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Abstract

This paper is devoted to comparing numerical schemes for a differential equation
with convection and fourth-order diffusion. Our model equation is ut +(u2−u

3)x =
−(u3

uxxx)x, which arises in the context of thin film flow. First we employ implicit
schemes and treat both convection and diffusion terms simultaneously. Then the
convection terms are treated with well-known explicit schemes, namely Godunov,
WENO and central-upwind, while the diffusion term is treated implicitly. The diffu-
sion and convection schemes are combined using a fractional step splitting method.

1 Introduction

In this paper we consider numerical solutions to the following equation

ut + f(u)x = −(u3uxxx)x, (1.1)
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where the flux is given by

f(u) = u2 − u3. (1.2)

Equation (1.1) describes the flow of a thin liquid film, where u(x, t) ≥ 0

denotes the film thickness. The flux terms represent surface shear and gravity,

where the forces act in opposing directions, the diffusion term on the right

hand side represents surface tension. The surface shear term may arise due to

temperature or concentration gradients or to an external shear force (caused by

wind for example). Derivations of equation (1.1) and related equations may be

found in the reviews [19,23]. For the specific case when thermocapillary effects

produce the surface shear, equation (1.1) is derived in [10,3], with a wind

induced stress a derivation is given in [20,21]. Experimental results showing

typical film shapes for thermocapillary flow up a vertical plate are presented

in [10].

The numerical solution of equations (1.1, 1.2) is constrained by the diffusion

term. An explicit scheme requires a time-step ∆t of the order (∆x)4. Conse-

quently in regions where high resolution is required, such as at a moving front,

a singularity or at blow-up, the computational time is prohibitive. Implicit

methods are therefore generally preferred. Recently these have been coupled

with adaptive meshes to permit high accuracy in the regions of primary in-

terest, see [24,12,2,30] for example. However, the first-order convection term

is not subject to the same constraint and there are many different methods to

deal with nonlinear convection. In the following work we focus primarily on

a comparison between finite difference, Godunov, central-upwind and WENO

schemes applied to the convection term. We also investigate the effect of ap-

plying fully implicit and Crank-Nicolson schemes. Fractional step splitting,
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alternating between solving for the diffusion and convection terms, is applied

in all cases since this was shown in our early numerical simulations to be

significantly more stable than solving the full equation in a single step.

The majority of our numerical examples will be taken from [3]. We use these

examples because Bertozzi et al [3] present a very careful numerical and an-

alytical investigation of equations (1.1, 1.2) and the cases presented show a

wide variety of behaviour in the solutions. The flux function has a point of

inflexion at u = 1/3. The form of solution is likely to change around this point,

consequently in our numerical solutions we will take limiting values for u close

to this value.

2 Numerical Schemes

The notation employed in the numerical calculations is as follows. We consider

a uniform mesh xj+1/2 with a fixed width h ≡ ∆x > 0, where xj+1/2 =

(j +1/2)h, j ∈ Z. The time mesh is given by tn = n∆t, with a fixed time step

size ∆t > 0. We write Un
j as the approximation to the cell average of the true

solution, i.e.,

Un
j ≃

1

h

xj+1/2
∫

xj−1/2

u(x, tn)dx . (2.1)

The diffusion term in equation (1.1) will be tackled via an implicit finite

difference scheme. The convection term will be dealt with via the implicit and

and various explicit methods. The diffusion and convection schemes will be

combined using a fractional step splitting method.
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2.1 Finite difference scheme

First we consider a finite difference scheme for the diffusion equation

ut = −(u3uxxx)x . (2.2)

Since

u(x + 2h) − 2u(x + h) + 2u(x − h) − u(x − 2h) = 2h3uxxx(x) + O(h5) ,

we obtain the following finite difference representation

(u3uxxx)j
∼=

(Un
j )3

2h3
(Un

j+2 − 2Un
j+1 + 2Un

j−1 − Un
j−2) ≡

Φ(Un; j)

2h3
.

Then the fourth order diffusion equation (2.2) may be discretized as

Un+1
j = Un

j − ∆t
4h4

[

θ
(

Φ(Un+1; j + 1) − Φ(Un+1, j − 1)
)

+(1 − θ)
(

Φ(Un, j + 1) − Φ(Un; j − 1)
)]

,
(2.3)

where θ is a weighting factor. If θ = 0.5, then the method is Crank-Nicolson

(denoted CN from now on), with second order accuracy in space and time. If

θ = 1 then the method is fully implicit (denoted FI), with first order in time

and second order in space.

The convection equation

ut = −f(u)x (2.4)

can also be solved using a finite difference scheme. This has the advantage of

simplicity, in that all terms in the full governing equation can be dealt with

in the same manner. The finite difference discretization of equation (2.4) is
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given by

Un+1
j = Un

j −
∆t

2h

[

θ
(

f(Un+1
j+1 ) − f(Un+1

j−1 )
)

+ (1 − θ)
(

f(Un
j+1) − f(Un

j−1)
)]

.

2.2 Alternative schemes for the convection equation

Many schemes have been developed and are widely used to deal with con-

vection. We will now investigate the application of Godunov, central-upwind

(CU) and WENO methods to the flux term of equation (1.2).

We view un
j+1/2 as an approximation of u(x, t) at the interface xj+1/2 of each

cell. In a conservative numerical scheme the flux at the interface is approxi-

mated using its neighbouring cell averages and we set

f(un
j+1/2) ≡ F (Un; j) ∼ f(u(xj+1/2, t)), tn ≤ t ≤ tn+1 , (2.5)

where F denotes the cell average flux.

Then, after integrating (2.4) over the mesh [xj−1/2, xj+1/2] × [tn, tn+1], one

obtains

Un+1
j = Un

j −
∆t

h
(f(un

j+1/2) − f(un
j−1/2)) . (2.6)

The choice of numerical scheme determines the form of the flux function in

equation (2.6).

2.2.1 Godunov scheme

Godunov schemes [5,15,28] are based on either the exact or an approximate

solution of the Riemann problem using characteristic information within the
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framework of a conservative method. Since the Godunov method can be writ-

ten in conservative form with a proper CFL condition, we can find:

Un+1
j = Un

j −
∆t

h

(

max(sn
j−1/2, 0)(Un

j − Un
j−1) + min(sn

j+1/2, 0)(Un
j+1 − Un

j )
)

.

Here, sn
j+1/2 is the shock speed at the interface xj+1/2 determined by the

Rankine-Hugoniot jump condition,

sn
j+1/2 = [f(Un

j+1) − f(Un
j )]/(Un

j+1 − Un
j ) . (2.7)

The Godunov method can be modified to a second order scheme by employing

proper limiters. For the present study we use CLAWPACK [17] with either a

monotonized centered (MC), van Leer (VL) or Superbee (SB) limiter.

2.2.2 Central-upwind (CU) scheme

A Godunov-type semi-discrete central scheme was introduced in [13,14]. We

first compute the local speeds of propagation at the interface x = xj+1/2. Since

the speed of propagation is related to the CFL condition, we can estimate the

local speeds of the right and left side of the cell boundary. The local speeds

of wave propagation are bounded by sn
j+1/2,r and sn

j+1/2,l which are given by

sn
j+1/2,r = max

C
(f ′(u), 0) sn

j+1/2,l = min
C

(f ′(u), 0) , (2.8)

where C is a relevant range for h. Employing this local speed of propagation

the flux at the interface is approximated by

f(un
j+1/2) =

sj+1/2,rf(u−

j+1/2
) − sj+1/2,lf(u+

j+1/2
)

sj+1/2,r − sj+1/2,l

+
sj+1/2,rsj+1/2,l

sj+1/2,r − sj+1/2,l

[u+

j+1/2
− u−

j+1/2
] , (2.9)
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where u+

j+1/2
and u−

j+1/2
are computed as

u+

j+1/2
≡ Un

j+1 −
h

2
(ux)j+1(t

n) u−

j+1/2
≡ Un

j +
h

2
(ux)j(t

n),

(ux)j = minmod(α
Un

j+1 − Un
j

h
,
Un

j+1 − Un
j−1

h
, α

Un
j − Un

j−1

h
) , 1 ≤ α ≤ 2 .

The effect of changing α is discussed in subsequent sections. In general we

should use α ∈ [1, 2] but we find that when α ≤ 1.1 the solution rapidly

moves out of the computational domain.

2.2.3 WENO method

The weighted essentially non-oscillatory (or WENO) method is described in

[7,6,9,18,25]. The ENO method has been combined with an adaptive mesh

code in a study of the stability of moving contact lines in [12]. Greer et al [4]

compare a fifth order WENO and upwind schemes in a study of fourth-order

partial differential equations on an arbitrary surface. They conclude that the

requirements of accuracy and efficiency suggest that WENO is preferable to

the other schemes.

To avoid entropy violating solutions and obtain numerical stability we split

the flux f(u) into two components f+ and f− such that

f(u) = f+(u) + f−(u) , (2.10)

where f+
u ≥ 0 and f−

u ≤ 0. One of the simplest flux splitting methods is

Lax-Friedrichs splitting, which is given by

f±(u) =
1

2
(f(u) ± γu) , (2.11)
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where γ = maxu |f
′(u)| over the pertinent range of u which can be decided

a priori. The interface approximation of the fifth order WENO with Lax-

Friedrichs splitting (WENO-LF5 for short) is given by

f(un
j+1/2) =

1

12
(−fj−1 + 7fj + 7fj+1 − fj+2) −

ΦN(∆f+

j− 3

2

, ∆f+

j− 1

2

, ∆f+

j+ 1

2

, ∆f+

j+ 3

2

) + ΦN(∆f−

j+ 5

2

, ∆f−

j+ 3

2

, ∆f−

j+ 1

2

, ∆f−

j− 1

2

) ,

where fj = f(un
j ), f±

j = f±(un
j ), ∆f±

i+ 1

2

= f±

i+1 − f±

i and

ΦN(a, b, c, d) =
1

3
ω0(a − 2b + c) +

1

6
(ω2 −

1

2
)(b − 2c + d) . (2.12)

The nonlinear weights ω0 and ω2 are defined by

ωj =
γj

∑k−1
l=0 γl

, γl =
dl

(ε + βl)2
, d0 =

1

10
, d1 =

3

5
, d2 =

3

10
,

where, in this case, k = 3 and 0 < ε ≪ 1 is introduced to prevent singularity

and the smoothness indicators βj’s are given by

β0 = 13

12
(fi−2 − 2fi−1 + fi)

2 + 1

4
(fi−2 − 4fi−1 + 3fi)

2

β1 = 13

12
(fi−1 − 2fi + fi+1)

2 + 1

4
(fi−1 − fi+1)

2

β2 = 13

12
(fi − 2fi+1 + fi+2)

2 + 1

4
(3fi − 4fi+1 + fi+2)

2 .

(2.13)

3 Computation of the convection terms

3.1 Linear Transport Equation

In this section we show two numerical examples for convection equations that

highlight certain properties of interest to our subsequent calculations on the

full problem.
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Consider the linear transport equation

ut + ux = 0 u(x, 0) = u0(x) . (3.1)

The exact solution of this problem is simply u(x, t) = u0(x − t). When we

take sufficiently smooth initial data the numerical solutions for all the schemes

introduced in §2, both implicit and explicit, provide accurate results. However,

this is not the case with discontinuous data.
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c)b)a)

Fig. 1. Comparison of a) CN, b) FI and c) Godunov solutions with the exact solution
of equation (3.1) with initial condition (3.2).

Consider the discontinuous initial profile

u0(x) =











2/3, 0 < x < 1,

0, otherwise.
(3.2)

Numerical solutions using CN, FI and the Godunov method are shown as

the solid lines on Figure 1, with h = 0.01 and ∆t = 0.03, 0.03, 0.075 for

the respective schemes. The initial condition is shown as a dashed line. The

explicit scheme allows much larger time-steps than the two implicit schemes.

WENO and CU are not shown, since they are indistinguishable from the

Godunov results. Both implicit schemes show strong oscillations behind the
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discontinuity, although CN is clearly the worst. However, if we increase the

time-step to ∆t = 0.05 the CN result shows little change while the FI scheme

becomes unstable and we do not obtain a result.

In general the oscillatory behaviour exhibited by CN and FI schemes forces

the use of smooth initial data for the thin film equation (1.1). Godunov (and

WENO and CU) is designed to deal with convection equations with a possi-

ble discontinuity and consequently the solutions show no oscillations. In the

numerical results of §4, where we incorporate the diffusion term, we will deal

with both continuous and discontinuous initial data.

3.2 Convection with non-convex flux, f(u) = u2 − u3
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a) b) c)

Fig. 2. Comparison of a) WENO, b) CU and c) Godunov schemes applied to equa-
tion (3.3) with discontinuous initial data (3.2). The exact solution is shown as the
solid line.

Consider the conservation law, equation (1.1), with the diffusion term ne-
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glected

ut + f(u)x = 0, f(u) = u2 − u3, u(x, 0) = u0(x), (3.3)

where the initial value is given by the discontinuous data of equation (3.2).

This type of travelling wave is similar to the double shocks discussed in the

following section. One can easily find the exact solution of the problem using

rarefaction waves and the equal area rule [11]. This is shown as the dashed

line in Figure 2. Numerical solutions are also shown in the figures using the

three explicit methods (the implicit methods all show oscillations and so are

neglected). Away from the discontinuity all of the numerical solutions show

excellent agreement with the exact solution. However, at the downstream side

of the shock the solutions diverge, with WENO showing the greatest error.

Central upwind shows a slightly lower error than Godunov. On the upstream

side all solutions show relatively good agreement.

The choice of CFL number is important to the explicit schemes. The aim is

to accurately capture a discontinuity, without producing oscillations, while

achieving a fast runtime. For a convex flux a high CFL, close to unity, is

generally chosen for Godunov and CU schemes. WENO usually requires a

CFL around 0.5. In this paper, we deal with a non-convex flux. Taking a CFL

of 0.9 in the above example for Godunov results in oscillations. We found a

CFL of 0.75 removed the oscillations while retaining a fast runtime. A similar

value was satisfactory for CU, while WENO ran with good accuracy at the

standard value of 0.5.

The results so far demonstrate the difficulty encountered by the implicit meth-

ods in the presence of a discontinuity. For small time-steps the fully implicit

scheme shows relatively small oscillations, but large time-steps cause the so-
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lution to blow up. CN tends to show significant oscillations for a large range

of time-steps but did provide a solution for all the cases investigated. The

three explicit methods all deal well with discontinuities, with WENO showing

slightly worse agreement with the exact solution than the other two. However,

to obtain satisfactory solutions the CFL number should be around 0.75 for

Godunov and CU and 0.5 for WENO.

4 Computation of the full equation

Now we return to the original problem, specified by equations (1.1) and (1.2),

and compare the different numerical schemes. To solve the equation numer-

ically we employ a fractional step splitting method that alternates between

solving the diffusion equation (2.2) and the convection equation (2.4). Step

splitting increases the stability of the solutions to such an extent that in the

following examples we will not show any solutions obtained without step-

splitting. In all of the following examples when we employ an explicit scheme

to the convection term, we calculate the diffusion term using the CN scheme.

As will be seen later this is the most reliable of the two implicit schemes.

From now on we will refer to the schemes that involve explicit methods as the

explicit schemes, despite the implicit diffusion component. This is to provide

a simple distinction from the CN and FI schemes.

To clearly distinguish between the different schemes and avoid differences

caused by the behaviour due to the initial condition it is best to compare

results at large times. Obviously this can lead to large computational domains

and consequently large computation times. In most examples we therefore
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modify equation (1.1) to move with the region of interest

ut + f(u)x − sux = −(u3uxxx)x , (4.1)

where the wave speed s is defined by equation (2.7).

The addition of the new term means that we must introduce one more step

to the splitting method

ut = sux . (4.2)

To ensure that this part of the equation does not interfere with our investiga-

tion of the numerical schemes we compute (4.2) using the central method [22]

for all cases.

4.1 Comparison of schemes for a travelling wave

Our aim in this section is to test the numerical schemes described in §2. We

will do this by examining a standard thin film flow example of a travelling wave

with a Lax shock. The travelling wave joins two regions of different heights,

ul and ur, where

ul = lim
x→−∞

u(x) ur = lim
x→∞

u(x) .

In the limit ur ≪ 1 this can represent a thin film moving over a precursor

layer. However, as pointed out in [3], any value of 0 < ur < 1/3 will show

the same qualitative behaviour. Bertozzi et al [3] show that multiple Lax

shocks are possible for this situation, depending on the initial conditions.

As discussed earlier, both CN and FI methods have difficulties in dealing

with discontinuous initial values, hence they use a continuous initial condition
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involving a hyperbolic tangent. We will discuss the effect of discontinuous

initial conditions in the following sections.

For comparison purposes we must first determine the travelling wave solution

which obviously should propagate with no time variation. This solution will

be imposed as the initial value for the numerical schemes. We may then test

the accuracy of the schemes by observing how the numerical solutions diverge

from the travelling wave over time. An alternative test would be to start

with a smooth function, such as the hyperbolic tangent, and observe how

the numerical solution tends to the travelling wave over time. However, our

method allows us to make a meaningful comparison after a relatively short

time and removes the problem of determining whether the error occurs because

the numerical solution has not yet reached a steady-state.

To determine the travelling wave solution we start by making the substitution

ξ = x−st where s is the wave speed. This allows equation (1.1) to be integrated

once and written as

uξξξ =
su + u3 − u2 + c

u3
. (4.3)

The far-field solutions x → −∞, u → ul and x → ∞, u → ur allow the values

of s and c to be calculated

s =
(u2

l − u3
l ) − (u2

r − u3
r)

ul − ur

=
f(ul) − f(ur)

ul − ur

c = ulur(ul + ur − 1) .

The wave speed is analogous to that given by the Rankine-Hugoniot condition

(2.7). The numerical solution of (4.3) is obtained by imposing the asymptotic

solutions at either side and breaking the translational invariance, see [1] for

example. In this case we match the x co-ordinate for the position of the maxi-

mum film height. Of course since there may be some variation in this position
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with different schemes, particularly for large h, we cannot do this exactly and

must therefore choose a best fit.
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Fig. 3. Comparison of the numerical schemes with the travelling wave solution (4.3)
with ul = 0.3323, ur = 0.1 for h = 0.8 at time t = 500. The curves are 1) CN, 2)
FI, 3) WENO, 4) second-order Godunov, 5) CU, 6) first-order Godunov, and the
travelling wave (dashed line).

In the following calculations we will assume that our numerical solution of

equation (4.3) is the most accurate and therefore calculate errors based on this

solution. In Figure 3 we compare results from the different numerical schemes

with the solution of equation (4.3) (using the solution of equation (4.3) as the

initial condition). The values ul = 0.3323 and ur = 0.1 are the same as those

used in [3]. The figures show the film height around the moving front and a

close-up of the peak. The step-size and time-step for the CN and FI schemes

are h = 0.8, ∆t = 0.16 (which gives a CFL number around 1/15). For the

explicit methods we can take a larger time-step based on the CFL condition.

In fact, we use a CFL of 0.75 for Godunov and CU, giving ∆t ≈ 1.8 and 0.5 for

WENO, giving ∆t ≈ 1.25. On Figure 3a) it is difficult to distinguish between
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Fig. 4. Comparison of the numerical schemes with the travelling wave solution (4.3)
with ul = 0.3323, ur = 0.1 for h = 0.1 at time t = 500. The curves are 1) CN, 2) FI,
3) WENO, 4) second-order Godunov, 5) CU and the travelling wave (dashed line).

the solutions. The distinction is clearer on Figure 3b). From this close-up it

appears that the two implicit methods provide the best approximation to the

travelling wave solution. However, these are the solutions on Figure 3a) that

produce the large oscillations just downstream of the peak. It is also these two

solutions that switch to a lower value for x < 130. This strange behaviour can

be traced back to oscillations at small time which propagate backwards and

act to reduce this left hand limit. Although the oscillations have moved out of

the computational domain their effect on the film height remains. Note, the

boundary condition at either end is ux = 0. We will discuss this behaviour

later in §4.2. The oscillations just downstream of the moving front, shown on

Figure 3 a), come from the FI and CN solutions. From Figure 3 b) it is clear

that the first order Godunov scheme provides the worst result. Decreasing the

space-step allows the implicit schemes to approach the correct left hand limit

and also acts to bring all the solutions closer to the travelling wave. This is
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Method h 0.8 0.4 0.2 0.1

First order Godunov error 0.061472 0.0385403 0.0217701 0.0114021

order 0.4696219 0.6735675 0.8240190 0.9330467

Second order Godunov error 0.0269884 0.0073086 0.0012690 0.0000616

order 1.3387111 1.8846742 2.5259018 4.3649633

WENO-LF error 0.0408500 0.0115379 0.0020516 0.00010190

order 1.0275280 1.8239518 2.4915681 4.33161454

Central-upwind error 0.0497623 0.0144553 0.0017667 0.00016519

order 0.7080527 1.7834557 3.0324377 3.41888707

Fully-Implicit error 0.0026128 0.0056704 0.0019218 0.00049071

order 2.2514125 -1.11784583 1.560980 1.96951699

Crank-Nicolson error 0.0033870 0.00229690 0.0000532 0.0004732

order 2.6960840 0.56030870 5.4322953 -3.1531860

Table 1
Comparison of errors and convergence orders for different schemes

shown on Figure 4, when h = 0.1 and ∆t = 0.02 for the CN and FI schemes,

∆t ≈ 0.225 for Godunov and CU and ∆t ≈ 0.156 for WENO. On Figure 4 a)

only the first order Godunov solution is distinguishable from the rest and this

only in the vicinity of the peak. The close-up of Figure 4 b) does not capture

the first-order Godunov solution. Near the peak it is now the explicit schemes

that provide the best solution (with the exception of first-order Godunov).

The two implicit schemes bound the explicit and travelling wave solutions.

In Table 1 we show the error and order of convergence for the different schemes.

The error is defined as the absolute value of the difference between the maxi-

mum heights of the numerical and travelling wave solutions. The convergence

order is defined in terms of the errors eh and e2h, corresponding to mesh widths

h and 2h,

|eh| ∼ 2q|e2h| .
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Therefore, the convergence order is

q = log2(|e2h|/|eh|) .

The order in the first column in the table has been calculated using results

for h = 1.6 (which are not shown). The explicit schemes show the expected

convergence behaviour. First-order Godunov shows an approximately linear

order of convergence, while the other three schemes appear to have a geomet-

ric convergence where, for example, the convergence order for h = 0.1 is much

better than that of 0.2. The implicit schemes are more erratic. The FI scheme

appears to have its best convergence order for h = 0.8, while CN appears best

at h = 0.2 and shifts to a negative value for h = 0.1. It seems likely that

this behaviour is related to our definition of convergence. When h = 0.8 the

solution oscillates behind the peak, this may lead to a greater oscillation at

the peak which is therefore higher than would occur without the oscillations.

When h = 0.4 the oscillations are much reduced and the peak values decrease.

Subsequent decreases in the step size result in the peak approaching the trav-

elling wave peak in a more sensible manner. The explicit schemes, which do

not suffer from the oscillatory behaviour, therefore converge as expected.

From now on we will use this travelling wave comparison to guide our choice

of step-size or limiter. We will also neglect the first-order Godunov scheme,

which is clearly significantly less accurate than the other schemes. In Figure 5

we show the effect of changing ∆t with h = 0.1 on the CN scheme. The results

of Figure 5 a) are indistinguishable. From the close-up of the peak, shown on

Figure 5 b), we see that values of ∆t ∈ [0.01, 0.015] give a good approximation

around the peak for this choice of h. Using similar comparisons we find the MC

limiter and α = 1.35 provide the best results for Godunov and CU schemes

respectively. The WENO method appears to be robust with respect to changes
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Fig. 5. The effect of changing ∆t, for fixed h = 0.1, on the CN solution at time
t = 500. The curves are i) ∆t = 0.02, ii) 0.015, iii) 0.0125, iv) 0.01.

in the CFL number, with the solutions showing little variation for a CFL

∈ [0.4, 0.6]. We will discuss these choices in §4.3.

4.2 Effect of the moving grid substitution

We now consider the effect of adding the term −sux to the travelling wave

of the previous section. If we take continuous initial data, such as that given

in [3] then all solutions agree well, for sufficiently small space and time-step.

However, when we start with discontinuous initial data, switching from ul to

ur at x = 0 significant differences arise. Four sets of results for discontinuous

initial data are shown on Figure 6. The first two, Figures 6 a), b), show

solutions including the −sux term. The CN result is shown as a dashed line,

the remaining solutions coincide, even to the level of the close-up of Figures

6 b), and are shown as the solid line. The final figures, Figures 6 c), d), show
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Fig. 6. Travelling wave with discontinuous initial data at t = 900, h = 0.1. Figures
a), b) include −sux term.

results without the −sux term. The travelling wave and explicit schemes all

coincide. As in Figure 3 a) the two implicit schemes, shown as dashed lines,

tend to a lower left hand limit, although in the current situation the correct

limit is never attained. Again this strange behaviour is a result of the initial

oscillations caused by the discontinuity. This oscillation travels backwards and

leads to the left hand limit slightly decreasing. The explicit schemes that avoid

the oscillation do not suffer from this problem. In this case, the maximum wave

height predicted by CN and FI schemes is also slightly lower and therefore

slower than the explicit waves. If we begin with continuous data the results

are all very similar to the explicit results for discontinuous data.
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The change in behaviour between the figures is a result of the numerical scheme

applied to the −sux term. The explicit schemes can all handle (and reduce)

the oscillations that result from the application of the implicit diffusion term

to discontinuous data. On the other hand the CN and FI terms propagate

the oscillations. For consistency and to prevent the numerical treatment of

the −sux term from affecting the results (somewhat erroneously as it now

appears) we applied the central method to this term for all schemes. Like

the tested explicit schemes, this method acts to reduce the oscillations and

so improves the results for the implicit methods. Note, if we apply one of the

other explicit schemes to this term it would also remove problem. If we use an

implicit method to deal with the term then the problem remains.

This indicates a good reason to use the explicit schemes, which show consistent

results regardless of the initial data. Further, the smaller time step of the

implicit schemes means that they take more than twice the time required by

the explicit schemes to produce a result.

4.3 Stable travelling waves?

Bertozzi et al [3] point out that for a range of far field heights, the system (1.1,

1.2) can support multiple shock profiles, but only two are stable. The first

case they present uses a hyperbolic tangent initial profile with ul = 0.3323,

ur = 0.1. The results are identical to those shown in our first example, in §4.1.

The second stable wave involves an initial condition with a bump of width 10,

u(x) =











0.6−ul

2
tanh(x + 5) + 0.6+ul

2
for x < 0

−0.6−ur

2
tanh(x − 5) + 0.6+ur

2
for x > 0 ,

(4.4)
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where ul = 0.3323 and ur = 0.1. Note, we have shifted the origin from that

given in [3], since the governing equation is autonomous this will not affect

the results. However, when the bump width is increased to 20, at large times

the bump appears to spread out and so is classified as unstable.
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Fig. 7. The curves are 1) CN, 2) FI, 3) WENO, 4) second-order Godunov, 5) CU
and the initial condition (dashed line), with h = 0.05.

In Figure 7 we present results for the initial profile of equation (4.4) at t = 104.

In this case we solve the governing equation with a moving axis, given by

equation (4.1). The Godunov and WENO results are hard to distinguish, so we

have labelled them as a single curve. For the CN and FI schemes we take ∆t =

0.01. For the explicit schemes we control the time-step with the CFL number,

hence ∆t > 0.01 and the explicit schemes are much faster than the implicit

ones. All curves show that the initial hump changes to an undercompressive

wave on the right and a compressive wave on the left. The bump width remains

relatively constant for each scheme. This wave therefore appears stable.

Switching the initial condition, by replacing the 5 in equation (4.4) with a
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Fig. 8. Results at t = 105, with h = 0.1. The initial condition is a dashed line and
a) CN, where ∆t = i) 0.02, ii) 0.015, iii) 0.0125, iv) 0.01, b) Godunov with i) SB,
ii) VL, iii) MC, c) CU with i) α = 1.95, ii) 1.5, iii) 1.25, iv) 1.2, d) WENO with
CFL i) 0.4, ii) 0.5, iii) 0.6.

10, leads to the results for t = 105 shown in Figure 8. The FI scheme, which

appears reasonable at t = 104 has moved out of the computational domain at

105 and so is not shown. In Figure 8 a) we see the effect of changing ∆t on

the evolution of the travelling wave using the CN scheme. When ∆t = 0.02

the wave speed is less than that predicted by Rankine-Hugoniot. Further,

the back and front ends of the wave move at a different speed resulting in

the wave spreading out. This gives the appearance that the wave is unstable.

Decreasing ∆t does not necessarily fix the problem. With ∆t = 0.01 the wave

moves slightly too fast and also acts to reduce the width of the bump. In §4.1

we mentioned choosing ∆t to give the least error compared to the travelling

wave example of that section and suggested choosing ∆t ∈ [0.01, 0.015]. From

figure 8 a) we see when ∆t = 0.0125 the downstream edge of the wave matches
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the initial data. The upstream edge is slightly out, but of all cases this shows

the least change in bump width. Similarly, with Godunov we found the MC

limiter provided the best results and α ∼ 1.35 for CU. These are shown in

Figures 8 c, d) respectively. WENO appeared relatively stable to changes in

the CFL number. This is confirmed in Figure 8 d).

The results of Figure 8 indicate that this form of travelling wave is not unsta-

ble. It is merely the choice of numerical scheme and step sizes that lead to the

bump spreading. In particular we note that WENO shows very little spread for

a range of CFL numbers. The Godunov scheme appears sensitive to the choice

of limiter. The SB limiter allows the bump to spread considerably, whereas

MC and VL limiters maintain the initial width, with MC perhaps moving at

the better speed. The CU scheme maintains the correct width when α ≈ 1.25

(slightly lower than the value 1.35 predicted earlier).

4.4 Double shock travelling wave

In our final example we examine the evolution of a double shock wave. This

corresponds to Case 3 in [3]. In all cases we use the step sizes or limiters that

have so far provided the best results. So far in this section, we have chosen

examples where ul < 1/3, which is where the flux has a point of inflexion.

The following example shows the large effect that a small change in ul can

have. With continuous initial data all the schemes provide similar results. In

Figure 9 we present solutions for the discontinuous initial data, u = 0.4 for

x < 0, u = 0.1 for x ≥ 0. Figures 9 a), b) show the solution near the travelling

hump, including the −sux term and also a close up of the downstream edge

of the hump. The FI solution is shown as the dotted line in Figure 9 a), the

remaining curves are plotted as solid lines. In the close-up of Figure 9 b) we
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Fig. 9. Double shock with discontinuous initial condition at time = 4800 h = 0.1,
∆t = 0.02 for CN and FI, The curves are 1) CN, 2) FI, 3) WENO, 4) second-order
Godunov, 5) CU. Figures a), b) contain −sux term.

can see that the implicit schemes bound the implicit ones. Without the −sux

term, as in previous examples we see that the implicit schemes tend to a lower

left hand limit. The FI solution has also travelled further away from the other

results.

5 Conclusion

We have presented a comparison of numerical schemes applied to a fourth-

order thin film equation, with particular examples taken from the work of

Bertozzi et al [3]. The results presented allow us to make a number of con-

clusions and recommendations regarding the numerical approximation of such

schemes.
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Firstly, we noted that applying a fractional step-splitting method provides

much more stable results than when treating the convection and diffusion

terms in a single step. If diffusion is neglected altogether, then all the methods

considered dealt well with sufficiently continuous initial data. With discontin-

uous (on the scale of the space-step) initial data the implicit schemes all led

to oscillations, while the explicit methods coped well. Of the explicit schemes

WENO produced the least accurate result for the second discontinuous exam-

ple.

When the fourth-order diffusion term is included it is clear that implicit meth-

ods should be applied to speed up calculations. We examined the effect of

applying implicit schemes to the whole equation or combining an implicit dif-

fusion scheme with an explicit convection term. The schemes that included an

explicit step turned out to allow much larger time-steps and consequently sig-

nificantly faster run-times. Further, the explicit results showed smaller errors

and higher convergence order when compared to a standard travelling wave

solution. Hence we conclude that the ’explicit’ schemes are more computa-

tionally efficient and more accurate than the implicit ones.

When available the travelling wave solution can be used to determine appro-

priate values for time and space steps, limiters or the value of the CFL number.

We carried this out in §4.1. For each method, except for CU where we were

slightly out, our choice led to the best results in the example of §4.3. With the

exception of WENO, the comparison in §4.3 highlighted the sensitivity of the

methods to the limiter or time-step. WENO provided consistent and accurate

results.

The use of discontinuous initial data led to surprising results. With the im-

plicit schemes in particular, an oscillation at early time resulted in the large
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time solution tending to an incorrect downstream limit. Possibly this could be

fixed by specifying the limit value as a boundary condition, rather than us-

ing a zero derivative condition. However, it does highlight a possible problem

with the implementation of the method. The explicit schemes all handled the

discontinuity with no apparent problem. Note, as in the first example of §4.1

discontinuous can simply mean that changes occur over a smaller length-scale

than the space-step. When the convective term −sux was included the prob-

lem with the implicit schemes was removed. This was a result of applying the

central method to this term which gave the scheme a similar form to our other

explicit schemes.

To summarize, from our calculations it appears that for the best accuracy and

efficiency fourth-order diffusion equations with a convective term should be

tackled using an explicit method on the convection term coupled to an implicit

diffusion term by fractional step-splitting. The choice of explicit methods may

be guided by a travelling wave solution. Our examples indicate that for this

type of problem WENO is the most robust of the three methods investigated.
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