An Algorithm for Constructing Symmetric Dual Filters

by
Hong Oh Kim, Rae Young Kim, and Ja Seung Ku

Applied Mathematics

Research Report
07-07
October 25, 2007

An algorithm for constructing symmetric dual filters *

Hong Oh Kim ${ }^{\dagger}$ Rae Young Kim \ddagger Ja Seung Ku^{\S}

October 25, 2007

Abstract

The symmetric dual filters are essential for the construction of biorthogonal multiresolution analyses and wavelets. We propose an algorithm to seek for dual symmetric trigonometric filters \tilde{m}_{0} for the given symmetric trigonometric filter m_{0} and illustrate our algorithm by examples.

2000 Mathematics Subject Classification: 42C15, 42C40.
Key words and phrases: Dual filters, wavelet, scaling function, multiresolution analysis.

1 Introduction

Two trigonometric polynomials m_{0} and \tilde{m}_{0} with

$$
\begin{equation*}
m_{0}(0)=\tilde{m}_{0}(0)=1, \quad m_{0}(\pi)=\tilde{m}_{0}(\pi)=0 \tag{1.1}
\end{equation*}
$$

are called dual filters each other if

$$
\begin{equation*}
\overline{m_{0}(\cdot)} \tilde{m}_{0}(\cdot)+\overline{m_{0}(\cdot+\pi)} \tilde{m}_{0}(\cdot+\pi)=1 \tag{1.2}
\end{equation*}
$$

A pair of dual filters are used as a pair of analysis filter and synthesis filter in signal processing. Also they are essential to construct biorthogonal multiresolution analyses and biorhogonal wavelets.

[^0]Let us recall how to construct pairs of biorthogonal scaling functions $(\varphi, \tilde{\varphi})$ and biorthogonal wavelets $(\psi, \tilde{\psi})$ from a pair of dual filters $\left(m_{0}, \tilde{m}_{0}\right)$. Let m_{0} and \tilde{m}_{0} be trigonometric filters with

$$
\begin{equation*}
m_{0}(0)=\tilde{m}_{0}(0)=1, \quad m_{0}(\pi)=\tilde{m}_{0}(\pi)=0 \tag{1.3}
\end{equation*}
$$

We define the scaling functions φ and $\tilde{\varphi}$ in terms of their Fourier transforms as follows:

$$
\begin{equation*}
\hat{\varphi}(\xi):=\prod_{j=1}^{\infty} m_{0}\left(2^{-j} \xi\right), \quad \hat{\tilde{\varphi}}(\xi):=\prod_{j=1}^{\infty} \tilde{m}_{0}\left(2^{-j} \xi\right) \tag{1.4}
\end{equation*}
$$

These infinite products in (1.4) converge absolutely and uniformly on compact sets and are the Fourier transforms of compactly supported functions or distributions φ and $\tilde{\varphi}$ with their support widths given by the filter lengths $[4,5,6]$. A necessary condition for φ and $\tilde{\varphi}$ to satisfy the duality condition in $L^{2}(\mathbb{R})$, i.e.

$$
\begin{equation*}
\langle\varphi, \tilde{\varphi}(\cdot-\ell)\rangle=\delta_{0, \ell}, \quad \ell \in \mathbb{Z} \tag{1.5}
\end{equation*}
$$

is the duality condition (1.2). The duality condition (1.2) with Cohen condition [1, 4] is also sufficient for (1.5).

Given a pair of dual scaling functions φ and $\tilde{\varphi}$ with their associated filters $m_{0}(\xi)$ and $\tilde{m}_{0}(\xi)$, the functions ψ and $\tilde{\psi}$ are defined via the relation

$$
\hat{\psi}(\xi)=m_{1}(\xi / 2) \hat{\varphi}(\xi / 2), \quad \hat{\tilde{\psi}}(\xi)=\tilde{m}_{1}(\xi / 2) \hat{\tilde{\varphi}}(\xi / 2)
$$

where $m_{1}(\xi)=e^{-i \xi} \overline{\tilde{m}_{0}(\xi+\pi)}, \quad \tilde{m}_{1}(\xi)=e^{-i \xi} \overline{m_{0}(\xi+\pi)}$. A sufficient condition for ψ and $\tilde{\psi}$ to be biorthogonal wavelets is found in [4].

In applications, such as image processing, symmetric filters are widely used, since they make it easier to deal with the boundaries of the image [5]. Cohen, Daubechies and Feauveau [4] found a necessary and sufficient condition for the dual filters m_{0} and \tilde{m}_{0}, which are symmetric, i.e., $m_{0}(\xi)=m_{0}(-\xi)$ and $\tilde{m}_{0}(\xi)=\tilde{m}_{0}(-\xi)$. Han proposed the construction by cosets (CBC) algorithm to construct the dual filters, which are interpolatory [7]. Given a pair of dual filters, this algorithm was further generalized to the construction of a family of another dual filters with arbitrary vanishing moments $[2,8,9]$. In this paper, we propose a simple algorithm constructing general symmetric dual filters. The material here is an elaborated version of some part of the thesis [11] of the third author under the supervision of the first author.

We conclude the introduction by stating a result from [4]; it will form the basis for the algorithm in this paper:

Proposition 1.1 Suppose that m_{0} and \tilde{m}_{0} are symmetric trigonometric filters with real coefficients satisfying Condition (1.3). Then the following hold:
(a) Both filters m_{0} and \tilde{m}_{0} can be written as

$$
\begin{equation*}
m_{0}(\xi)=\left(\cos ^{2} \frac{\xi}{2}\right)^{\ell} P\left(\sin ^{2} \frac{\xi}{2}\right), \quad \tilde{m}_{0}(\xi)=\left(\cos ^{2} \frac{\xi}{2} \tilde{\ell} \tilde{P}\left(\sin ^{2} \frac{\xi}{2}\right)\right. \tag{1.6}
\end{equation*}
$$

where P and \tilde{P} are polynomials with $P(1) \neq 0 \neq \tilde{P}(1)$ and $\ell, \tilde{\ell} \in \mathbb{N}$;
(b) Condition (1.2) is equivalent to

$$
\begin{equation*}
P(y) \tilde{P}(y)=P_{N}(y)+y^{N} R\left(y-\frac{1}{2}\right), \tag{1.7}
\end{equation*}
$$

where $N:=\ell+\tilde{\ell}, R$ is an odd polynomial and

$$
\begin{equation*}
P_{N}(y):=\sum_{k=0}^{N-1}\binom{N-1+k}{k} y^{k} . \tag{1.8}
\end{equation*}
$$

2 Algorithm

In this section, we propose an algorithm to seek for \tilde{P} from P so that P and \tilde{P} satisfy (1.7). That is, an algorithm to seek for \tilde{m}_{0} from m_{0} so that m_{0} and \tilde{m}_{0} be dual to each other, i.e., (1.2) be satisfied.

Suppose m_{0} is a symmetric trigonometric polynomial satisfying (1.3). From Proposition 1.1 (a), there exist $\ell \geq 1$ and a polynomial P such that

$$
m_{0}(\xi)=\left(\cos ^{2} \frac{\xi}{2}\right)^{\ell} P\left(\sin ^{2} \frac{\xi}{2}\right) .
$$

Fix $\tilde{\ell} \in \mathbb{N}$, i.e., we will find \tilde{m}_{0} in the form

$$
\tilde{m}_{0}(w)=\left(\cos ^{2} \frac{w}{2}\right)^{\tilde{Q}} \tilde{P}\left(\sin ^{2} \frac{w}{2}\right)
$$

satisfying (1.7). From a long division P_{N} by P, we can find polynomials Q and S with $\operatorname{deg} Q<N$ so that

$$
\begin{equation*}
P(y) Q(y)=P_{N}(y)+y^{N} S(y) . \tag{2.1}
\end{equation*}
$$

Note that such Q is unique. In fact, suppose that Q_{1} and Q_{2} with $\operatorname{deg} Q_{1}<N$ and $\operatorname{deg} Q_{2}<N$ both satisfy (2.1). Then, for some S_{1} and S_{2},

$$
\begin{aligned}
& P(y) Q_{1}(y)=P_{N}(y)+y^{N} S_{1}(y) ; \\
& P(y) Q_{2}(y)=P_{N}(y)+y^{N} S_{2}(y) .
\end{aligned}
$$

The difference of these two equations lead to

$$
P(y)\left\{Q_{1}(y)-Q_{2}(y)\right\}=y^{N}\left\{S_{1}(y)-S_{2}(y)\right\}
$$

Since $P(0)=1 \neq 0$ by (1.3), we have either $Q_{1} \equiv Q_{2}$ or $\operatorname{deg}\left(Q_{1}-Q_{2}\right) \geq N$. Since $\operatorname{deg} Q_{1}<N$ and $\operatorname{deg} Q_{2}<N, Q_{1} \equiv Q_{2}$.

For any polynomial F, we note that (2.1) is equivalent to

$$
\begin{equation*}
P(y)\left\{Q(y)+y^{N} F(y)\right\}=P_{N}(y)+y^{N}\{S(y)+P(y) F(y)\} \tag{2.2}
\end{equation*}
$$

Lemma 2.1 Define P, S, P_{N} as in (1.8) and (2.1). If $P(0) \neq 0$, then the following statements are equivalent:
(a) There exists an odd polynomial R such that $P_{N}(y)+y^{N} R(y-1 / 2)$ can be divisible by P.
(b) There exists a polynomial F such that $S(y)+P(y) F(y)$ is antisymmetric about 1/2

In this case, we can choose

$$
\begin{equation*}
R(y)=S(y+1 / 2)+P(y+1 / 2) F(y+1 / 2) \tag{2.3}
\end{equation*}
$$

Proof. (a) $\Leftarrow(\mathrm{b})$: It is trivial by the choice of R as in (2.3) and by the use of (2.2).
$(\mathrm{a}) \Rightarrow(\mathrm{b})$: Suppose that there exists an odd polynomial R such that $P_{N}(y)+y^{N} R(y-1 / 2)$ is divisible by P, i.e., there is a polynomial \tilde{P} satisfying Condition (1.7). The difference of Equations (1.7) and (2.1) leads to

$$
\begin{equation*}
P(y)\{\tilde{P}(y)-Q(y)\}=y^{N}\{R(y-1 / 2)-S(y)\} \tag{2.4}
\end{equation*}
$$

Since $P(0) \neq 0$, there exists a polynomial F such that

$$
\tilde{P}(y)-Q(y)=y^{N} F(y)
$$

Substituting this equation into (2.4) leads

$$
R(y-1 / 2)=S(y)+P(y) F(y)
$$

The oddness of R implies that

$$
S(y)+P(y) F(y)+S(1-y)+P(1-y) F(1-y)=0
$$

which shows that $S(y)+P(y) F(y)$ is antisymmetric about $1 / 2$.

By Lemma 2.1, we are going to seek for the polynomial F so that R, defined as in (2.3), be an odd polynomial. Then the polynomial \tilde{P}, defined by $\tilde{P}(y):=Q(y)+y^{N} F(y)$, will satisfy Condition (1.7). Let N_{A} denote the degree of a polynomial A. Expanding F, P and S as the Taylor polynomials at $y=1 / 2$, we write

$$
\begin{aligned}
& F(y)=\sum_{n=0}^{N_{F}} f_{n}(y-1 / 2)^{n} \\
& P(y)=\sum_{n=0}^{N_{P}} p_{n}(y-1 / 2)^{n} \\
& S(y)=\sum_{n=0}^{N_{S}} s_{n}(y-1 / 2)^{n}
\end{aligned}
$$

Then

$$
R(y)=\sum_{n=0}^{N_{S}} s_{n} y^{n}+\sum_{k=0}^{N_{F}+N_{P}}(p * f)_{k} y^{k}
$$

where $f:=\left(f_{k}\right)_{k=0}^{N_{F}}, p:=\left(p_{k}\right)_{k=0}^{N_{P}}$. In order for R to be an odd polynomial, its even coefficients must vanish, i.e.,

$$
(p * f)(2 k)= \begin{cases}-s_{2 k} & 0 \leq 2 k \leq N_{S} \tag{2.5}\\ 0 & N_{S}<2 k<N_{P}+N_{F}\end{cases}
$$

We note that $N_{P}+N_{F}$ is odd. By taking $N_{F}=0$ if N_{p} is odd; $N_{F}=1$ otherwise, we obtain the filter \tilde{m}_{0} of shortest length. Equation (2.5) can be written in the matrix form

$$
\begin{equation*}
P f=-s \tag{2.6}
\end{equation*}
$$

where

$$
\begin{aligned}
\boldsymbol{f} & :=\left(\begin{array}{lllll}
f_{0} & f_{1} & f_{2} & \cdots & f_{N_{F}}
\end{array}\right)^{T} \\
\boldsymbol{s} & :=\left(\begin{array}{lllll}
s_{0} & s_{2} & s_{4} & \cdots & s_{\left(N_{P}+N_{F}-1\right)}
\end{array}\right)^{T} \\
\boldsymbol{P} & :=\left(\begin{array}{lll}
p_{2 i-j-1}
\end{array}\right)_{1 \leq i \leq\left(N_{P}+N_{F}+1\right) / 2,1 \leq j \leq N_{F}+1}
\end{aligned}
$$

Note that the size of \boldsymbol{P} is $\left(N_{P}+N_{F}+1\right) / 2 \times\left(N_{2}+1\right)$. If $N_{F} \leq N_{P}-1$, then this system is not overdetermined. Hence, for $\boldsymbol{s} \in \operatorname{ran} \boldsymbol{P}$, we have a solution \boldsymbol{f} of Equation (2.6) and so a solution F of (2.3) producing an odd polynomial in (2.3).

We summarize the above discussion as an algorithm for constructing a dual filter \tilde{m}_{0} for a given m_{0} as follows:

Algorithm 2.2 1. Determine $P(y)$ from m_{0} in (1.6);
2. Choose the regularity parameter $\tilde{\ell}$ of the dual filter \tilde{m}_{0}, which determine N in P_{N};
3. Determine Q and S from P and P_{N} in (2.1);
4. If $S(y-1 / 2)$ is an odd polynomial, then we set $\tilde{P}:=Q$;
5. Otherwise choose N_{F} with $N_{F} \leq N_{P}-1$ and solve the matrix equation (2.6);
6. Set $\tilde{P}(y):=Q(y)+y^{N} F(y)$. Then a dual filter \tilde{m}_{0} is determined by the equation (1.6).

We now illustrate our algorithm by examples. The examples below recover the biorthogonal dual filters in [10].

Example 2.3 Consider the quasi-interpolatory filter $m_{0}(\xi)$ of order 1 defined by

$$
m_{0}(\xi)=(1-y)(1-8 \omega y), \quad y=\sin ^{2}(\xi / 2),
$$

which yields the scaling function reproducing polynomials. Here ω is a tension parameter. See [3, 10]. In this case, $P(y)=(1-8 \omega y)$. Fix $\tilde{\ell}=1$. Then $N=2$ and $P_{2}=1+2 y$. From (2.1), we have $Q(y)=1+(2+8 \omega) y, S(y)=-8 \omega(2+8 \omega)$. Since $S(y-1 / 2)$ is not odd, we choose $N_{F}=0$. By solving the matrix equation (2.6), we obtain $F(y)=\frac{8 \omega(2+8 \omega)}{1-4 \omega}$. Hence

$$
\tilde{m}_{0}(\xi)=(1-y) \tilde{P}(y)=(1-y)\left(1+(2+8 \omega) y+y^{2} \frac{8 \omega(2+8 \omega)}{1-4 \omega}\right) .
$$

Example 2.4 Let $m_{0}(\xi)=(1-y)^{2}\left(1+2 y+128 \omega y^{2}\right), y=\sin ^{2}(\xi / 2)$, which is the quasiinterpolatory filter of order 2 . Fix $\tilde{\ell}=2$. Then we have

$$
\begin{aligned}
& P(y)=1+2 y+128 \omega y^{2}=2+32 \omega+(2+128 \omega)(y-1 / 2)+128 \omega(y-1 / 2)^{2} ; \\
& Q(y)=1+2 y+(6-128 \omega) y^{2}+8 y^{3} ; \\
& S(y)=128 \omega(6-128 \omega)+16+1024 \omega y=16+1280 \omega-16384 \omega^{2}+1024 \omega(y-1 / 2) .
\end{aligned}
$$

Choose $N_{F}=0$ if $\omega=0 ; N_{F}=1$ if $\omega \neq 0$. Then

$$
F(y)= \begin{cases}-8, & \text { if } \omega=0 \\ -\frac{8(96 \omega+1)\left(1+80 \omega-1024 \omega^{2}\right)}{(1+16 \omega)(64 \omega+1)}+\frac{512 \omega\left(1+80 \omega-1024 \omega^{2}\right)}{(1+16 \omega)(64 \omega+1)} y, & \text { if } \omega \neq 0\end{cases}
$$

Hence

$$
\tilde{m}_{0}(\xi)= \begin{cases}(1-y)^{2}\left(1+2 y+6 y^{2}+8 y^{3}-8 y^{4}\right), & \text { if } \omega=0 \\ (1-y)^{2}\left(1+2 y+(6-128 \omega) y^{2}+8 y^{3}-\frac{8(96 \omega+1)\left(1+80 \omega-1024 \omega^{2}\right)}{(1+16 \omega)(64 \omega+1)} y^{4}\right. & \\ \left.+\frac{512 \omega\left(1+80 \omega-1024 \omega^{2}\right)}{(1+16 \omega)(64 \omega+1)} y^{5}\right), & \text { if } \omega \neq 0\end{cases}
$$

Figure 1: The functions φ [Figure (a)], $\tilde{\varphi}[$ Figure (b)], ψ [Figure (c)] and $\tilde{\psi}$ [Figure (d)] for $w=0$ in Example 2.4.

Figures 1 and 2 indicate the scaling functions $\varphi, \tilde{\varphi}$ and their associated biorthogonal wavelets $\psi, \tilde{\psi}$ for $w=0$ and 0.025 , respectively.

References

[1] G. Chae, H. Kim and R. Kim, Variations of Cohen's theorem, Japan J. Indust. Appl. Math. 18 (2001), 769-775.
[2] D. Chen, B. Han and S. Riemenschneider, Construction of multivariate biorthogonal wavelets with arbitrary vanishing moments, Adv. Comput. Math. 13 (2000), 131-165.
[3] S. Choi, B. Lee, Y. Lee and J. Yoon, Stationary subdivision schemes reproducing polynomials, Comput. Aided Geom. Design, 23 (2006), 351-360.
[4] A. Cohen, I. Daubechies and J. C. Feauveau, Biorthogonal bases of compactly supported wavelets, Comm. Pure Appl. Math. 45 (1992), 485-560.
[5] I. Daubechies, "Ten Lectures on Wavelets," CBMS-NSF series in Applied Mathematics, SIAM, Philadelphia, 1992.
[6] G. Deslauriers and S. Dubuc, Symmetric iterative interpolation, Constr. Approx. 5 (1989), 49-68.

Figure 2: The functions φ [Figure (a)], $\tilde{\varphi}$ [Figure (b)], ψ [Figure (c)] and $\tilde{\psi}$ [Figure (d)] for $w=0.025$ in Example 2.4.
[7] B. Han, Analysis and construction of optimal multivariate biorthogonal wavelets with compact support, SIAM J. Math. Anal. 31 (1999/00), 274-304.
[8] B. Han, Construction of multivariate biorthogonal wavelets by CBC algorithm, Wavelet analysis and multiresolution methods (Urbana-Champaign, IL, 1999), Lecture Notes in Pure and Appl. Math. 212, Dekker, New York, 2000, 105-143.
[9] B. Han and S. Riemenschneider, Interpolatory biorthogonal wavelets and CBC algorithm, Wavelet analysis and applications (Guangzhou, 1999), AMS/IP Stud. Adv. Math., 25, Amer. Math. Soc., Providence, RI, 2002, 119-138.
[10] H. Kim, R. Kim, Y. Lee and J. Yoon, Quasi-interpolatory refinable functions and construction of biorthogonal wavelet systems, Preprint, (2007).
[11] J. Ku, Dual scaling functions of convolution-type, M.S. Thesis, KAIST, Republic of Korea, 2000.

[^0]: *This work was supported by Korea Research Foundation under Grant KRF-2006-311-D00190 (the first author) and by the Yeungnam University Research Grants in 2006 (the second author).
 ${ }^{\dagger}$ Department of Mathematical Sciences, KAIST, 373-1, Guseong-dong, Yuseong-gu, Daejeon, 305-701, Republic of Korea (hkim@amath.kaist.ac.kr)
 ${ }^{\ddagger}$ Department of Mathematics, Yeungnam University, 214-1, Dae-dong, Gyeongsan-si, Gyeongsangbukdo, 712-749, Republic of Korea (rykim@ynu.ac.kr)
 ${ }^{\text {§ }}$ Samsung SDI Co. LTD, 428-5, Gongse-dong, Giheung-gu, Yongin-si, Gyeonggi-do, 446-577, Republic of Korea (jaseung.ku@samsung.com)

