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Abstract

Noble forces in image segmentation based on active contours models are proposed
for capturing objects in the image. Contemplating the common functionality of forces
in previous active contours models, we propose the geometric attraction-driven flow
(GADF), the binary edge function, and the binary balloon forces to detect objects
in difficult cases such as varying illumination and complex shapes. The orientation
of GADF is orthogonally aligned with the boundary of object and has the opposite
direction across the boundary. It prevents the leakage on the weak edge. To reduce the
interference from other forces, we design the binary edge function using the property of
orientation in GADF. We also design the binary balloon force based on the four-color
theorem. Combining with initial dual level set functions, the proposed model captures
holes in objects and multiple junctions from differen colors. The result does not depend
on positions of initial contours.

Keywords: GADF, binary edge function, binary balloon force, image segmentation,
boundary detection, weak edge, multiple junctions, concave boundary, dual level set
functions

1 Introduction

Image segmentation and boundary detection are important low-level topics in computer
vision. The main goal is to capture the feature of interests in the image and the hundreds
of good algorithms and methodologies have been developed based on mathematical theory
and modeling. Our research is motivated by making the 3D VR (virtual reality) content
of commercial products. It makes an e-catalog that customers can browse a product in
three dimensional virtual space on internet markets. A common way of making the 3D VR
content starts from taking many photographs of a product with different view angles in the
photo studio. The most difficult step is to extract the product from the background. It
seems to be relatively easy problem to detect such objects comparing with the problems
of capturing some objects in natural images in [1, 2]. However, images taken in the photo
studio have well-known difficulties in image segmentation even though they usually have the
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a. leakage on the weak edge changed smoothly from strong edges
b. inaccuracy of result depending on noise in an image
c. different results depending on positions of initial contours
d. slow convergence to concave boundaries
e. missing contours in the result on multiple junctions and holes in objects
f. many parameters in the evolution equation

Table 1.1: General problems in active contours for image segmentation

simple background color and small amount of noises such as JPEG artifacts. These mainly
come from change of illumination, which happens naturally because of lighting conditions.
Most of lighting conditions make shadows which cause weak edges between dark objects and
the background. More serious weak boundaries are produced by a reflection on some parts
of an object due to the bright lighting condition and properties of materials of the object.
It changes colors of objects into almost white which is normally used as a background color.
Note that other simple colors on a background except white are not usually used because of
color bleeding effect. In addition, there are another difficulties; the boundary of objects can
be highly non-convex, multiple junctions can be happened from different colors of objects,
and the region of object in the image can be multiply connected, which means the object
has holes inside; see Figure 4.4.

The models based on active contours have been used as successful methods in image
segmentation and boundary detection. Since the original model was developed by [3],
extensive research has been done in order to make up for drawbacks in Table 1.1. Note that
these problems frequently come out from images taken in the photo studio. The geodesic
active contours [4,5] had a concrete mathematical theory with the level set formulation [6].
The gradient vector flow [7–9] was proposed for a fast convergence to non-convex boundaries.
The curvature vector flow [10] and normalized gradient vector diffusion [11] were introduced
to overcome the limitation of the gradient vector flow for capturing highly non-convex
shapes. In [12], the regions-aided geometric snake was proposed for more robust detection
of weak edges. The previous models rely on the edge map (2.2) or the edge function (2.4)
which are obtained by the magnitude of the gradient of image. It mainly causes problems of
leakage on the weak edge; see Figure 4.1. On the contrary, the active contours without edges
proposed by [13, 14] does not use such functions. It may capture weak edges and it is also
robust to obtain same result using different positions of initial contour. The geodesic active
regions [15,16] is a new framework of integrating the boundary-based segmentation [4,5,17]
with the region-based segmentation [18,19]. However, they are strongly affected by varying
illumination in the image; see Figure 4.2. We will review more details in Section 2.

In this paper, we contemplate active contours models which have been mostly used in
image segmentation and find common terms which play the same role in the view of forces to
evolve contours. We classify them into three categories, controlling smoothness of contours,
forcing contours to move from far distance toward boundaries of objects, and attracting
contours much closer to the boundaries. The key to make a good model for segmentation is
to construct well-designed forces which effectively move contours on the feature of interest
and to reduce the interference of forces in order to maximize the role of each force. In order
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to keep these facts and solve problems in Table 1.1, we propose noble forces: geometric
attraction-driven flow (GADF), the binary edge function, and the binary balloon force.
The main attribute of GADF is its natural and reliable representation of the boundary of
objects even though there is the weak edge changed smoothly from strong edges in a color
or gray image. The orientation of the GADF is orthogonally aligned with the boundary
of object and two vectors across the boundary are in the opposite direction. It prevents
the leakage on the weak edge even though the illumination is changed; see Figure 4.2. If
we consider an image as a two dimensional manifold, the GADF is obtained by comparing
two lengths of curves along the direction of the largest change in the manifold. In order to
reduce interference from other forces, we design the binary edge function using the property
of orientation in the GADF. At last, we design the binary balloon force based on the four-
color theorem [20, 21]. It has two values, 1 or −1, which mean that contours are expanded
or shrunk. The main goal of the binary balloon force is to move the initial contours toward
boundaries of object regardless of positions of the contours. Combining with initial dual
level set functions, it solves topological problems in Table 1.1 such as detection of holes or
multiple junctions and dependency on positions of initial contours.

The rest of this paper is organized as follows. We explain the proposed model in Sec-
tion 2. Considering the main role of each term in the model, we propose the GADF, the
binary edge function, and the binary balloon force in Section 3. We also explain why they
can handle the problems of image segmentation. In Section 4, examples and numerical
aspects are illustrated with discussion about the strength and the weakness of the proposed
model. The paper is concluded in Section 5.

2 Previous works and common terms in active contours

We briefly review active contours models which have been mostly used in image seg-
mentation and boundary detection. The fundamental idea of active contours is to make
proper forces of evolving curves in order to find the boundary of objects in the image. In
this section, we find common terms which play similar role in forces to evolve curves. A
classification of forces gives general ideas for designing a good evolution equation.

Let I: Ω ⊂ R2 → R+ be a given image and C(s): [0, 1] → Ω be a parameterized contour.
The classical snake is to find a contour which minimizes the functional [3]:

E(C) = α

∫ 1

0
|C′(s)|2ds + β

∫ 1

0
|C′′(s)|2ds− γ

∫ 1

0
|∇Gσ ∗ I(C(s))|2ds,

where α, β, and γ are positive constants and Gσ ∗ I is the convolution of an image I with
the two-dimensional Gaussian kernel with the standard deviation σ. The first two terms
in the functional control tension and rigidity of the contour and the last term attracts the
contour towards the object in the image. The minimizer C is obtained at the points of
maximizing |∇Gσ ∗ I|2 with keeping smoothness of the contour. Two drawbacks have been
discussed in many papers; the first is a dependence on positions of initial contours [17] and
the second is a poor convergence to concave boundaries of the object [22]. One of promising
solution [7, 8] was proposed by using the gradient vector flow (GVF) which is a diffused
bidirectional external force. It is obtained by a steady state solution of partial differential
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equations:

∂

∂t
v(x, t) = µ∆v − (v −∇f) |∇f |2 ,

v(x, 0) = ∇f(x),
(2.1)

where µ is a constant and f is an edge map which has higher values at edges, for example,

f = |∇Gσ ∗ I|2 . (2.2)

In the diffusion process (2.1), the second term makes a smooth change of the vectors from
edges to homogeneous regions and the third term keeps the vectors near edges pointing to the
boundary of objects. Even though it was a successful approach to overcome problems in the
classical snakes, there are still same drawbacks about positioning of initial contours [12,23]
and capturing concave boundaries [10,11].

An equivalence relation between parametric active contours [3, 7] and geometric active
contours [4] was established [9] by using the level set method [6]. Let φ be a Lipschitz
function such that

Γφ: C =
{
x ∈ Ω | φ(x, 0) = 0

}
and evolving curves at time t be the zero level set of φ(x, t). The curve evolution in the
GVF from the general formulation [9] is

∂

∂t
φ =

(
ακ + βκ3 −∇

(
∇ (βκ) · ∇φ⊥

)
· ∇φ⊥

)
|∇φ| − FG · ∇φ, (2.3)

where κ is the curvature of level curves of φ, ∇φ⊥ is the orthonormal direction to ∇φ , and
FG is the GVF, i.e., the steady state solution of (2.1).

A geodesic model is to find a contour which minimizes the functional [5]:

E(C) =
∫ 1

0

∣∣C′(s)∣∣ g (|∇I (C(s))|) ds,

where an edge function g is defined on [0,∞), decreasing, g(0) = 1, and g(r) → 0 as r →∞,
for example,

g =
1

1 + |∇Gσ ∗ I|2
. (2.4)

The minimizer C is the contour of the minimum length in the modified Euclidean metric
g (|∇I (C(s))|) ds. It is obtained on points of minimizing the edge function g. The geodesic
approach allows to connect classical snakes and geometric active contours (GAC) [4]. From
this connection, the general geodesic active contours model has a level set formulation

∂

∂t
φ = gκ |∇φ|+ gη |∇φ|+∇g · ∇φ, (2.5)

where κ is the curvature of level curves of φ and η is a constant. Although the existence,
uniqueness, stability, and consistency of the formulation were proved from the notion of
viscosity solutions [24], same problems of the GVF are discussed in [12,14,15,23]
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Active contours without edges (ACWE) [14] is a significant breakthrough in active
contours because the model does not depend on the edge function g. It is to find a contour
C and two constants µ1 and µ2 which minimize the functional:

E (µ1, µ2, C) = α

∫
Ω
|∇H (φ(x))| dx + η

∫
Ω

H(φ(x))dx

+ λ1

∫
Ω
|I(x)− µ1|2 H (φ(x)) dx + λ2

∫
Ω
|I(x)− µ2|2 (1−H (φ(x))) dx,

where H is the one-dimensional Heaviside function and φ is the level set function whose zero
level set is the contour C. If η = 0, the minimizer µ1, µ2, and C is same as the minimizer
of the Mumford-Shah functional [25] with the restriction to bimodal functions which have
two values in the image, i.e., µ1 on outside C and µ2 on inside C. The level set formulation
is

∂

∂t
φ = ακ |∇φ|+

(
λ2 (I − µ2)

2 − λ1 (I − µ1)
2 − η

)
|∇φ| , (2.6)

where µ1 and µ2 are average of image on outside of C and inside of C respectively and κ is
the curvature of level curves of φ. The limitation of bimodal segmentation is overcome by
using multiphase level set framework [13] and image statistics over known number of region
types [26]. Even though just one level set function is used, all of the phase in the image can
be segmented by a special set of basis functions in [27]. The existence of global minimum
invariant to the initialization of level set function and fast convergence are recently proposed
in [28] by using a modified fitting term.

Geodesic active regions (GAR) [15,16] is a new framework of integrating the boundary-
based segmentation [4, 5, 17] with the region-based segmentation [18, 19]. There have been
other efforts to combine boundary information with region information for frame partition
problems [19,29]. The segmentation of vector valued images based on geodesic active regions
was introduced by [30] and the level set formulation for gray image is

∂

∂t
φ = ακ |∇φ|+

(
log

σ2
2

σ1
2
− (I − µ1)

2

σ1
2

+
(I − µ2)

2

σ2
2

)
|∇φ| , (2.7)

where κ is the curvature of level curves of φ. The values µ1 and σ1 are the average and
the standard deviation of the image on φ > 0, respectively. The values µ2 and σ2 are
the average and the standard deviation of the image on φ < 0, respectively. Note that
it is easily generalized to color images with multi-dimensional Gaussian distributions and
multiple regions with an additional coupling terms [31] and multiple level set functions.

Carefully examining the functionality of each term in (2.3), (2.5), (2.6), and (2.7), it is
noted that they have common terms which have the same role in view of forces to evolve
contours. We classify them into three categories, controlling smoothness of contours Fs,
forcing contours to move from far distance toward the boundaries of objects Fb, and at-
tracting contours much closer to the boundaries Fa. Table 2.1 compares four models of
active contours in the level set formulation:

∂

∂t
φ = Fs |∇φ|+ Fb |∇φ|+ Fa · ∇φ. (2.8)
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GVF GAC ACWE GARa

Fs
ακ + βκ3

gκ ακ ακ
−∇

(
∇ (βκ) · ∇φ⊥

)
·∇φ⊥

Fb 0 gη
λ2 (I − µ2)

2 log σ2
2 − log σ1

2

Fa −FG ∇g
−λ1 (I − µ1)

2 − η +
(I − µ2)

2

σ2
2

− (I − µ1)
2

σ1
2

Table 2.1: Comparison of active contours based on (2.8). Fs is to control smoothness
of contours, Fb is to force contours to move from far distance toward the boundary of
objects, Fa is to attract contours much closer to the boundary.

a It is a simplified form [30] of the original GAR [16].

Note that Fb is also called the spatially varying balloon force [17], the combination of Fb

and Fa is considered as region force [30], and the original model of GAR [16] can has each
term in the above equation.

The key to make a good evolution equation for segmentation is to construct well-designed
forces which effectively move contours on the feature of interest and to reduce interference
of forces in order to maximize the role of each force. In order to keep these facts and solve
problems in Table 1.1, we propose noble forces, the GADF Fa, the binary balloon force Fb,
and the binary edge function gb in the level set formulation:

∂

∂t
φ(x, t) = ακ |∇φ|+ gbFb |∇φ|+ (1− gb)Fa · ∇φ,

φ(x, 0) = φ0(x),
(2.9)

where α is a constant, κ is the curvature of level curves of φ, and φ0(x) is the initial level
set function. The first term α controls smoothness of contours. The second term Fb is the
binary balloon force in Section 3.3 which moves contours from far distance toward bound-
aries. Combining with initial dual level set functions and the four-color theorem [20,21], it
solves topological problems in Table 1.1 such as detection of holes or multiple junctions and
dependency on positions of initial contours. The third force Fa is the GADF in Section 3.1
which accurately attracts contours much closer to boundaries of objects even though there
is the weak edge changed smoothly from strong edges. The binary edge function gb in Sec-
tion 3.2 minimizes interference between the GADF and the binary balloon force in order to
maximize the role of each force.
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3 Segmentation using GADF

3.1 Geometric attraction-driven flow

3.1.1 Formulation

For a scalar image I, the geometric attraction-driven flow (GADF) has the direction of
pointing local maxima of the strength of edges |∇I| along the gradient direction ∇I. To find
such a direction for each point x in a color image, we need to estimate the strength of edges
and a gradient direction by using values of I on a neighborhood of x and an algorithm to
choose one of two directions ±∇I which points local maxima of the approximated strength
of edges. The main attribute of GADF is its natural and reliable representation of the
boundary of objects even though there is the weak edge changed smoothly from strong
edges in a color or gray image. Note that such a weak edge looks in a shape of ridge in the
strength of edges.

Let us first explain the basic idea of GADF. We consider a scalar image I: Ω ⊂ R2 →
R+, which is smooth enough. Since we may assume that the intensity near boundaries of
an object changes rapidly from one homogeneous region to another homogeneous region,
we define a point x in Ω as an edge point if the second directional derivative of I at x along
∇I(x) vanishes:

x: edge point ⇐⇒ u′′x (s)
∣∣
s=0

= 0, ux(s) = I

(
x + s

∇I(x)
|∇I(x)|

)
. (3.1)

For a smooth scalar function y on the real line, the following is easily proved: If y′ 6= 0 and
y′′ 6= 0 in (x− r, x + r) for some r > 0, for any positive ε ≤ r, we have

sgn

(∫ x+ε

x
y′(s) ds−

∫ x

x−ε
y′(s) ds

)
= sgn

(
y′′(x)

)
,

where

sgn(x) ≡

{
x/|x| if x 6= 0,

0 if x = 0.

Motivated by this statement, we define a vector field Fa(x) by

Fa(x) = sgn
(
`(x)

) ∇I(x)
|∇I(x)|

, ∀x ∈ Ω, (3.2)

where

`(x) =
∫ ε

0
u′x(s) ds−

∫ 0

−ε
u′x(s) ds for a small ε > 0,

ux(s) = I

(
x + s

∇I(x)
|∇I(x)|

)
.

(3.3)

Then the orientation of Fa at each point x ∈ Ω is one of two directions ±∇I(x) and it
points to the edge point along the straight line x + s ∇I(x)

|∇I(x)| , which is the local maxima of
strength of edges |∇I| along the straight line.
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The vector field Fa in (3.2) can be naturally extended to a color image I: Ω ⊂ R2 →
(R+)3 after the strength of edges and the gradient direction are properly estimated in the
color image. Recently, [32] proposed the nonlinear structure tensor which contains local
features of the image [33]. We use the same nonlinear diffusion

∂M(x, t)
∂t

=∇ ·

h

 2∑
i,j=1

|∇Mij(x, t)|2
∇M(x, t)

 ,

M(x, 0) =
3∑

k=1

∇Ik(x)∇Ik(x)T ,

(3.4)

where T denotes the transpose and h(x) = 1/
√

1 + x. Denote vΛ(x) and vλ(x) as normalized
eigenvectors corresponding to the maximum eigenvalue Λ(x) and the minimum eigenvalue
λ(x), respectively, in a diffused tensor M. We consider vΛ(x) as the estimated gradient
direction in a color image. Note that vΛ(x) is computed in a gray image by changing the
initial condition of the nonlinear diffusion equations.

Now, we define GADF Fa(x) with the estimated gradient direction vΛ(x) in a color
image:

Fa(x) = sgn
(
`(x)

)
vΛ(x), (3.5)

where

`(x) =
∫ ε

0

∣∣u′x(s)
∣∣ ds−

∫ 0

−ε

∣∣u′x(s)
∣∣ ds for a small ε > 0,

ux(s) = I
(
x + svΛ(x)

)
.

(3.6)

Note that the above integrals measure the lengths of the curve ux(s) in R3. If we regard I
in a small neighborhood of x as a local coordinate patch for representing two dimensional
manifold M, the integrand is written by using the first fundamental form Ip(v), p ∈ M
and v ∈ TpM, where TpM is the tangent space of M at p:∣∣u′x(s)

∣∣2 = Iux(s)

(
u′x(s)

)
= vΛ(x)T

(
3∑

k=1

∇Ik(cx(s))∇Ik(cx(s))T

)
vΛ(x),

where cx(s) = x + svΛ(x). Since the nonlinear structure tensor M is a diffused tensor from
the metric tensor

∑3
k=1∇Ik∇Ik

T , we replace the first fundamental form with

M = ΛvΛvΛ
T + λvλvλ

T .

Then, we obtain the integrand in (3.6) as∣∣u′x(s)
∣∣2 = Λ

(
cx(s)

) (
vΛ

(
cx(s)

)
· vΛ(x)

)2 + λ
(
cx(s)

) (
vλ

(
cx(s)

)
· vΛ(x)

)2
. (3.7)

As mentioned in [32], the vector vΛ in the nonlinear structure tensor is robust to noises and
has filling-in effect of orientation information from the boundary of objects to homogenous
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regions. The GADF also has same properties because it takes either vΛ or −vΛ. The
propagation of the orientation information from edges is crucial to construct the binary
edge function in Section 3.2.

Note that (3.5) is equal to (3.2) in a scalar image. To see this, assume that x ∈ Ω is
near the boundary of objects in a gray image. If two integrals in (3.6) are approximated by
the trapezoidal rule with ε = 1, then, from the computation of

∣∣u′x(s)
∣∣ in (3.7), we have

`(x) =
∫ 1

0

∣∣u′x(s)
∣∣ ds−

∫ 0

−1

∣∣u′x(s)
∣∣ ds

' 1
2
(∣∣u′x(1)

∣∣− ∣∣u′x(−1)
∣∣)

=
1
2

[
Λ
(
xf

) (
vΛ

(
xf

)
· vΛ(x)

)2 + λ
(
xf

) (
vλ

(
xf

)
· vΛ(x)

)2] 1
2

− 1
2

[
Λ
(
xb

) (
vΛ

(
xb

)
· vΛ(x)

)2 + λ
(
xb

) (
vλ

(
xb

)
· vΛ(x)

)2] 1
2

where xf = x + vΛ(x) and xb = x− vΛ(x). Since x is near the boundaries, we may assume
that

vΛ

(
xb

)
‖ vΛ

(
x
)

and vΛ

(
x
)
‖ vΛ

(
xf

)
,

where the notation v1 ‖ v2 means that two vectors are parallel. If the gray image is smooth
enough, Λ and vΛ can be replaced by the initial condition in (3.4), i.e., Λ(x) = |∇I(x)|2

and vΛ(x) = ∇I(x)
|∇I(x)| , and we obtain

`(x) =
Λ
(
xf

) 1
2 − Λ

(
xb

) 1
2

2
=

∣∣∇I
(
xf

)∣∣− ∣∣∇I
(
xb

)∣∣
2

.

The sign of `(x) is simply the sign of finite difference approximation of the first order
directional derivative of |∇I| at x along the straight line x + s ∇I(x)

|∇I(x)| . Since

u′′x (s)
∣∣
s=0

= f ′x (s)
∣∣
s=0

,

where

ux(s) = I

(
x + s

∇I(x)
|∇I(x)|

)
and fx(s) =

∣∣∣∣∇I

(
x + s

∇I(x)
|∇I(x)|

)∣∣∣∣ ,
and due to the smoothness of gray image, the GADF in (3.5) and the vector field in (3.2) are
exactly same for a smooth gray image. That is, the GADF is a natural extension of (3.2)
to a color image. Note that the GADF is also computed in a gray image by changing the
initial condition of the nonlinear diffusion equations (3.4).

3.1.2 Comparison with other attraction terms

The attraction terms which have been mostly used in active contours are the GVF
in (2.3) [7–9] and the gradient of edge function in (2.5) [4, 5]. The right orientation of the
vector in the attraction term should be orthogonally aligned with the boundary of object and
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(a) Gray image I (b) Intensity of I (c) f = |∇I|2

(d) GADF (e) GVF (f) ∇f/|∇f |

Figure 3.1: We compare the orientation of GADF with the orientation of the GVF and
the gradient of edge function ∇g. Note that ∇g ‖ ∇f where f is the edge map. If two
vectors have opposite direction, they are highlighted with the yellow color in (d), (e), and
(f). Clearly, the GADF in (a) has better information than the GVF and the gradient of
edge function along the boundary of object.

two vectors across the boundary should have the opposite direction. The former property
is to attract effectively the contour close to the boundary and the latter one is to force the
contour to stop exactly on the boundary. In the view of these properties, we compare the
orientation of the GADF in (3.5) with the orientation of vectors in the two other attraction
terms.

To make it simple, we consider just a smooth scalar image I: Ω → R+. Note that the
GVF keeps the orientation of ∇f on the strong edges, but it is is homogeneously diffused
from ∇f on weak edges. Therefore, we compare the orientation of the GADF with the
orientation of ∇f and ∇g. For the edge function f in (2.2) and the edge map g in (2.4), we
easily obtain that

∇f(x) ‖ ∇g(x) and ∇f(x) ‖ Hx(I)∇I,

where Hx(I) is the Hessian matrix of I at x. It is clear that the orientation of the GADF
and ∇f is same on the strong edges because the image I is not changed along the isophotes;
see the left side of the object in Figure 3.1. However, it is quite different orientation between
the GADF and ∇f on the weak edge changed smoothly from strong edges; see the right
side of the object in Figure 3.1. The difference is obvious because ∇f is transformed by
the Hessian matrix from ∇I, but the GADF takes one of two directions, ∇I or −∇I. It is
observed that the GADF has better orientation than the other two vectors near the weak
edge changed smoothly from strong edges.
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3.2 Binary edge function

We propose the binary edge function to reduce the interference between the GADF
and the binary balloon force in (2.9). Even though we have well-designed forces which
effectively move contours on the feature of interest, if a force interferes with other forces,
we will lose good properties of each force for segmentation. Hence, in order to maximize
the performance of the well-designed forces, when one force is acting on contours, it is
crucial to reduce interference between forces. We use the property of orientation of GADF
to construct the binary edge function.

To attain the goal, we divide the domain Ω of the image I into two disjoint parts Ωa

and Ωb such that

Ωa = δS (ΩE) , Ωb = Ω \ Ωa, (3.8)

where

ΩE =
{
x ∈ Ω | Fa(x∗) · Fa(x) < 0 and x∗ = x + Fa(x)

}
and δS(X) is the dilation of a set X by a structuring element S of the 3 × 3 window
centered at x ∈ X. The dilation is needed to make compatibility with the fast local level
set method [34] to solve the proposed model (2.9). Since the GADF is a vector flow which
locally points to the edge point (3.1) from each side of edges, the set Ωa is the collection
of points in Ω which are near the edge points. Therefore, the property of attraction in
the GADF should be activated on Ωa and the binary balloon force controls the evolving
contours on the other region Ωb. It makes a natural definition of the binary edge function:

gb(x) =

{
0 if x ∈ Ωa,

1 if x ∈ Ωb.
(3.9)

In other words, the binary edge function gb makes the GADF to be applied on the region
Ωa which are near the boundary of objects and the binary balloon force to be applied on
the other region Ωb which are distant from the boundaries. The only remaining explanation
in the proposed model is how to design the binary balloon force which plays a role to move
contours into Ωa.

3.3 Binary balloon force

In this section, we explain how to construct the binary balloon force which moves con-
tours into Ωa the complement of the support of the binary edge function. Since the balloon
force makes contours expand or shrink, we define the binary balloon force as a function
on Ωb whose values are just of two kinds, 1 or −1. Combining with initial dual level set
functions, the position of initial contours is as arbitrary as the models of ACWE [13,14] and
GAR [16, 30]. Applying the four-color theorem [21] to construct the binary balloon force,
it is capable of capturing holes and multiple junctions in an image. Note that the problem
of slow convergence to concave boundaries is easily solved because we apply the constant
force to contours in the region Ωb which is not close to the boundaries.

To understand the full construction of the binary balloon force, we start with the simplest
case in Figure 3.2-(a); the object in the image does not have holes and multiple junctions.
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Γ±φ0

Fb
Case I Case II Case III Case IV

Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 Ω1 Ω2

1 1 −1 −1 1 −1 −1 1

φ0

Inside X − X −
Outside X − − X
Enclosed − X X −
Across − − X X

−φ0

Inside − X − X
Outside − X X −
Enclosed X − − X
Across − − X X

Table 3.1: When the proposed active contours model (2.9) is used, we check the success
of capturing the object for different Fb and different positions of zero level set Γφ0 of the
level set function φ0. Note that, even though Γφ0 = Γ−φ0 , they give different results.
Four different positions of the initial contour Γφ0 and the regions Ω1 and Ω2 are shown in
Figure 3.2. Notice that the results of using Fb with φ0 and −Fb with −φ0 in the Cases III
and IV are exactly same. We call the pair of level set functions φ0 and −φ0 as initial dual
level set functions.

(a) (c)-1 Inside (c)-2 Outside

(b) (c)-3 Enclosed (c)-4 Across

Figure 3.2: (a) is the original image and the black object is placed in the middle. (b)
shows the regions in (3.8) after the binary edge function is obtained. We denote Ω1 and
Ω2 as connected components of Ωb which is the support of the binary edge function. (c) is
different initial contours Γφ0 . Note that the initial level set function φ0 is positive inside
the contour and negative outside the contour.
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First of all, we focus on making the proposed model capture the object regardless of the
position of initial contours after we properly assign two values 1 or −1 to the binary balloon
force. Dividing the region into two connected components Ω1 and Ω2 in Figure 3.2-(b), we
investigate all of possible cases to assign values on each region and place different initial
contours; see Table 3.1. When the initial contour is placed across the object, the Cases I
and II fail to capture the object. The other cases also have some initial positions which
cannot capture the object. However, solving the proposed model twice for the Cases III
and IV, the object is captured all the time independent of the position of the initial curve.
In fact, instead of using different cases of Fb, we use the dual initial level set functions

φ(x, 0) = φ0(x) and − φ0(x) (3.10)

because the results of using Fb with φ0 and −Fb with −φ0 in the Cases III and IV are exactly
same. Note that, in the view of evolving contours, these functions make bidirectionally
evolving contours from the initial contour. The Figure 3.3 shows that the proposed model
has the capability of capturing the object regardless of the position of initial contours. The
initial condition is as arbitrary as the models of ACWE [13,14] and GAR [16,30].

Now, we are ready to deal with more complicated case in Figure 3.4-(a); the object in
the image has holes and multiple junctions. The key feature of the binary balloon force
Fb in Figure 3.3 is that it has two different values 1 or −1 across the adjacent connected
components in Ωb in order to capture the object regardless of the position of initial contours.
The domain of image is decomposed into Ωa and Ωb and the region Ωb is divided into several
connected components Ωi’s. To obtain the general boundary detection algorithm, we use
the four-color theorem [21]. Then each component Ωi is labeled with red, green, blue, and
yellow such that no two colors across adjacent components are same. Note that there is
a good algorithm [20] to assign such colors. Based on four colors, we solve the proposed
model (2.9) twice with two different profiles of the binary balloon force, F 1

b and F 2
b :

F 1
b (x) =


−1 if x ∈ Ωi’s labeled with red or yellow,

1 if x ∈ Ωi’s labeled with green or blue,
0 if x ∈ Ωa,

(3.11)

F 2
b (x) =


−1 if x ∈ Ωi’s labeled with green or yellow,

1 if x ∈ Ωi’s labeled with red or blue,
0 if x ∈ Ωa.

(3.12)

Recalling the two component case in Figure 3.3, F 1
b with the dual level set functions capture

boundaries between regions with red or yellow and regions with green or blue. Similarly
F 2

b captures boundaries between regions with green or yellow and regions with red or blue.
Combination of these results detects all boundaries between four colors; see Figure 3.4.

4 Examples and numerical aspects

We briefly explain the procedure to solve the proposed model (2.9) with some numerical
aspects. We use the AOS scheme [35] to solve the nonlinear diffusion (3.4) with the specified
final time T0. The explicit Euler scheme is used for time discretization of (2.9). The simple
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(a) Inside (b) Outside (c) Enclosed (d) Across (e) General

Figure 3.3: From top to bottom, the evolving contours of the proposed model (2.9) are
shown with different positions of the initial contour. We use dual level set functions, φ0

and −φ0, as the initial condition and the binary balloon force as the Case III in Table 3.1.
The level set function φ0 is positive inside the contour and negative outside the contour.
The red and blue contour are evolved from φ0 and −φ0, respectively. Notice that, by using
initial dual level set functions and the proper binary balloon force, the proposed model has
the capability of capturing the object regardless of the position of initial contours.
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(a) Image (b) Four color (c) F 1
b (d) F 2

b

(e) Result (f) Γ±φ0 (g) (h)

Figure 3.4: (a) is the original image and the object in the middle has holes and multiple
junctions. The gray region in (b) is Ωa and four colors are labeled on connected components
of Ωb in (3.8) based on the four-color theorem. (c) and (d) are the profiles of F 1

b and F 2
b ;

white, gray, and black represent 1, 0, and −1, respectively. The green contours in (f) are
initial contours. The contours in (g) are the result of the proposed model (2.9) from initial
dual level set functions with the binary balloon force F 1

b . The contours in (h) are obtained
in the same way from F 2

b . Combining two contours in (g) and (h), the final result in (e)
is obtained. The evolving contours from (f) to (g) and (h) are shown in the third and the
fourth row, respectively
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(a) Γ±φ0 (b) GADF (c) Γ±φ0 (d) GADF

(e) RAGS (f) RAGS (g) GAC (h) GVF

Figure 4.1: The contours in (b) and (d) are the results of the proposed model (2.9) from
the initial contours in (a) and (c), respectively. The GADF captures the weak edge which
is the left part of the rectangle frame. The RAGS in (f) also capture the weak edge when
the region map gives the correct information. In (e) and (f), we use two different region
maps to obtain the result of the RAGS. The contour from the GAC and the GVF passes
by the weak edge. Note that we capture the whole frame in (d) by using the general type
of initial contours in (c).

upwind scheme and the nonoscillatory upwind scheme are used for space discretization;
see [36] for details of numerical schemes. For a computational efficiency, the fast local level
set method [34] is applied. A stopping criterion is given by measuring an error in a small
band [31]:

Eφn+1 ≡ 1∣∣Ωφn

ζ

∣∣
∫

Ωφn

ζ

∣∣φn+1(x)− φn(x)
∣∣ dx,

Ωφn

ζ ≡
{

x ∈ Ω
∣∣ ∣∣φn(x)

∣∣ ≤ ζ
}

,

(4.1)

where ζ = 1.5 and n is an index for time discretization. We practically stop numerical
iteration with the criterion Eφn < 10−5.

From synthetic and real images, we discuss about the strength and the weakness of the
proposed model and compare with some results from other methods. The first example in
Figure 4.1 shows the prevention of the leakage on the weak edge changed smoothly from
strong edges. The proposed model captures the boundary of object without the leakage and
contours from the GAC and the GVF pass by the weak edge because the GADF basically
takes the orientation of the gradient of image, while the orientation of the attraction term
in the GAC and the GVF are affected by the Hessian matrix of the image. The results of
RAGS depend on region maps obtained from [37] with different parameters. It works when
the region map is properly obtained.

The image in Figure 4.2 has varying illumination and highly concave shape. Even though
the illumination is changed on the background, the orientation of GADF is orthogonally
aligned with the boundary of object and two vectors across the boundary have the opposite
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(a) GADF (b) GVF (c) RAGS (d) ACWE (e) GAR

Figure 4.2: The initial contour in each method is placed at the boundary of image. The
moving contours are shown from top to bottom. The illumination is changed on the object
and its background. The GADF clearly captures the object. Note that the region map
in the RAGS is almost same as the object. The ACWE in (d) may capture the object
by manipulating four parameters in the formulation (2.6), however, it does not work with
λ1 = λ2 = 1, α = 0.01, and η = 0. The simplified version of the GAR [30] in (e) does not
capture the rectangle because the Gaussian distribution is not adjustable to represent the
varying illumination.
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(a) (b) (c) (d)

Figure 4.3: Multiple junctions and holes are captured by the proposed model. Note that
the varying illumination on each hole is caused by the shadow. It makes the same difficulty
to capture the object as in Figure 4.2.

direction. It prevents the leakage on the weak edges and it captures highly concave bound-
aries of objects. As the problem of GVF is shown by Gil and Radeva [10], the contour from
the GVF does not move into the concave part of the object. Even though the region map
in the RAGS is almost same as the objects, it does not capture the object because of the
same reason in the GVF. Since the illumination is changed, it is not easy to find the proper
combination of parameters in the ACWE in order to capture the object. The simplified
version of GAR [30] does not capture the object because the Gaussian distribution is not
adjustable to represent the varying illumination.

Figure 4.3 shows examples of multiple junctions and holes. Since the proposed model
uses initial dual level set functions and two different binary balloon forces, it captures holes
and multiple junctions. The varying illumination on each hole in Figure 4.3-(a) is caused
by the shadow. It makes the same difficulty to capture the object as in Figure 4.2. The
multiple junctions are easily captured by the extension of ACWE and GAR to multiple
level set framework with the mutually exclusive force [13,16].

Table 4.1 shows the robustness for different noise levels. We use the star shape r =
35 + 8 cos(5θ) in the polar coordinate. The center of the star shape is placed at the center
of the 100 by 100 image. The Gaussian white noise is added with the zero mean and the
different values of the standard deviation σ from 10 to 100. The accuracy is computed by
using the relative length:

Rel. length ≡ 1∣∣Ωe
∣∣ ∫

Ωe

∣∣φn(x)− φe(x)
∣∣ dx, (4.2)

where Ωe = {x ∈ Ω | |φe(x)| ≤ 1.5}, φe is the numerical solution of the proposed model
without noise, and φn is the solution with σ ≥ 10. The accuracy in the proposed model is
due to the nonlinear structure tensor from Brox et al. [32]. GAR and ACWE are strongly
robust to noise and GVF, GAC, and RAGS can also capture the object in the noisy image if
the proper Gaussian smoothing operator is used to denoise the image in the preprocessing.

In Figure 4.4, we show real photos which are taken in the photo studio. They have
several difficulties in the segmentation. The object has multiple junctions and holes. Due
to the lighting condition, the illumination is changed in all images. Moreover, the shadow
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σ Rel. length

10 3.162852e-2
20 9.240673e-2
30 1.346118e-1
40 1.378111e-1
50 2.005598e-1
60 2.290991e-1
70 3.096217e-1
80 3.848278e-1
90 3.481178e-1
100 3.842960e-1

Table 4.1: It shows the robustness of the proposed algorithm to different noise levels. The
Gaussian white noise is added with the zero mean and the different values of the standard
deviation σ from 10 to 100. The accuracy is computed by using the relative length in (4.2).
The images on the right show different noise levels, from the top left to the bottom right,
σ = 20, σ = 50, σ = 70, and σ = 100.

and the reflection on objects make weak edges along the boundary of objects. The contour
in the result captures the major part of the boundary. In Figure 4.5 the proposed model is
used to capture the object in natural images [1,2] which have more severe difficulties in the
segmentation. The images in Figure 4.5 have simple colors on background or objects. Even
though the proposed model successfully detects most of boundaries in the main object, it
cannot capture a very thin object which has a thickness of only few pixels in the image.
Since the thin object like a line segment is not enclosed by the edge points (3.1), the binary
balloon force does not have different values across the object. It causes that the evolving
contour passes by its boundary which is almost the same as the object itself; see the first row
in Figure 4.5. We note that it is necessary to study the proper final time in the nonlinear
diffusion process (3.4). If the final time is long enough, the smoothing effect on vague
boundaries deteriorates the orientation of GADF and the evolving contour passes by such
boundaries; see the third row in Figure 4.5. The reason we cannot use a short final time
is that most of images have noise which makes inaccuracy for computing the GADF even
though it is small amount.

5 Conclusions

The proposed model is based on the main framework of active contours which have been
mostly used in image segmentation. After we found common terms which play the same role
in the view of forces to evolve contours, we proposed the GADF, the binary edge function,
and the binary balloon force. They are combined into the proposed model in order to detect
boundaries of objects in many difficult cases, such as varying illumination and complex
shapes. The GADF is the vector flow obtained by a geometric analysis of eigenspace in a
diffused tensor field on a color image as a two-dimensional manifold. The exact locations of
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Figure 4.4: The images are taken in the photo studio. The objects are commercial products,
the first row is a part of DVD player and the others are parts of a component in a machine.
Even though the objects are taken on the simple background, there are well-known diffi-
culties in image segmentation: the weak edge and complexity of shapes such as holes and
multiple junctions. Note that weak edges are shown in the right side of DVD in the first
row and the bottom of the object in the last row. The proposed model clearly captures
boundaries of objects.
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Figure 4.5: We use some of images from [1, 2]. The proposed model captures the object
in each image. The holes in the object and multiple junctions from different colors are
detected, but some of thin branch in the first row and the left ventral fin of the bream in
the third row are not clearly segmented.
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boundaries are defined by the GADF. The orientation of GADF is orthogonally aligned with
the boundary of object and two vectors across the boundary have the opposite direction. It
prevents the leakage on the weak edge even though the illumination is changed. To reduce
the interference from other forces, we designed the binary edge function obtained by the
property of orientation in the GADF. We also designed the binary balloon force based on
the four-color theorem. They have just two values, 1 or −1, which mean that contours
are expanded or shrunk. The main goal of the binary balloon force is to move the initial
contours toward boundaries of object regardless of positions of the contours. Combining
with initial dual level set functions, it is possible that contours from the proposed model
capture holes in objects and multiple junctions from differen colors of objects. The result
does not depend on positions of initial contours.
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