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Abstract

The symmetric dual filters are essential for the construction of biorthogonal mul-
tiresolution analyses and wavelets. We propose an algorithm to seek for dual sym-
metric trigonometric filters mg for the given symmetric trigonometric filter mg and
illustrate our algorithm by examples.
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1 Introduction
Two trigonometric polynomials mg and mg with

mo(0) =mo(0) =1, mo(m) =mo(m) =0 (L.1)
are called dual filters each other if

mo(-)o(+) +mo(- + m)mo(- + ) = 1. (1.2)

A pair of dual filters are used as a pair of analysis filter and synthesis filter in signal
processing. Also they are essential to construct biorthogonal multiresolution analyses and
biorhogonal wavelets.
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Let us recall how to construct pairs of biorthogonal scaling functions (,$) and
biorthogonal wavelets (1,1) from a pair of dual filters (mg,mg). Let my and mgy be
trigonometric filters with

mg(()) == mo(O) == 1, mo(ﬂ') == Tho(ﬂ') =0. (13)

We define the scaling functions ¢ and ¢ in terms of their Fourier transforms as follows:
B(6) = IT mo(27%). p(6) = [T mo(2776). (1.4)
Jj= Jj=

These infinite products in (1.4) converge absolutely and uniformly on compact sets and
are the Fourier transforms of compactly supported functions or distributions ¢ and ¢ with
their support widths given by the filter lengths [4, 5, 6]. A necessary condition for ¢ and
@ to satisfy the duality condition in L?(R), i.e.

(@, p(- =) =boe, LEL, (1.5)

is the duality condition (1.2). The duality condition (1.2) with Cohen condition [1, 4] is
also sufficient for (1.5).

Given a pair of dual scaling functions ¢ and ¢ with their associated filters mg(§) and
mo(€), the functions ¢ and ¢ are defined via the relation

D(E) = mi(E/2)$(€/2),  B(E) = ma(€/2)5(6/2),

where my (&) = e %mg(€ +7), m1(€) = e %mg(€ + 7). A sufficient condition for v and
¢ to be biorthogonal wavelets is found in [4].

In applications, such as image processing, symmetric filters are widely used, since they
make it easier to deal with the boundaries of the image [5]. Cohen, Daubechies and Feau-
veau [4] found a necessary and sufficient condition for the dual filters mg and mg, which
are symmetric, i.e., mo(§) = mo(=¢) and mo(§) = mo(—¢). Han proposed the construc-
tion by cosets (CBC) algorithm to construct the dual filters, which are interpolatory [7].
Given a pair of dual filters, this algorithm was further generalized to the construction of
a family of another dual filters with arbitrary vanishing moments [2, 8, 9]. In this paper,
we propose a simple algorithm constructing general symmetric dual filters. The material
here is an elaborated version of some part of the thesis [11] of the third author under the
supervision of the first author.

We conclude the introduction by stating a result from [4]; it will form the basis for the
algorithm in this paper:

Proposition 1.1 Suppose that mg and mg are symmetric trigonometric filters with real
coefficients satisfying Condition (1.3). Then the following hold:



(a) Both filters mg and mg can be written as

mo (&) = (cos? g)eP(sin 2, 1g(€) = (cos? %)Zp(sin2 g), (1.6)

where P and P are polynomials with P(1) # 0 # P(1) and 0,7 € N;
(b) Condition (1.2) is equivalent to

- 1

P(y)P(y) = Pn(y) +y" Ry - 3), (1.7)
where N := { + g, R is an odd polynomial and
N-1
N-—-1+k
Py(y) == < " >yk (1.8)

2  Algorithm

In this section, we propose an algorithm to seek for P from P so that P and P satisfy
(1.7). That is, an algorithm to seek for mg from mg so that mgy and mg be dual to each
other, i.e., (1.2) be satisfied.

Suppose mg is a symmetric trigonometric polynomial satisfying (1.3). From Proposi-
tion 1.1 (a), there exist £ > 1 and a polynomial P such that

mo(€) = (cos? i)éP(sin2 §>

Fix { € N, i.e., we will find 7 in the form

mo(w) = (cos® =)* P(sin? v

3)

w
2

satisfying (1.7). From a long division Py by P, we can find polynomials @ and S with
deg @ < N so that
P(y)Q(y) = Pv(y) + 4" S(y). (2.1)

Note that such @ is unique. In fact, suppose that ()1 and @2 with deg@1 < N and
deg Q2 < N both satisfy (2.1). Then, for some S; and So,

P(y)Qi1(y) = Pn(y) + 4" S1(y);

P(y)Q2(y) = Pn(y) + 4" Sa(y).



The difference of these two equations lead to

Py){Q1(y) — Q2(y)} =y {S1(y) — S2(v)}-

Since P(0) = 1 # 0 by (1.3), we have either 1 = Q2 or deg(Q; — Q2) > N. Since
deg @1 < N and deg Q2 < N, Q1 = Qo.
For any polynomial F', we note that (2.1) is equivalent to

P){Qw) +y"F(y)} = Pn(y) +y" {Sy) + Py)F(y)} . (2.2)

Lemma 2.1 Define P, S, Py as in (1.8) and (2.1). If P(0) # 0, then the following state-
ments are equivalent:

(a) There exists an odd polynomial R such that Py(y) + yN R(y — 1/2) can be divisible
by P.

(b) There exists a polynomial F' such that S(y) + P(y)F(y) is antisymmetric about 1/2

In this case, we can choose
Ry)=Sy+1/2)+ Ply+1/2)F(y+ 1/2). (2.3)

Proof. (a) < (b): It is trivial by the choice of R as in (2.3) and by the use of (2.2) .

(a) = (b): Suppose that there exists an odd polynomial R such that Py (y)+y~ R(y—1/2)
is divisible by P, i.e., there is a polynomial P satisfying Condition (1.7). The difference
of Equations (1.7) and (2.1) leads to

Py){P(y) — Q(y)} = y™{R(y —1/2) — S(y)}- (2.4)

Since P(0) # 0, there exists a polynomial F' such that

Substituting this equation into (2.4) leads
R(y —1/2) = S(y) + P(y) F(y).
The oddness of R implies that
S(y)+Py)F(y) +SA-y)+ P —y)F(1-y) =0,

which shows that S(y) + P(y)F(y) is antisymmetric about 1/2 . O



By Lemma 2.1, we are going to seek for the polynomial F' so that R, defined as in
(2.3), be an odd polynomial. Then the polynomial P, defined by P(y) := Q(y) + y~N F(y),
will satisfy Condition (1.7). Let N4 denote the degree of a polynomial A. Expanding F',
P and S as the Taylor polynomials at y = 1/2, we write

Np

Fly)=>_ faly—1/2)™;
7;\/:}30

P(y)=> paly—1/2)%;
n=0

Nsg
Sy)=> suly—1/2)".
n=0

Th
et Ng Np+Np
R(y) =Y say"+ Y. (*
n=0 k=0
where f := (fk)]kvjo,p = (pk),]qvjo. In order for R to be an odd polynomial, its even

coefficients must vanish, i.e.,

—s9r 0 <2k < Ng

(p* f)(2k) = { 0 Ng < 2k < Np + Np. (2.5)

We note that Np + Np is odd. By taking Np = 0 if N, is odd; Np = 1 otherwise, we
obtain the filter 7 of shortest length. Equation (2.5) can be written in the matrix form

Pf = —s, (2.6)
where
F=(h 1 Fo - fne)'s
T
s :(50 S2 S4 - S(NP+NF—1)) )
P

= (p2i—j—1)1§i§(Np+NF+1)/2, 1<j<Np+1"

Note that the size of P is (Np + Np+1)/2 x (N2 +1). If Np < Np — 1, then this system
is not overdetermined. Hence, for s € ran P, we have a solution f of Equation (2.6) and
so a solution F' of (2.3) producing an odd polynomial in (2.3).

We summarize the above discussion as an algorithm for constructing a dual filter mg
for a given mg as follows:

Algorithm 2.2 1. Determine P(y) from my in (1.6);



Choose the regularity parameter ¢ of the dual filter 779, which determine N in Py ;
Determine @ and S from P and Py in (2.1);
If S(y — 1/2) is an odd polynomial, then we set P := Q;

Otherwise choose Np with Np < Np — 1 and solve the matrix equation (2.6);

AR N el

Set P(y) := Q(y) + vV F(y). Then a dual filter 779 is determined by the equation
(1.6).

We now illustrate our algorithm by examples. The examples below recover the biorthog-
onal dual filters in [10].

Example 2.3 Consider the quasi-interpolatory filter mg(§) of order 1 defined by
mO(g) - (1_y)(1 —&Uy), y:Sin2(§/2)7

which yields the scaling function reproducing polynomials. Here w is a tension parameter.
See [3, 10]. In this case, P(y) = (1 —8wy). Fix £ = 1. Then N =2 and P» = 1+ 2y. From
(2.1), we have Q(y) = 1+ (24 8w)y, S(y) = —8w(2+ 8w). Since S(y — 1/2) is not odd, we

choose Nr = 0. By solving the matrix equation (2.6), we obtain F(y) = Swl(ﬁ'iw). Hence
- ~ 8w(2 + 8w
0(©) = (1= )P = (1 =) (14 @4 s0)y + 220,
O

Example 2.4 Let mg(&) = (1 —y)*(1+ 2y + 128wy?), y = sin?(£/2), which is the quasi-
interpolatory filter of order 2. Fix ¢ = 2. Then we have

P(y) =1+ 2y + 128wy? = 2 + 32w + (2 + 128w) (y — 1/2) + 128w(y — 1/2)%

Q(y) =1+ 2y + (6 — 128w)y> + 8y>;

S(y) = 128w(6 — 128w) + 16 + 1024wy = 16 + 1280w — 16384w? + 1024w(y — 1/2).
Choose Np =0 if w=0; Np =1 if w # 0. Then

-8, if w=0;
F(y) =4  8(96w+1)(1 + 80w — 1024w?) L 5120(1 + 80w — 10240%) 40
(1 + 16w) (64w + 1) 1+ 16w)(64w +1) 7V '
Hence
(1—y)%(1+ 2y + 6y + 8y> — 8y*), if w = 0;
8(96w + 1)(1 + 80w — 1024w?)
- 1—y)2(1+2 6 — 128w)y% + 8y — 4
mo(€) (1-9) < T2+ wlyT + 8y (1 + 16w) (64w + 1)

512w (1 + 80w — 1024w?) 5> if £ 0
, I w .

(1+ 16w)(64w + 1) 7



(c) (d)

Figure 1: The functions ¢ [Figure (a)], ¢ [Figure (b)], ¢ [Figure (c)] and 4 [Figure (d)]
for w = 0 in Example 2.4.

Figures 1 and 2 indicate the scaling functions ¢, ¢ and their associated biorthogonal
wavelets 1,1 for w = 0 and 0.025, respectively. O
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