, Gyeonggi-do, 446-577, Republic of Korea (jaseung.ku@samsung.com)

Let us recall how to construct pairs of biorthogonal scaling functions $(\varphi, \tilde{\varphi})$ and biorthogonal wavelets $(\psi, \tilde{\psi})$ from a pair of dual filters (m_0, \tilde{m}_0) . Let m_0 and \tilde{m}_0 be trigonometric filters with

$$m_0(0) = \tilde{m}_0(0) = 1, \quad m_0(\pi) = \tilde{m}_0(\pi) = 0.$$
 (1.3)

We define the scaling functions φ and $\tilde{\varphi}$ in terms of their Fourier transforms as follows:

$$\hat{\varphi}(\xi) := \prod_{j=1}^{\infty} m_0(2^{-j}\xi), \quad \hat{\tilde{\varphi}}(\xi) := \prod_{j=1}^{\infty} \tilde{m}_0(2^{-j}\xi).$$
(1.4)

These infinite products in (1.4) converge absolutely and uniformly on compact sets and are the Fourier transforms of compactly supported functions or distributions φ and $\tilde{\varphi}$ with their support widths given by the filter lengths [4, 5, 6]. A necessary condition for φ and $\tilde{\varphi}$ to satisfy the duality condition in $L^2(\mathbb{R})$, i.e.

$$\langle \varphi, \tilde{\varphi}(\cdot - \ell) \rangle = \delta_{0,\ell}, \quad \ell \in \mathbb{Z},$$
(1.5)

is the duality condition (1.2). The duality condition (1.2) with Cohen condition [1, 4] is also sufficient for (1.5).

Given a pair of dual scaling functions φ and $\tilde{\varphi}$ with their associated filters $m_0(\xi)$ and $\tilde{m}_0(\xi)$, the functions ψ and $\tilde{\psi}$ are defined via the relation

$$\hat{\psi}(\xi) = m_1(\xi/2)\hat{\varphi}(\xi/2), \quad \hat{\tilde{\psi}}(\xi) = \tilde{m}_1(\xi/2)\hat{\tilde{\varphi}}(\xi/2),$$

where $m_1(\xi) = e^{-i\xi}\overline{\tilde{m}_0(\xi+\pi)}$, $\tilde{m}_1(\xi) = e^{-i\xi}\overline{m_0(\xi+\pi)}$. A sufficient condition for ψ and $\tilde{\psi}$ to be biorthogonal wavelets is found in [4].

In applications, such as image processing, symmetric filters are widely used, since they make it easier to deal with the boundaries of the image [5]. Cohen, Daubechies and Feauveau [4] found a necessary and sufficient condition for the dual filters m_0 and \tilde{m}_0 , which are symmetric, i.e., $m_0(\xi) = m_0(-\xi)$ and $\tilde{m}_0(\xi) = \tilde{m}_0(-\xi)$. Han proposed the construction by cosets (CBC) algorithm to construct the dual filters, which are interpolatory [7]. Given a pair of dual filters, this algorithm was further generalized to the construction of a family of another dual filters with arbitrary vanishing moments [2, 8, 9]. In this paper, we propose a simple algorithm constructing general symmetric dual filters. The material here is an elaborated version of some part of the thesis [11] of the third author under the supervision of the first author.

We conclude the introduction by stating a result from [4]; it will form the basis for the algorithm in this paper:

Proposition 1.1 Suppose that m_0 and \tilde{m}_0 are symmetric trigonometric filters with real coefficients satisfying Condition (1.3). Then the following hold:

(a) Both filters m_0 and \tilde{m}_0 can be written as

$$m_0(\xi) = (\cos^2 \frac{\xi}{2})^{\ell} P(\sin^2 \frac{\xi}{2}), \ \tilde{m}_0(\xi) = (\cos^2 \frac{\xi}{2})^{\tilde{\ell}} \tilde{P}(\sin^2 \frac{\xi}{2}),$$
(1.6)

where P and \tilde{P} are polynomials with $P(1) \neq 0 \neq \tilde{P}(1)$ and $\ell, \tilde{\ell} \in \mathbb{N};$

(b) Condition (1.2) is equivalent to

$$P(y)\tilde{P}(y) = P_N(y) + y^N R(y - \frac{1}{2}), \qquad (1.7)$$

where $N := \ell + \tilde{\ell}$, R is an odd polynomial and

$$P_N(y) := \sum_{k=0}^{N-1} \binom{N-1+k}{k} y^k.$$
 (1.8)

2 Algorithm

In this section, we propose an algorithm to seek for \tilde{P} from P so that P and \tilde{P} satisfy (1.7). That is, an algorithm to seek for \tilde{m}_0 from m_0 so that m_0 and \tilde{m}_0 be dual to each other, *i.e.*, (1.2) be satisfied.

Suppose m_0 is a symmetric trigonometric polynomial satisfying (1.3). From Proposition 1.1 (a), there exist $\ell \geq 1$ and a polynomial P such that

$$m_0(\xi) = (\cos^2 \frac{\xi}{2})^{\ell} P(\sin^2 \frac{\xi}{2}).$$

Fix $\tilde{\ell} \in \mathbb{N}$, *i.e.*, we will find \tilde{m}_0 in the form

$$\tilde{m}_0(w) = (\cos^2 \frac{w}{2})^{\tilde{\ell}} \tilde{P}(\sin^2 \frac{w}{2})$$

satisfying (1.7). From a long division P_N by P, we can find polynomials Q and S with deg Q < N so that

$$P(y)Q(y) = P_N(y) + y^N S(y).$$
 (2.1)

Note that such Q is unique. In fact, suppose that Q_1 and Q_2 with deg $Q_1 < N$ and deg $Q_2 < N$ both satisfy (2.1). Then, for some S_1 and S_2 ,

$$P(y)Q_1(y) = P_N(y) + y^N S_1(y); P(y)Q_2(y) = P_N(y) + y^N S_2(y).$$

The difference of these two equations lead to

$$P(y) \{Q_1(y) - Q_2(y)\} = y^N \{S_1(y) - S_2(y)\}.$$

Since $P(0) = 1 \neq 0$ by (1.3), we have either $Q_1 \equiv Q_2$ or $\deg(Q_1 - Q_2) \geq N$. Since $\deg Q_1 < N$ and $\deg Q_2 < N$, $Q_1 \equiv Q_2$.

For any polynomial F, we note that (2.1) is equivalent to

$$P(y) \{Q(y) + y^{N}F(y)\} = P_{N}(y) + y^{N} \{S(y) + P(y)F(y)\}.$$
(2.2)

Lemma 2.1 Define P, S, P_N as in (1.8) and (2.1). If $P(0) \neq 0$, then the following statements are equivalent:

- (a) There exists an odd polynomial R such that $P_N(y) + y^N R(y 1/2)$ can be divisible by P.
- (b) There exists a polynomial F such that S(y) + P(y)F(y) is antisymmetric about 1/2

In this case, we can choose

$$R(y) = S(y+1/2) + P(y+1/2)F(y+1/2).$$
(2.3)

Proof. (a) \leftarrow (b): It is trivial by the choice of R as in (2.3) and by the use of (2.2). (a) \Rightarrow (b): Suppose that there exists an odd polynomial R such that $P_N(y) + y^N R(y-1/2)$ is divisible by P, *i.e.*, there is a polynomial \tilde{P} satisfying Condition (1.7). The difference of Equations (1.7) and (2.1) leads to

$$P(y)\{\tilde{P}(y) - Q(y)\} = y^N \{R(y - 1/2) - S(y)\}.$$
(2.4)

Since $P(0) \neq 0$, there exists a polynomial F such that

$$\tilde{P}(y) - Q(y) = y^N F(y).$$

Substituting this equation into (2.4) leads

$$R(y - 1/2) = S(y) + P(y)F(y)$$

The oddness of R implies that

$$S(y) + P(y)F(y) + S(1-y) + P(1-y)F(1-y) = 0,$$

which shows that S(y) + P(y)F(y) is antisymmetric about 1/2.

By Lemma 2.1, we are going to seek for the polynomial F so that R, defined as in (2.3), be an odd polynomial. Then the polynomial \tilde{P} , defined by $\tilde{P}(y) := Q(y) + y^N F(y)$, will satisfy Condition (1.7). Let N_A denote the degree of a polynomial A. Expanding F, P and S as the Taylor polynomials at y = 1/2, we write

$$F(y) = \sum_{n=0}^{N_F} f_n (y - 1/2)^n;$$

$$P(y) = \sum_{n=0}^{N_P} p_n (y - 1/2)^n;$$

$$S(y) = \sum_{n=0}^{N_S} s_n (y - 1/2)^n.$$

Then

$$R(y) = \sum_{n=0}^{N_S} s_n y^n + \sum_{k=0}^{N_F + N_P} (p * f)_k y^k,$$

where $f := (f_k)_{k=0}^{N_F}$, $p := (p_k)_{k=0}^{N_P}$. In order for R to be an odd polynomial, its even coefficients must vanish, *i.e.*,

$$(p*f)(2k) = \begin{cases} -s_{2k} & 0 \le 2k \le N_S \\ 0 & N_S < 2k < N_P + N_F. \end{cases}$$
(2.5)

We note that $N_P + N_F$ is odd. By taking $N_F = 0$ if N_p is odd; $N_F = 1$ otherwise, we obtain the filter \tilde{m}_0 of shortest length. Equation (2.5) can be written in the matrix form

$$\boldsymbol{P}\boldsymbol{f} = -\boldsymbol{s},\tag{2.6}$$

where

$$\begin{aligned} \boldsymbol{f} &:= \begin{pmatrix} f_0 & f_1 & f_2 & \cdots & f_{N_F} \end{pmatrix}^T; \\ \boldsymbol{s} &:= \begin{pmatrix} s_0 & s_2 & s_4 & \cdots & s_{(N_P+N_F-1)} \end{pmatrix}^T; \\ \boldsymbol{P} &:= \begin{pmatrix} p_{2i-j-1} \end{pmatrix}_{1 \le i \le (N_P+N_F+1)/2, \ 1 \le j \le N_F+1}. \end{aligned}$$

Note that the size of \boldsymbol{P} is $(N_P + N_F + 1)/2 \times (N_2 + 1)$. If $N_F \leq N_P - 1$, then this system is not overdetermined. Hence, for $\boldsymbol{s} \in \operatorname{ran} \boldsymbol{P}$, we have a solution \boldsymbol{f} of Equation (2.6) and so a solution F of (2.3) producing an odd polynomial in (2.3).

We summarize the above discussion as an algorithm for constructing a dual filter \tilde{m}_0 for a given m_0 as follows:

Algorithm 2.2 1. Determine P(y) from m_0 in (1.6);

- 2. Choose the regularity parameter $\tilde{\ell}$ of the dual filter \tilde{m}_0 , which determine N in P_N ;
- 3. Determine Q and S from P and P_N in (2.1);
- 4. If S(y-1/2) is an odd polynomial, then we set $\tilde{P} := Q$;
- 5. Otherwise choose N_F with $N_F \leq N_P 1$ and solve the matrix equation (2.6);
- 6. Set $\tilde{P}(y) := Q(y) + y^N F(y)$. Then a dual filter \tilde{m}_0 is determined by the equation (1.6).

We now illustrate our algorithm by examples. The examples below recover the biorthogonal dual filters in [10].

Example 2.3 Consider the quasi-interpolatory filter $m_0(\xi)$ of order 1 defined by

$$m_0(\xi) = (1 - y)(1 - 8\omega y), \quad y = \sin^2(\xi/2),$$

which yields the scaling function reproducing polynomials. Here ω is a tension parameter. See [3, 10]. In this case, $P(y) = (1 - 8\omega y)$. Fix $\tilde{\ell} = 1$. Then N = 2 and $P_2 = 1 + 2y$. From (2.1), we have $Q(y) = 1 + (2 + 8\omega)y$, $S(y) = -8\omega(2 + 8\omega)$. Since S(y - 1/2) is not odd, we choose $N_F = 0$. By solving the matrix equation (2.6), we obtain $F(y) = \frac{8\omega(2+8\omega)}{1-4\omega}$. Hence

$$\tilde{m}_0(\xi) = (1-y)\tilde{P}(y) = (1-y)\left(1 + (2+8\omega)y + y^2\frac{8\omega(2+8\omega)}{1-4\omega}\right).$$

Example 2.4 Let $m_0(\xi) = (1-y)^2(1+2y+128\omega y^2)$, $y = \sin^2(\xi/2)$, which is the quasiinterpolatory filter of order 2. Fix $\tilde{\ell} = 2$. Then we have

$$P(y) = 1 + 2y + 128\omega y^2 = 2 + 32\omega + (2 + 128\omega)(y - 1/2) + 128\omega(y - 1/2)^2;$$

$$Q(y) = 1 + 2y + (6 - 128\omega)y^2 + 8y^3;$$

$$S(y) = 128\omega(6 - 128\omega) + 16 + 1024\omega y = 16 + 1280\omega - 16384\omega^2 + 1024\omega(y - 1/2).$$

Choose $N_F = 0$ if $\omega = 0$; $N_F = 1$ if $\omega \neq 0$. Then

$$F(y) = \begin{cases} -8, & \text{if } \omega = 0\\ -\frac{8(96\omega + 1)(1 + 80\omega - 1024\omega^2)}{(1 + 16\omega)(64\omega + 1)} + \frac{512\omega(1 + 80\omega - 1024\omega^2)}{(1 + 16\omega)(64\omega + 1)}y, & \text{if } \omega \neq 0 \end{cases}$$

Hence

$$\tilde{m}_{0}(\xi) = \begin{cases} (1-y)^{2}(1+2y+6y^{2}+8y^{3}-8y^{4}), & \text{if } \omega = 0; \\ (1-y)^{2}\left(1+2y+(6-128\omega)y^{2}+8y^{3}-\frac{8(96\omega+1)(1+80\omega-1024\omega^{2})}{(1+16\omega)(64\omega+1)}y^{4} +\frac{512\omega(1+80\omega-1024\omega^{2})}{(1+16\omega)(64\omega+1)}y^{5}\right), & \text{if } \omega \neq 0. \end{cases}$$

Figure 1: The functions φ [Figure (a)], $\tilde{\varphi}$ [Figure (b)], ψ [Figure (c)] and ψ [Figure (d)] for w = 0 in Example 2.4.

Figures 1 and 2 indicate the scaling functions $\varphi, \tilde{\varphi}$ and their associated biorthogonal wavelets $\psi, \tilde{\psi}$ for w = 0 and 0.025, respectively.

References

- G. Chae, H. Kim and R. Kim, Variations of Cohen's theorem, Japan J. Indust. Appl. Math. 18 (2001), 769-775.
- [2] D. Chen, B. Han and S. Riemenschneider, Construction of multivariate biorthogonal wavelets with arbitrary vanishing moments, Adv. Comput. Math. 13 (2000), 131-165.
- [3] S. Choi, B. Lee, Y. Lee and J. Yoon, Stationary subdivision schemes reproducing polynomials, Comput. Aided Geom. Design, 23 (2006), 351-360.
- [4] A. Cohen, I. Daubechies and J. C. Feauveau, Biorthogonal bases of compactly supported wavelets, Comm. Pure Appl. Math. 45 (1992), 485-560.
- [5] I. Daubechies, "Ten Lectures on Wavelets," CBMS-NSF series in Applied Mathematics, SIAM, Philadelphia, 1992.
- [6] G. Deslauriers and S. Dubuc, Symmetric iterative interpolation, Constr. Approx. 5 (1989), 49-68.

Figure 2: The functions φ [Figure (a)], $\tilde{\varphi}$ [Figure (b)], ψ [Figure (c)] and ψ [Figure (d)] for w = 0.025 in Example 2.4.

- [7] B. Han, Analysis and construction of optimal multivariate biorthogonal wavelets with compact support, SIAM J. Math. Anal. 31 (1999/00), 274-304.
- [8] B. Han, Construction of multivariate biorthogonal wavelets by CBC algorithm, Wavelet analysis and multiresolution methods (Urbana-Champaign, IL, 1999), Lecture Notes in Pure and Appl. Math. 212, Dekker, New York, 2000, 105-143.
- [9] B. Han and S. Riemenschneider, Interpolatory biorthogonal wavelets and CBC algorithm, Wavelet analysis and applications (Guangzhou, 1999), AMS/IP Stud. Adv. Math., 25, Amer. Math. Soc., Providence, RI, 2002, 119-138.
- [10] H. Kim, R. Kim, Y. Lee and J. Yoon, Quasi-interpolatory refinable functions and construction of biorthogonal wavelet systems, Preprint, (2007).
- [11] J. Ku, Dual scaling functions of convolution-type, M.S. Thesis, KAIST, Republic of Korea, 2000.