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A dual iterative substructuring method with a penalty term∗

Chang-Ock Lee†and Eun-Hee Park†

Abstract

An iterative substructuring method with Lagrange multipliers is considered for the second
order elliptic problem, which is a variant of the FETI-DP method. The standard FETI-DP for-
mulation is associated with the saddle-point problem which is induced from the minimization
problem with a constraint for imposing the continuity across the interface. Starting from the
slightly changed saddle-point problem by addition of a penalty term with a positive penaliza-
tion parameter η, we propose a dual substructuring method which is implemented iteratively
by the conjugate gradient method. In spite of the absence of any preconditioners, it is shown
that the proposed method is numerically scalable in the sense that for a large value of η, the
condition number of the resultant dual problem is bounded by a constant independent of both
the subdomain size H and the mesh size h. We deal with computational issues and present
numerical results.

Keywords: domain decomposition; iterative substructuring method; Lagrange multipliers; penalty
term; elliptic equations

1 Introduction

Domain decomposition methods are widely used as fast and efficient solvers for a large sparse
system of linear equations arising from the finite element discretization for boundary value prob-
lems. These are generally classified into two categories according to types of partitions of a domain
into subdomains; one is an overlapping domain decomposition and the other is a nonoverlapping
domain decomposition including an iterative substructuring method. We are interested in numer-
ical solutions for a second order elliptic problem based on a dual iterative substructuring method.
We begin by considering the following Poisson model problem with the homogeneous Dirichlet
boundary condition

−∆u = f in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω is a bounded polygonal domain in R2 and f is a given function in L2(Ω). For simplicity, we
assume that Ω is partitioned into two subdomains {Ωi}2i=1 such that Ω =

⋃2
i=1 Ωi and Ω1

⋂
Ω2 = ∅.

The problem (1.1) can be rewritten as

min
v∈H1

0 (Ω)

(
1
2

∫

Ω

|∇v|2 dx−
∫

Ω

fv dx

)
,

∗This work was partially supported by the SRC/ERC program of MOST/KOSEF(R11-2002-103).
†Department of Mathematical Sciences, KAIST, Daejeon, 305-701, Korea.
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equivalently

min
vi ∈ H1(Ωi)

vi = 0 on ∂Ω
⋂

∂Ωi
v1 = v2 on ∂Ω1

⋂
∂Ω2

2∑

i=1

(
1
2

∫

Ωi

|∇vi|2 dx−
∫

Ωi

fvi dx

)
. (1.2)

Here, H1(Ω) and H1
0 (Ω) are the usual Sobolev spaces defined as follows

H1(Ω) = {v ∈ L2(Ω) | ∂αv ∈ L2(Ω), |α| ≤ 1}, H1
0 (Ω) = {v ∈ H1(Ω) | v|∂Ω = 0}.

In the domain-decomposition approach based on the reformulated minimization problem (1.2) with
a constraint, a key point is how to convert the constrained minimization problem into an uncon-
strained one. Most studies (e.g. [1, 11, 15]) for treatment of constrained minimizations started in
the field of optimal control problem. There are three most popular methods developed for different
purposes; the Lagrangian method, the method of penalty function, the augmented Lagrangian
method. Such various ideas have been introduced for handling constraints as the continuity across
the interface in (1.2) (see [8,10,14]). The FETI-DP method is one of the most advanced dual sub-
structuring methods, which introduces Lagrange multipliers to enforce the continuity constraint
by following the Lagrangian method and solves the resultant dual problem from the process of
seeking a saddle-point of the relevant Lagrangian functional. The dual system is solved by the
preconditioned conjugate gradient method (CGM) in company with the Dirichlet preconditioner
or the lumped preconditioner.

In this paper, we propose a dual iterative substructuring algorithm which deals with the con-
tinuity constraint across the interface in view of the augmented Lagrangian method. To the
Lagrangian functional, we add a penalty term which measures the jump across the interface and
includes a positive penalization parameter η. In the same way as in most dual substructuring
approaches, the saddle-point problem related to the augmented Lagrangian functional is reduced
to the dual problem with Lagrange multipliers as unknowns. Then we solve it by the conjugate
gradient method. Many studies for the augmented Lagrangian method have been done in the
frame of domain-decomposition techniques which belong to families of nonoverlapping Schwarz
alternating methods, variants of FETI method, etc. (cf. [4, 7, 14, 20]) Unlike FETI-DP, we do not
need to introduce any preconditioners for the dual system since the proposed method is scalable
in the sense that the condition number of the relevant dual system has a constant bound which
is independent of the subdomain size H and the mesh size h, but depends on the chosen penalty
parameter η. It is noted that without making η large, the acceleration of convergence speed on
CGM can be achieved. In fact, by focusing on the iterative routine of CGM for solving the dual
system, it is expected intuitively that the convergence on the modified dual system by addition of
a penalty term is faster than that on the dual problem in FETI-DP. There are similar remarks for
the augmented Lagrangian method in the area of constrained optimization (see [5, 12]).

This paper is organized as follows. In Section 2, we introduce a minimization problem with
the continuity constraint and a penalty term, which is transformed into a saddle-point formulation
with both the primal and dual variables as unknowns. We state an error estimate of the primal
solution of the resultant saddle-point problem. Section 3 provides a dual iterative substructuring
method and present algebraic condition number estimates. In Section 4, we mainly deal with
computational issues in view of implementation of the proposed method and show the numerical
results. Finally, we make the concluding remarks in Section 5.
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2 Saddle-point formulation

In this section, we present a minimization problem with the pointwise matching constraint on the
subdomain interfaces where the minimizer is characterized by an approximation of the solution
to (1.1). The adoption of Lagrange multipliers for dealing with the constraint yields a saddle-point
problem. We state the unique solvability of the resultant variational problem from the saddle-
point formulation and derive the error estimate by observing the relation between the proposed
constrained minimization problem and a well-organized minimization problem.

Before introducing the partitioned problem based on the domain-decomposition approach, we
recall a well-known equivalence relation associated with the finite element approximation to the
problem (1.1). Let Th denote a family of regular triangulations on Ω where the discretization
parameter h stands for the maximal mesh size of Th. By introducing the standard P1-conforming
finite element space

Xh = {vh ∈ H1
0 (Ω) ∩ C0(Ω) | ∀τ ∈ Th, vh|τ ∈ P1(τ)},

we formulate a discretized variational problem for (1.1): find uh ∈ Xh such that

a(uh, vh) = (f, vh) ∀vh ∈ Xh, (2.1)

where a(uh, vh) =
∫
Ω
∇uh · ∇vh dx and (f, vh) =

∫
Ω

fvh dx. It is well-known that the solution of
(2.1) is equivalent to the minimizer of the problem:

min
v∈Xh

(
1
2
a(v, v)− (f, v)

)
. (2.2)

Before we propose a constrained minimization problem whose minimizer has a connection with
the minimizer of (2.2), we introduce some commonly-used notations. We first decompose Ω into
N non-overlapping subdomains {Ωk}N

k=1 such that

(i) Ωk is a polygonally shaped open subset of Ω.

(ii) the decomposition {Ωk}N
k=1 of Ω is geometrically conforming.

(iii) Γkl denotes the common interface of two adjacent subdomains Ωk and Ωl.

(iv) Γ is the union of the common interfaces among all subdomains, i.e., Γ =
⋃

k<l Γkl.

Let us use Thk
to denote a regular triangulation of each subdomain Ωk, ∀k = 1, · · · , N , where the

matching grids are taken on the boundaries of neighboring subdomains across the interfaces. On
each subdomain Ωk, we set a finite-dimensional subspace Xk

h of H1(Ωk):

Xk
h = {vk

h ∈ C0(Ωk) | ∀τ ∈ Thk
, vk

h|τ ∈ P1(τ), vk
h|∂Ω∩∂Ωk

= 0}.

By enforcing the continuity at the corner points, we assemble Xk
h ’s into Xc

h:

Xc
h = {v = (vk

h)k ∈
N∏

k=1

Xk
h | v is continuous at each corner}
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equipped with the norm

‖vh‖Xc
h

=

(
N∑

k=1

‖vk
h‖2H1(Ωk)

) 1
2

.

Next, we define a bilinear form on Xc
h ×Xc

h:

ah(u, v) =
N∑

k=1

∫

Ωk

∇u · ∇v dx.

Let B be a signed Boolean matrix such that for any v ∈ Xc
h, Bv = 0 enforces v to be continuous

across the interface.
Now, we present a partitioned problem based on the domain-decomposition approach. The

finite element problem (2.1) is reformulated as a minimization problem with constraints imposed
by the requirement of continuity across the interface Γ:

min
v∈Xc

h

J (v) subject to Bv = 0,

where an energy functional J : Xc
h → R is defined as

J (v) =
1
2
ah(v, v)− (f, v) ∀v ∈ Xc

h.

Following a well-known technique for the constrained optimization, we introduce a vector µ of
Lagrange multipliers in RE and a Lagrangian functional L : Xc

h × RE → R defined by

L(v, µ) = J (v) + 〈Bv, µ〉
where E represents the number of constraints used for imposing the pointwise matching condition
and 〈·, ·〉 is the Euclidean inner product in RE . Then, we have the saddle-point formulation: find
a saddle point (uh, λh) ∈ Xc

h × RE such that

L(uh, µh) ≤ L(uh, λh) ≤ L(vh, λh), ∀vh ∈ Xc
h, ∀µh ∈ RE ,

i.e.,
L(uh, λh) = max

µh∈RE
min

vh∈Xc
h

L(vh, µh) = min
vh∈Xc

h

max
µh∈RE

L(vh, µh). (2.3)

Here, we shall slightly change the saddle-point formulation (2.3) by addition of a penalty term to
the Lagrangian L. Let Jη be a bilinear form on Xc

h ×Xc
h defined as

Jη(u, v) =
∑

k<l

η

h

∫

Γkl

(uk − ul)(vk − vl) ds, η > 0,

where h = maxk=1,··· ,N hk with the mesh size hk of Thk
. Given the augmented Lagrangian Lη

defined by
Lη(v, µ) = L(v, µ) + Jη(v, v),

we consider the following saddle-point problem (Sh):

Lη(uh, λh) = max
µh∈RE

min
vh∈Xc

h

Lη(vh, µh) = min
vh∈Xc

h

max
µh∈RE

Lη(vh, µh). (2.4)
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There is a well-known characterization of a saddle-point formulation like the problem (Sh) by a
variational problem. Since the analysis in [13] was done in an abstract frame, we simply review
the concrete relationship related to the problem (Sh) without proof.

Proposition 2.1. Let aη(·, ·) be the bilinear form on Xc
h ×Xc

h such that

aη(u, v) = ah(u, v) + Jη(u, v).

Assume that aη(·, ·) is symmetric and Xc
h-elliptic in the sense that there exists a constant α > 0

such that
aη(v, v) ≥ α‖v‖2Xc

h
, ∀v ∈ Xc

h.

Then the saddle-point of (Sh) is equivalent to the solution of the following variational problem
(Qh): find (uh, vh) ∈ Xc

h × RE such that

aη(uh, vh) + 〈vh, BT λh〉 = (f, vh), ∀vh ∈ Xc
h,

〈Buh, µh〉 = 0, ∀µh ∈ RE .

For the sake of convenience, we refer to the solutions uh and λh as the primal solution and the
dual solution, respectively. Moreover, the primal solution uh of the saddle-point problem (Sh) is
precisely the minimizer of the constrained minimization problem (Mc) :

Jη(uh) = min
v ∈ Xc

h
Bv = 0

Jη(v), (2.5)

where Jη(v) = 1
2aη(v, v)− (f, v).

Since ah(·, ·) is coercive over Xc
h due to the continuity of functions in Xc

h at corner points, it
follows from the semi-definiteness of Jη(·, ·) that aη(·, ·) is coercive over Xc

h. Hence, according to
Proposition 2.1, the stationary point of (Sh) is characterized by the solution of the problem (Qh).
We now look for the necessary and sufficient conditions which ensure the unique solvability of the
problem (Qh). We set

Vh = {v ∈ Xc
h | 〈Bv, µ〉 = 0, ∀µ ∈ RE}.

Focusing on the fact that the problem (Qh) is reduced to a linear system with respect to λh, a
necessary and sufficient condition for the well-posedness of the problem (Qh) is

Ker(BT ) = {0}, i.e., rank(B) = E

in keeping in mind the ellipticity of aη(·, ·) over Vh. Since the pointwise matching constraints over
all edges nodes on Γ are independent, it is clear that rank(B) = E. This means that the problem
(Qh) has a unique solution (uh, λh). Then, with the problem (Qh), we can associate the concerned
minimization problem (2.2) by the constrained minimization (Mc). Noting that

Vh = Xh ⊂ H1
0 (Ω),

we have that
min
v∈Vh

Jη(v) = min
v∈Xh

Jη(v) = min
v∈Xh

J (v). (2.6)

Hence, combining (2.6) with (2.5) yields that the primal solution uh of (Qh) is exactly equal to
the solution of the variational problem (2.1). In addition, in order to check the convergence of the
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primal variable uh of (Qh), it is sufficient to observe the error estimate for the problem (2.1). By
the standard error estimates for the P1-conforming element, we obtain the error estimate for uh

that reads in the following proposition.

Proposition 2.2. Let uh be the primal solution of the problem (Qh). Assume that the problem (1.1)
has a unique solution u in H2(Ω). Then we have that

‖u− uh‖L2(Ω) + h‖u− uh‖H1(Ω) ≤ Ch2‖u‖H2(Ω).

Remark 2.1. If η = 0, the proposed method is reduced to the standard FETI-DP formulation. On
the other hand, when the pointwise matching condition is removed, this approach is included in the
category of penalty methods. We shall mention why we introduce both the penalty term Jη and the
pointwise matching condition Bv = 0 simultaneously. In highlighting only the aim of treatment
of the continuity constraint, it is obvious that one of them is redundant. The combination of
penalization and dualization is purposed to have the best of both worlds. The presence of the
〈Bv, µ〉 in the augmented Lagrangian functional Lη guarantee that the primal variable solution uh

converges to the solution of (2.1) without making η large. Moreover, the iterative solver for the
dual system converges much faster than before augmenting the penalty term.

3 Iterative substructuring method

The purpose of this section is to derive an iterative substructuring method in an algebraic form
and to present a condition number estimate for the proposed method.

3.1 Algebraic formulation of iterative substructuring

The saddle-point formulation (Qh) is expressed in the following algebraic form
[
Aη BT

B 0

] [
u
λ

]
=

[
F
0

]
. (3.1)

By letting the vector u be partitioned as

u =




ui

uc

ue


 ,

where ui denotes the degrees of freedom in the subdomain interior, uc those associated with the
subdomain corners, and ue those on the edge nodes on the interface except corners, we obtain the
block forms of matrices and vectors in (3.1) as follows:

Aη =




Aii Aic Aie

Aci Acc Ace

Aei Aec Aη
ee


 , BT =




0
0

BT
e


 , F =




fi

fc

fe


 ,

where
Aη

ee = Aee + ηJ. (3.2)

6



When the vectors ui and uc are subassembled into uΠ, (3.1) is rewritten as

AΠΠuΠ + AΠeue = fΠ (3.3a)
AT

ΠeuΠ + Aη
eeue + BT

e λ = fe (3.3b)
Beue = 0 (3.3c)

Substituting uΠ = A−1
ΠΠ(fΠ −AΠeue) obtained from (3.3a) into (3.3b) yields

ue = S−1
η (fe −BT

e λ−AT
ΠeA

−1
ΠΠfΠ) (3.4)

where
Sη = S + ηJ = (Aee −AT

ΠeA
−1
ΠΠAΠe) + ηJ.

Here it is easily noted that Sη is symmetric positive definite because S is symmetric positive
definite [19] and J is symmetric positive semidefinite. By combining (3.4) with (3.3c), we have the
following system for the Lagrange multipliers:

Fηλ = dη (3.5)

where
Fη = BeS

−1
η BT

e

and
dη = BeS

−1
η (fe −AT

ΠeA
−1
ΠΠfΠ).

Based on the fact that Fη is symmetric positive definite, we solve the resulant dual system (3.5)
iteratively by the conjugate gradient method.

3.2 Estimate of condition number

The key issue is to provide a sharp estimate for the condition number of Fη. Let us denote by 〈·, ·〉
the usual inner product in the Euclidean space Rd. The associated norm is ‖u‖ =

√
〈u, u〉, ∀u ∈ Rd.

We mention the following property related to the norm induced by Fη, which can be easily checked
as in [19].

Proposition 3.1. For any λ ∈ RE,

λT Fηλ = max
ve 6=0

|vT
e BT

e λ|2
‖ve‖2Sη

where ‖ve‖Sη is the norm induced by the symmetric positive definite matrix Sη.

Note that J in (3.2) is represented as

J = BT
e D(JB)Be

with a symmetric positive definite matrix JB induced from

1
h

∫

Γij

ϕψ ds, ∀ϕ,ψ ∈ Xc
h|Γij ,
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where D(JB) is a block diagonal matrix such that

D(JB) =




JB

. . .
JB


 .

We start with defining by Λ the space of vectors of degrees of freedom associated with the Lagrange
multipliers. Note that dim(Λ) = E where E is the number of the edge nodes on Γ. In order to
give the condition number bound for Fη, based on Lemma 3.1 in [18], it is sufficient to specify a
suitable norm ‖ · ‖Λ and to estimate the constants satisfying the relationship as follows:

c1‖λ‖2Λ′ ≤ 〈λ, Fηλ〉 ≤ c2‖λ‖2Λ′ ∀λ ∈ Λ,

c3‖µ‖2Λ ≤ 〈µ, µ〉 ≤ c4‖µ‖2Λ ∀µ ∈ Λ,
(3.6)

where the norm ‖ · ‖Λ on Λ is defined by

‖µ‖2Λ = µT D(JB)µ, ∀µ ∈ Λ

and the dual norm on Λ is defined by

‖λ‖Λ′ = max
µ∈Λ

|〈λ, µ〉|
‖µ‖Λ , ∀λ ∈ Λ.

Remark 3.1. Based on the fact that Λ = Range(Be), we have

‖λ‖Λ′ = max
Beve 6=0

|(Beve)T λ|
‖Beve‖Λ

= max
Beve 6=0

|vT
e BT

e λ|
(vT

e Jve)1/2

= max
ve⊥KerBe

ve 6= 0

|vT
e BT

e λ|
(vT

e Jve)1/2
.

The third equality is obtained by

|vT
e BT

e λ|
(vT

e Jve)1/2
=

|(P⊥ve)T BT
e λ|

((P⊥ve)T J(P⊥ve))1/2
, ∀ve with Beve 6= 0,

where P⊥ is an orthogonal projection onto (KerBe)⊥ with respect to 〈·, ·〉.
We first mention some useful lemmas in deriving bounds on the extreme eigenvalues of Fη. It

is obvious that dim(KerBe) = E.

Lemma 3.1. Let λJ
min be the nonzero smallest eigenvalue of J . Then, λJ

min is characterized as

λJ
min = 2λJB

min

where λJB

min is the smallest eigenvalue of JB.
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Proof. Let λ be a nonzero eigenvalue and q be a corresponding eigenvector of J . Thanks to the
relationship BeB

T
e = 2I, we have

BeB
T
e D(JB)Beq = λBeq,

D(JB)(Beq) =
1
2
λ(Beq).

Since Beq 6= 0, it yields λJ
min = 2λJB

min.

Lemma 3.2. For S = Aee −AT
ΠeA

−1
ΠΠAΠe, there exists a constant C > 0 such that

vT
e Sve ≤ CvT

e Jve, ∀ve⊥KerBe.

Proof. Let λS
max denote the maximum eigenvalue of S. Note that vT

e Sve ≤ λS
maxv

T
e ve. Since

KerJ = KerBe, we get that for any nonzero ve⊥KerBe,

vT
e Jve

vT
e Sve

≥ 1
λS

max

vT
e Jve

vT
e ve

≥ λJ
min

λS
max

.

Hence, it follows from Lemma 3.1 that there exists a constant C = λS
max/2λJB

min satisfying

vT
e Sve ≤ CvT

e Jve ∀ve⊥KerBe.

Theorem 3.1. For any λ ∈ Λ, we have that

1
C + η

‖λ‖2Λ′ ≤ λT Fηλ ≤ 1
η
‖λ‖2Λ′ .

where C is the constant estimated in Lemma 3.2.

Proof. By Proposition 3.1 and Lemma 3.2, we first get the following lower bound:

λT Fηλ = max
ve 6=0

|vT
e BT

e λ|2
vT

e Sve + ηvT
e Jve

≥ max
ve⊥KerBe

ve 6= 0

|vT
e BT

e λ|2
vT

e Sve + ηvT
e Jve

≥ 1
C + η

max
ve⊥KerBe

ve 6= 0

|vT
e BT

e λ|2
vT

e Jve

=
1

C + η
‖λ‖2Λ′ .

The last equality holds due to Remark 3.1.
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Note that λS
minvT

e ve ≤ vT
e Sve with the minimum eigenvalue λS

min of S. Similarly as in the lower
bound estimate, we obtain that

λT Fηλ = max
ve 6=0

|vT
e BT

e λ|2
vT

e Sve + ηvT
e Jve

≤ max
ve 6=0

|vT
e BT

e λ|2
λS

minvT
e ve + ηvT

e Jve

= max
ve⊥KerBe

ve 6= 0

|vT
e BT

e λ|2
λS

minvT
e ve + ηvT

e Jve

≤ max
ve⊥KerBe

ve 6= 0

|vT
e BT

e λ|2
ηvT

e Jve

=
1
η
‖λ‖2Λ′ .

Now we give the estimate of the condition number κ(Fη).

Corollary 3.1. We have the condition number estimate of the dual system (3.5) as follows

κ(Fη) ≤
(

C

η
+ 1

)
κ(JB), C =

λS
max

2λJB

min

.

Proof. By Theorem 3.1, the constants in (3.6) are estimated as follows

1
C + η

‖λ‖2Λ′ ≤ 〈λ, Fηλ〉 ≤ 1
η
‖λ‖2Λ′ ∀λ ∈ Λ,

1
λJB

max

‖µ‖2Λ ≤ 〈µ, µ〉 ≤ 1
λJB

min

‖µ‖2Λ ∀µ ∈ Λ.

Thanks to Lemma 3.1 in [18], we easily find that

κ(Fη) ≤
(

C

η
+ 1

)
κ(JB) with C =

λS
max

2λJB

min

.

We address the following well-known fact that informs us the eigenvalues of a special type of
Toeplitz matrix.

Proposition 3.2 ([16]). Let T be an n× n symmetric tridiagonal Toeplitz matrix

T =




α β 0 · · · 0

β α β
. . .

...

0
. . . . . . . . . 0

...
. . . β α β

0 · · · 0 β α




.
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Then, the eigenvalues of T are

λk = α + 2β cos
(

πk

n + 1

)
, ∀k = 1, · · · , n.

Corollary 3.2. For a sufficiently large η, we have

κ(Fη) ≤ 3.

Proof. Since JB is a tridiagonal Toeplitz matrix with α = 2
3 and β = 1

6 , it is confirmed that
κ(JB) < 3 independently of h and H by Proposition 3.2. Hence Corollary 3.1 implies that κ(Fη) ≤ 3
for a sufficiently large η.

Remark 3.2. To the best of our knowledge, the algorithm with such a constant bound of the
condition number is unprecedented in the field of domain decomposition. Adding the penalization
term Jη to the FETI-DP formulation makes a strongly scalable algorithm without any domain-
decomposition-based preconditioners even if it is redundant in view of equivalence relations among
the concerned minimization problems.

4 Computational issues and numerical results

4.1 Computational issues

The formulation in the block form (3.3) is intended for the estimate of condition number. We
need to reorder the relevant degrees of freedom in focusing on the implementation of the proposed
algorithm. By rearranging u in order u = [ur, uc]T where ui and ue are assembled into ur, we
obtain the system in the following form

Kη
rrur + Krcuc + BT

r λ = fr (4.1a)
KT

rcur + Kccuc = fc (4.1b)
Brur = 0 (4.1c)

Note that Kη
rr = Krr +ηJ̃ is non-singular because Krr is positive definite (cf. [8]). By substituting

ur = (Kη
rr)

−1(fr −Krcuc −BT
r λ)

from (4.1a) into (4.1b) and (4.1c), we have
[
Fcc −FT

rc

Frc Frr

] [
uc

λ

]
=

[
dc

dr

]
(4.2)

where
Frr = Br(Kη

rr)
−1BT

r , Frc = Br(Kη
rr)

−1Krc, Fcc = Kcc −KT
rc(K

η
rr)

−1Krc

and
dr = BT

r (Kη
rr)

−1fr, dc = fc −KT
rc(K

η
rr)

−1fr.

Since Aη is invertible, so is Fcc, the Schur complement of Kη
rr in Aη. We can therefore eliminate

uc in (4.2), and get
Fηλ = dη (4.3)
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where
Fη = Frr + FrcF

−1
cc FT

rc, dη = dr − FrcF
−1
cc dc.

We iteratively solve the dual problem (4.3) by the conjugate gradient method. The difference with
the FETI-DP method is to invert Kη

rr that contains the penalization parameter η. To compare
our algorithm with the FETI-DP method, we need to make more careful observation of behavior
of (Kη

rr)
−1. Note that

Kη
rr = Krr + ηJ̃ =

[
Aii Aie

AT
ie Aee

]
+

[
0 0
0 ηJ

]

where J = BT
e D(JB)Be. Thanks to the specific type of discrete Sobolev inequality proven in

Lemma 3.4 of [6], we have the following Proposition without major difficulty.

Proposition 4.1. For any vr, there exist constants C1 and C2 independent of h and H such that

C1
h2

H2(1 + log H
h )
‖vr‖2 ≤ vT

r Krrvr ≤ C2‖vr‖2,

that is,

κ(Krr) .
(

H

h

)2 (
1 + log

H

h

)
.

Theorem 4.1. For each η > 0, we have that

κ(Kη
rr) .

(
H

h

)2 (
1 + log

H

h

)
(1 + η).

Proof. Since J̃ is positive semidefinite, it is clear that

λKrr

min ‖vr‖2 ≤ vT
r Kη

rrvr ∀vr.

From the fact that ηJ = ηBT
e D(JB)Be, we obtain that for any vr = [vi, ve]T ,

vT
r Kη

rrvr ≤ λKrr
max‖vr‖2 + ηλJB

max(Beve)T Beve

≤ (λKrr
max + 2λJB

maxη)‖vr‖2.
Moreover, it is noted that λJB

max < 1 by Proposition 3.2. Hence it follows from Proposition 4.1 that

κ(Kη
rr) .

(
H

h

)2 (
1 + log

H

h

)
(1 + η).

Theorem 4.1 shows how severely η deteriorates the property of Kη
rr as η is increased. It is

expected that the large condition number of Kη
rr shown above may cause the computational cost

relevant to Kη
rr to be expensive. We shall establish a good preconditioner for Kη

rr in order to
remove a bad effect of η. We introduce the preconditioner M as follows

M = Krr + ηJ̃

=
[
Aii 0
0 Aee

]
+

[
0 0
0 ηJ

]

=
[
Aii 0
0 Aη

ee

]
.

12



Theorem 4.2. The condition number of the preconditioned problem grows asymptotically as

κ(M−1Kη
rr) :=

λmax(M−1Kη
rr)

λmin(M−1Krr)
. H

h

(
1 + log

H

h

)
.

Proof. Note that, for any vr = [vi, ve]T ,

vT
r Kη

rrvr

vT
r Mvr

= 1 +
2vT

i Aieve

vT
i Aiivi + vT

e Aη
eeve

. (4.4)

Let

γ = sup
vi 6= 0
ve 6= 0

|vT
i Aieve|

(vT
i Aiivi · vT

e Aη
eeve)

1
2

where the constant γ < 1 is referred to as the strengthened Cauchy-Schwarz-Bunyakowski constant
(see [2, 3, 17]). Since the arithmetic-geometric inequalty gives

|vT
i Aieve| ≤ γ(vT

i Aiivi · vT
e Aη

eeve)
1
2

≤ 1
2
γ(vT

i Aiivi + vT
e Aη

eeve),

it suffices to find an appropriate bound on the constant γ. Taking vi = A
− 1

2
ii wi and using the

Cauchy inequality and the semidefiniteness of J , we have that

γ = sup
wi 6= 0
ve 6= 0

|〈A−
1
2

ii Aieve, wi〉|
(wT

i wi · vT
e Aη

eeve)
1
2

≤ sup
ve 6=0

‖A−
1
2

ii Aieve‖
(vT

e Aη
eeve)

1
2

≤ sup
ve 6=0

‖A−
1
2

ii Aieve‖
(vT

e Aeeve)
1
2

=

(
sup
ve 6=0

vT
e (Aee − See)ve

vT
e Aeeve

) 1
2

= (1− C∗)
1
2

where See = Aee −AT
ieA

−1
ii Aie and C∗ = infve 6=0

vT
e Seeve

vT
e Aeeve

. Next, we shall estimate C∗. In a similar
way as in Lemma 4.11 of [21], it is easy to show that

λmin(See) = O

(
h

H(1 + log H
h )

)
(4.5)

based on the specific type of discrete Sobolev inequality mentioned in Lemma 3.4 of [6]. As
λmax(Aee) = 2− cos((1− h

H )π) < 3, it holds from (4.5) that

vT
e Seeve

vT
e Aeeve

≥ λmin(See)
λmax(Aee)

= O

(
h

H(1 + log H
h )

)
= Ĉ.

13



Hence,
γ ≤ (1− C∗)

1
2 ≤ (1− Ĉ)

1
2 . (4.6)

Combination of (4.4) and (4.6) yields that

κ(M−1Kη
rr) =

λmax(M−1Kη
rr)

λmin(M−1Krr)

≤ 1 + (1− Ĉ)
1
2

1− (1− Ĉ)
1
2

≤ 2
1− (1− Ĉ)

1
2

≈ C
H

h

(
1 + log

H

h

)
for a sufficiently large

H

h

Consequently, for a sufficiently large H
h , we have

κ(M−1Kη
rr) . H

h

(
1 + log

H

h

)
.

4.2 Numerical results

In this section, we present computational results which support our theoretical arguments for the
proposed method and show its efficiency in view of parallel computing. Let Ω be [0, 1]2 ⊂ R2. We
consider the model problem with the exact solution

u(x, y) = y(1− y) sin(πx)

as follows

−∆u = f in Ω,

u = 0 on ∂Ω.

The reduced dual problem (4.3) is iteratively solved by CGM. We monitor the convergence of CGM
by the following stop criterion

‖rk‖
‖r0‖ ≤ TOL,

where rk is the residual error on the k-th CG iteration and TOL=10−8. We introduce discretiza-
tion parameters H, Ns, and h. These parameters stand for the subdomain size, the number of
subdomains, and the mesh size, respectively. We decompose Ω into Ns square subdomains with
Ns = 1/H×1/H. Each subdomain is partitioned into 2×H/h×H/h uniform triangular elements.

Remark 4.1. Figure 1 shows how the condition number of Fη behaves as η increases. According
to Corollary 3.1, the larger η we take, the more Fη mimics JB in terms of the condition number.
But, as shown in Figure 1, we do not need to take very large values of η if we simply focus on
improvement of the condition number related to computational speed. In fact, an optimal value of
η can be estimated in a heuristic way, which is approximately 2 independently of the subdomain
size H and the mesh size h.
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Figure 1: Condition number of Fη for various values of η where Ns = 4× 4 and H/h = 4.

Ns
H
h h ‖u−uh‖2

‖u‖2 ratio

4× 4

4 1/16 3.2230e-3 -
8 1/32 8.0721e-4 0.2505
16 1/64 2.0188e-4 0.2501
32 1/128 5.0471e-5 0.2500
64 1/256 1.2616e-5 0.2500

8× 8
4 1/32 8.0690e-4 -
8 1/64 2.0184e-4 0.2501
16 1/128 5.0464e-5 0.2500
32 1/256 1.2614e-5 0.2500

16×16 4 1/64 2.0183e-4 -
8 1/128 5.0452e-5 0.2500
16 1/256 1.2611e-5 0.2500

Table 1: Convergence behavior.

As mentioned in Remark 4.1, an extremely large value of η is not necessary for either improve-
ment of accuracy or speed-up of iterative solver. Just in order to avoid trouble in choosing a
properly large η, we take the large values of η such as 104, 105, etc. The choice of large η does not
cause any problems in mathematically solving the system relevant to Fη. However, the situation
is slightly different in practical sense. Let us look over Fη more carefully in the form of

Fη = BeS
−1
η BT

e

where
Sη = Aee + ηJ −AT

ΠeAΠΠ
−1AΠe.

An extremely large η may result in numerical instability, since it makes Sη become close to the
singular matrix J . Hence, we choose a moderately large η = 106 throughout whenever we intend
to investigate the typical properties of the proposed method.

Table 1 shows the relative errors ‖u−uh‖2
‖u‖2 estimated in L2-norm while H and h change diversely.

As predicted, the O(h2) convergence is observed in Table 1. Next, we make a comparison between
our proposed method and the well-known FETI-DP method from the viewpoint of the conditioning
of the related matrices Fη and F . Table 2 informs that the condition number κ(Fη) and the CG
iteration number for convergence remain almost constant when the mesh is refined and the number
Ns of subdomains is increased while keeping the ratio H/h constant. It means that the designed

15



Ns
H
h

η = 106 η = 0
iter. no κ(Fη) iter. no κ(F )

4× 4

4 3 2.0938 14 7.2033
8 7 2.7170 23 2.2901e+1
16 13 2.9243 33 5.9553e+1
32 14 2.9771 48 1.4707e+2

8× 8
4 3 2.0938 18 7.9241
8 7 2.7170 32 2.5668e+1
16 12 2.9245 48 6.7409e+1

16×16 4 3 2.0938 19 7.9461
8 7 2.7170 34 2.6324e+1

Table 2: Comparison between the proposed method (η = 106) and the FETI-DP method (η = 0).

method is a scalable algorithm in view of parallel computation. Moreover, we observe numerically
that the condition number of Fη is bounded by the constant 3 independently of h and H, while
the condition number in the FETI-DP method grows with a increasing H/h (cf. [8, 9]). Unlike
the behavior of κ(Fη), the condition number κ(F ) of the FETI-DP method increases gradually
as the number of subdomains increases even if the ratio H/h is kept constant. In addition, it is
shown in Table 2 that the proposed method is superior to the FETI-DP method in the number
of CG iterations for convergence. In order to reduce the bad effect of η on Kη

rr, we proposed a
preconditioner M optimal with respect to η in section 4.2. By listing the condition number of
Kη

rr and M−1Kη
rr, Table 3 illustrates numerically the performance of the designed preconditioner

M for (Kη
rr)

−1. It is confirmed that the influence of η on κ(Kη
rr) is completely removed after

adopting M . Finally, in order to show the practical performance of the proposed method, we
compare the proposed methods with η = 2 and 106 with both the FETI-DP method and the
preconditioned FETI-DP by Dirichlet preconditioner in terms of the CPU time in seconds. The
penalty parameter η = 2 is an optimal one chosen heuristically by focusing on efficiency in view
of computational cost without introduction of the preconditioner M . All of four algorithms are
implemented on a sequential machine. To highlight their efficiency as parallel solvers, the virtual
wall clock time is presented in Table 4, which is measured appropriately by assuming that each
algorithm is parallelized at the subdomain level. Figure 2 shows that in both cases, the proposed
methods outperform than the FETI-DP methods. In details, it is noted in Table 4 that Fη

with η = 2 and 106 spend only 24% and 15% of the virtual wall clock time for the FETI-DP
method, while on average, they are 1.4 times and 2.5 times faster than the FETI-DP with Dirichlet
preconditioner.

5 Conclusions

In this paper, we proposed a dual substructuring method based on an augmented Lagrangian
with a penalty term. Unlike other substructuring methods, it was proven that without any pre-
condtitioners, the designed method is scalable in the sense that for a large value of the penalty
parameter η, the condition number of the relevant dual system has a constant bound independently
of H and h. In addition, we dealt with some implementational issues. An optimal preconditioner
with respect to η was established in order to increase the ease of use and the practical efficiency of
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Ns = 4× 4 H
h = 4 H

h = 8 H
h = 16

η κ(Kη
rr) κ(M−1Kη

rr) κ(Kη
rr) κ(M−1Kη

rr) κ(Kη
rr) κ(M−1Kη

rr)
0 43.2794 14.8532 228.0254 40.0332 1.1070e+3 104.3459
1 34.5773 11.8232 161.1716 28.7437 7.0562e+2 68.3468

101 91.3072 11.4010 420.1058 28.1835 1.8390e+3 67.6093
102 8.5119e+2 11.3525 3.9824e+3 28.1232 1.7513e+4 67.5325
103 8.4538e+3 11.3475 3.9616e+4 28.1170 1.7430e+5 67.5247
104 8.4480e+4 11.3470 3.9596e+5 28.1164 1.7421e+6 67.5240
105 8.4474e+5 11.3469 3.9593e+6 28.1164 1.7420e+7 67.5239
106 8.4473e+6 11.3469 3.9593e+7 28.1164 1.7420e+8 67.5239
107 8.4473e+7 11.3469 3.9593e+8 28.1164 1.7420e+9 67.5238

Table 3: Performance of preconditioner M for (Kη
rr)−1.

Ns
H
h

virtual wall clock time ‖u−uh‖2
‖u‖2Fη1 Fη2 F F̂−1

D F

4× 4

4 0.61 0.32 1.38 1.16 3.2230e-3
8 1.50 0.88 5.65 1.86 8.0722e-4
16 5.04 4.67 25.57 6.73 2.0188e-4
32 27.02 29.10 203.95 41.48 5.0471e-5

8× 8
4 1.95 0.60 3.95 2.31 8.0691e-4
8 4.20 2.33 16.10 5.67 2.0184e-4
16 14.59 12.05 76.18 18.75 5.0467e-5

16×16 4 3.42 1.24 10.24 5.06 2.0183e-4
8 8.60 4.88 32.66 10.64 5.0457e-5

Table 4: Parallel performance in virtual wall clock time in seconds where η1 = 2 and η2 = 106.
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(a) Ns = 4× 4
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(b) Ns = 8× 8
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(c) Ns = 16× 16

Figure 2: Comparison of four algorithms in the virtual wall clock time in seconds: η = 2 (left) and
η = 106 (right).
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the presented method. For η = 0, the proposed method is reduced to the FETI-DP method which
is one of the most advanced dual substructuring methods. In this view, we compared the proposed
method with the FETI-DP method from many perspectives such as the conditioning of the dual
system, the CG iteration number for convergence, and the virtual wall clock time. According to
the numerical results, the presented method is superior to both of the FETI-DP method and the
preconditioned FETI-DP by the optimal Dirichlet preconditioner.
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