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This paper presents tight wavelet frames with two compactly supported symmetric gener-
ators of more than one vanishing moments in Unitary Extension Principle. We determine
all possible free tension parameters of the quasi-interpolatory subdivision masks whose
corresponding refinable functions guarantee our wavelet frame. In order to reduce shift
variance of the standard discrete wavelet transform, we use the three times oversam-
pling filter bank and eventually obtain a ternary (low, middle, high) frequency scale. In
applications to signal/image denoising and erasure recovery, the results demonstrate re-
duced shift variance and better performance of our wavelet frame than the usual wavelet
systems such as Daubechies wavelets.
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1. Introduction

Since the construction of the orthonomal or biorthogonal wavelet bases in L2(R)
was introduced in the late 1980s, the construction of the wavelet bases has been
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a major subject in many areas such as functional analysis, approximation theory,
variational method, signal/image processing, and so forth. Recently, a redundant
or overcomplete system, called frame, has emerged as an extension of the wavelet
basis because of its flexibility for applications. For practical purposes, recent stud-
ies have focused on finding the fewest number of smooth frame generators with
symmetry and compact support whose affine transforms generate a tight wavelet
frame. Tight wavelet frames with these properties were obtained based on a mul-
tiresolution analysis (MRA) by several studies. The standard tight wavelet frames
can be constructed by use of the Unitary Extension Principle (UEP),14 or more
extended versions.5 8 In Ref. 4, the authors provided a criterion for the existence
of two compactly supported generators and also a constructive proof of the ex-
istence of three symmetric compactly supported generators whose wavelets form
tight frames. We attempt to construct tight wavelet frames with two symmetric
generators of compact support.

The approximation order of an MRA given by the refinable function is impor-
tant for effective approximation to functions with the wavelet system. Two types
of refinable functions of high approximation order with short support, B-splines
and interpolatory refinable functions are used to construct wavelet systems with
high approximation orders. However, these refinable functions have drawbacks with
respect to constructing tight wavelet frames. In the case of B-splines, for the UEP
tight wavelet frames, at least one of the generators has one vanishing moment.4

The vanishing moments are important for effective representation or the compres-
sion of functions in the sense that a wavelet system with higher vanishing moments
is more likely to generate wavelet coefficients with higher sparsity. In the case of
interpolatory refinable functions with compact support, it is not possible for other
refinable functions except for a piecewise linear B-spline to construct a tight wavelet
frame with two symmetric generators. See Ref. 13. In some works these drawbacks
are overcome by relaxing certain conditions. In Ref. 5, to maximize the vanishing
moments of the wavelet frame generators, the authors use the vanishing moment
recovery function in the Oblique Extension Principle, which is not easy to find in
general. In Ref. 1, the authors sacrifice the compact support of the generators for
the construction of a tight wavelet frame using the interpolatory refinable functions.
As a consequence, the filter lengths are not finite.

In this paper, we sacrifice the length of support of the wavelets slightly to
construct tight wavelet frames with two compactly supported symmetric genera-
tors. Instead of B-splines or interpolatory refinable functions, we take the quasi-
interpolatory refinable functions proposed in Ref. 3. The quasi-interpolatory refin-
able functions have approximation orders as high as those of the Deslauriers-Dubuc’s
interpolatory refinable functions,3 and the derived wavelet frame generators have
more than one vanishing moments. In terms of the wavelet filters, we use quasi-
interpolatory subdivision masks, suggested in Ref. 3, as low pass filters instead of
B-spline or interpolatory filters. The quasi-interpolatory subdivision masks have a
free tension parameter to control the shape of the limit functions and the corre-
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sponding refinable functions reproduce polynomials up to the degree corresponding
to the length of the masks. We have to determine the free tension parameter in
each degree to obtain the tight wavelet frames with two symmetric generators. Due
to the computational complexity, we only deal with masks of degrees up to five to
construct our wavelet systems. For the wavelet bases other than the frame, Kim
et al. recently constructed biorthogonal wavelet systems from quasi-interpolatory
subdivision masks and found a general formula for masks of even degrees.11

An important issue in signal and image processing is the shift invariance of the
wavelet transforms. The standard wavelet transform is not shift invariant because
of the down and up sampling process, and thus produces annoying artifacts in
the signal and image processing results. In this paper, we relieve these artifacts
by employing a three times oversampling filter bank, as shown in Figure 2.15 The
three times oversampling filter bank has a band pass channel without down and up
sampling, thus reducing the shift variance to certain extent. We do not use a fully
shift invariant filter bank because it imposes a large time cost and space consuming
redundancy although it presents no artifact. The empirical results of the denoising
and the erasure recovery for the three times oversampling filter bank are satisfactory
although they contain a few artifacts. To use this filter bank, we need three wavelet
frame generators, say ψ1, ψ2, and ψ3. Note that ψ3 in our construction is the half
shift version of ψ2. Therefore, we have essentially two wavelet frame generators ψ1

and ψ2. Additionally, the wavelet systems constructed in this paper have a ternary
frequency scale, which means that the frequency responses of the high and low pass
filters are symmetric about those of the band pass filters. This may be useful in
some applications that demand uniform partitions of the frequency responses of the
filters, for example, audio signal processing, economic time series analysis, and so
on.

As a result, all the possible values of the tension parameter ω guaranteeing the
tight wavelet frame with two symmetric generators are determined and presented
in Table 2. It is very interesting that only particular values of the tension parameter
allow us two symmetric generators. The smoothnesses and approximation orders of
the refinable functions, as well as the vanishing moments of the wavelet frame gen-
erators of the corresponding tension parameter ω’s, are computed and summarized
in Table 5 and 6.

In addition to the construction of tight wavelet frames, some applications to
signal/image denoising and erasure recovery are presented. To measure the per-
formance of our wavelet frame in applications, the standard wavelet systems such
as Daubechies wavelets are employed. In signal and image denoising, signals and
images denoised by our wavelet frame have only a few or no distortions, while the
results by Daubechies wavelet systems have annoying distortions. In terms of er-
rors between original and denoised objects, our wavelet frame presents smaller root
mean square errors than Daubechies wavelet systems. Predictably, this is because
of reduced shift variance and redundancy of our wavelet frame. In erasure recov-
ery, Daubechies wavelet systems do not work since they are not redundant. Only
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redundant wavelet frames as ours can recover erasures of images.
Through the paper, we assume the following terminologies for clarity. The dyadic

dilations 2j/2f(2j ·), j ∈ Z and the integer translations f(· − k), k ∈ Z of a function
f are called affine transforms. We call the family {φj,k := 2j/2φ(2j · −k), ψi,j,k :=
2j/2ψi(2j · −k)} of the affine transforms of the refinable function φ and the mother
wavelet ψi’s the wavelet (resp. framelet) system if the affine transforms of the mother
wavelets constitute a basis (resp. frame) for L2(R). In the case of a wavelet frame,
the mother wavelets are called mother framelets to distinguish them from mother
wavelets whose affine transforms constitute a basis. We also assume that symmetry
addresses in both cases of symmetry and antisymmetry.

2. Construction of Symmetric Tight Wavelet Frames

A tight frame {fk : k ∈ Z} is an overcomplete system for L2(R) which permits the
representation of functions as

f =
∑

k∈Z
〈f, fk〉fk, ∀f ∈ L2(R) (2.1)

where 〈· , ·〉 is the given inner product in L2(R). If a sufficiently regular function
satisfies the refinement equation

φ(x) =
√

2
∑

k∈Z
h0,kφ(2x− k), (2.2)

it is said to be refinable. Given a refinable function, we can construct a tight wavelet
frame {ψi,j,k : i = 1, 2, ..., n, j, k ∈ Z} where ψi,j,k := 2j/2ψi(2j · −k) by defining
mother framelet ψi’s as

ψi(x) :=
√

2
∑

k∈Z
hi,kφ(2x− k), i = 1, 2, ..., n, (2.3)

provided that the filters hi := (hi,k)k∈Z satisfy the UEP condition of Theorem 2.1
below. A function f in L2(R) of the representation (2.4) can have the multiresolution
representations (2.5) and (2.6) as

f =
∑

k∈Z
〈f, φm,k〉φm,k (2.4)

=
∑

k∈Z
〈f, φm−1,k〉φm−1,k +

n∑

i=1

∑

k∈Z
〈f, ψi,m−1,k〉ψi,m−1,k (2.5)

...

=
∑

k∈Z
〈f, φ0,k〉φ0,k +

n∑

i=1

m−1∑

j=0

∑

k∈Z
〈f, ψi,j,k〉ψi,j,k. (2.6)
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The relations (2.2) and (2.3) are equivalent to the Fourier transformed versions

φ̂(ξ) =
1√
2
H0(ξ/2)φ̂(ξ/2), (2.7)

ψ̂i(ξ) =
1√
2
Hi(ξ/2)φ̂(ξ/2), i = 1, 2, ..., n, (2.8)

where Hl(ξ) =
∑

k∈Z hl,ke−ikξ, l = 0, 1, 2, ..., n, called symbols of φ and ψi’s. The
symbols are also represented with z-transform, i.e., Hl(z) =

∑
k∈Z hl,kzk, substi-

tuting z = e−ikξ in the context. Define the symbol matrix H(z) consisting of the
above symbols as

H(z) :=
(

H0(z) H1(z) ... Hn(z)
H0(−z) H1(−z) ... Hn(−z)

)
. (2.9)

Given the symbol H0, we are able to construct tight wavelet frames by determining
the other symbols Hi’s satisfying certain conditions due to the following theorems.

Theorem 2.1. 14 (Unitary Extension Principle) If

H(z)H(1/z)T = 2I, (2.10)

then the family {ψi,j,k : i = 1, 2, ..., n, j, k ∈ Z} constitutes a tight frame for L2(R).

The above theorem provides us with a sufficient condition in order for the family
{ψi,j,k} to be a tight frame for L2(R). The following theorem provides the necessary
and sufficient condition for the existence of the solutions to the matrix equation
(2.10).

Theorem 2.2. 4 The equation (2.10) has a solution if and only if

H0(z)H0(1/z) + H0(−z)H0(−1/z) ≤ 2. (2.11)

For the practical reason, fewer number of compactly supported mother framelets
with symmetry are preferred. The following theorems tell us about the existence
and the criterion for symbols with finite degree, i.e., Laurent polynomials of z.

Theorem 2.3. 4 For a symmetric Laurent polynomial H0, there are three symmet-
ric Laurent polynomial H1, H2, H3 satisfying (2.10).

Theorem 2.4. 13 Let H0 be a Laurent polynomial of degree n satisfying (2.11).
Then two symmetric Laurent polynomials H1 and H2 satisfying (2.10) exist if and
only if all roots of Laurent polynomial

2−H0(z)H0(1/z)−H1(z)H1(1/z) (2.12)

have even multiplicity. Moreover, in this case polynomials H1, H2 of degree at most
n can be chosen.

In this paper, due to the three times oversampling filter bank, we construct com-
pactly supported tight wavelet frames with symmetry from three mother framelets
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(but essentially two), meaning that four Laurent polynomial symbols H0,H1,H2,H3

are required. Note that as already mentioned in the previous section, our tight
wavelet frames are constructed from the essentially two generators ψ1 and ψ2 cor-
responding to the symbols H1 and H2, respectively since ψ3(·) = ψ2(· − 1/2) (or
H3(z) = zH2(z)). The method to determine the symbols is similar to that in the
proof of Theorem 2.3 and that of Ref. 15. We take the quasi-interpolatory subdivi-
sion masks of Ref. 3 as the coefficients of H0 and write H0 as

H0(z) :=
1√
2

n∑

k=0

akzk, (2.13)

where ak’s are the quasi-interpolatory subdivision masks presented in Table 1. As
one can see, the masks are symmetric. Define H1 using H0 as

H1(z) :=

{
znH0(−1/z) if n is odd,

zn+1H0(−1/z) if n is even,
(2.14)

where n is the degree of H0. Also, define H3 using H2 as

H3(z) := zH2(z). (2.15)

Then, the matrix equation (2.10) is reduced as

H0(z)H0(1/z) + H0(−z)H0(−1/z) + 2H2(z)H2(1/z) = 2. (2.16)

Therefore, H2 is determined by the spectral factorization of

A(z) := 2−H0(z)H0(1/z)−H0(−z)H0(−1/z) (2.17)

provided that the condition (2.11) and the criterion in Theorem 2.4 are satisfied. Due
to our construction method and symmetry of the subdivision masks, the frequency
spectra of symbols are ternary as Figure 1. In the aspect of the filter bank, our filter

Π

����

4
Π

����

2
3 Π
��������

4
Π

0.5

1

1.5

2

Fig. 1. Frequency spectra |H0|2(left), |H1|2(right), and |H2|2(middle).

system has three times oversampling rate as Figure 2. Since the third channel does
not perform the down and up sampling, it reduces the shift variance of the filter
system.
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Fig. 2. Filterbank with three times oversampling rate.

3. Results from Quasi-Interpolatory Subdivision Masks

We show the practical computations to obtain the framelet filters. Due to the com-
putational complexity, the computations are restricted to the case of the degree
from 1 to 5 of the quasi-interpolatory subdivision masks. Table 1 from Ref. 3 shows
the subdivision masks of the degree up to 5.

Table 1. The quasi-interpolatory subdivision masks of the degree from 1 to
5.

Degree Mask

1 [ω, 1− ω, 1− ω, ω]

2 [ω, 1
2
, 1− 2ω, 1

2
, ω]

3 [−ω,− 3
32

+ ω, 5
32

+ 3ω, 15
16
− 3ω, 15

16
− 3ω, 5

32
+ 3ω,− 3

32
+ ω,−ω]

4 [−ω,− 1
16

, 4ω, 9
16

, 1− 6ω, 9
16

, 4ω,− 1
16

,−ω]

5 [ω, 35
2048

− ω,− 45
2048

− 5ω,− 63
512

+ 5ω, 105
512

+ 10ω, 945
1024

− 10ω,
945
1024

− 10ω, 105
512

+ 10ω,− 63
512

+ 5ω,− 45
2048

− 5ω, 35
2048

− ω, ω]

As one can see, there is a free tension parameter ω in the mask of each degree.
Our task is to determine the parameter ω which guarantees the symmetric tight
wavelet frame. We present the actual computation by the aid of the mathematical
software, MATHEMATICA only for the case of the degree 5. The other cases are
similar and can be done even by hand. Firstly, define the symbol H0 from the masks
of the degree 5 as

H0(z) =
1√
2
(ω + (

35
2048

− ω)z + (− 45
2048

− 5ω)z2 + (− 63
512

+ 5ω)z3

+ (
105
512

+ 10ω)z4 + (
945
1024

− 10ω)z5 + (
945
1024

− 10ω)z6

+ (
105
512

+ 10ω)z7 + (− 63
512

+ 5ω)z8 + (− 45
2048

− 5ω)z9

+ (
35

2048
− ω)z10 + ωz11). (3.1)

The Laurent polynomial A(z) defined by H0(z) in the previous section can be
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factorized as

A(z) =
1

2097152z10
(z − 1)6(z + 1)6((4194304ω2 − 71680ω)z8

+ (−16777216ω2 + 352256ω + 1575)z6

+ (25165824ω2 − 2658304ω − 16590)z4

+ (−16777216ω2 + 352256ω + 1575)z2

+ (4194304ω2 − 71680ω)). (3.2)

Determine the parameter ω which guarantees that A(z) is nonnegative for z = e−iξ

as the following.
Factorize A(z) as

A(z) = (2ω2 − 35
1024

ω)(z10 +
1

z10
) + (−20ω2 +

191
512

ω +
1575

2097152
)(z8 +

1
z8

)

+ (90ω2 − 2855
1024

ω − 3255
262144

)(z6 +
1
z6

) + (−240ω2 +
1405
128

ω +
31185
524288

)(z4 +
1
z4

)

+ (420ω2 − 12251
512

ω − 36225
262144

)(z2 +
1
z2

) + (−504ω2 +
7885
256

ω +
189525
1048576

), (3.3)

change the variable with zn + 1
zn = 2 cos nξ as

= (4ω2 − 35
512

ω) cos 10ξ + (−40ω2 +
191
256

ω +
1575

1048576
) cos 8ξ

+ (180ω2 − 2855
512

ω − 3255
131072

) cos 6ξ + (−480ω2 +
1405
64

ω +
31185
262144

) cos 4ξ

+ (840ω2 − 12251
256

ω − 36225
131072

) cos 2ξ + (−504ω2 +
7885
256

ω +
189525
1048576

), (3.4)

reform the equation as

= −2048(1− cos2 ξ)5ω2 + (1− cos2 ξ)3(35(1− cos2 ξ)2 + 8(1− cos2 ξ) + 64)ω

+
105
8192

(1− cos2 ξ)3(15(1− cos2 ξ) + 32), (3.5)

and change the variable with y = 1− cos2 ξ as

= ((−2048ω2 + 35ω)y2 + (8ω +
1575
8192

)y + (64ω +
105
256

))y3. (3.6)

By inspecting the zeros of the last polynomial where 0 ≤ y ≤ 1, we obtain the range
of the parameter ω such that A(z) is nonnegative as

− 21
4096

≤ ω ≤ 235
4096

. (3.7)

Next, we have to determine the parameter ω which admits that all the zeros of A(z)
have even multiplicities. As one can see in the equation (3.2), it is enough to verify
that all the zeros of the following polynomial have even multiplicities instead of the
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whole A(z).

p(z) := (4194304ω2 − 71680ω)z8 + (−16777216ω2 + 352256ω + 1575)z6

+ (25165824ω2 − 2658304ω − 16590)z4 + (−16777216ω2 + 352256ω + 1575)z2

+ (4194304ω2 − 71680ω) (3.8)

Since the polynomial p(z) of the degree 8 is even, it is considered as a polynomial of
z2 of the degree 4. In this case, it must be factorized into the multiple of two perfect
square forms of quadratic polynomials. By this reasoning, the following lemma can
be proved easily for the case of the symmetric polynomial p(z) as ours.

Lemma 3.1. Let p(z) be the symmetric even polynomial defined by

p(z) = az8 + bz6 + cz4 + bz2 + a, (a 6= 0). (3.9)

Assume that b 6= 0. Then, all the zeros of p(z) have even multiplicities if and only
if

b2 − 4ac = −8a2. (3.10)

In this case, the zeros are

z = ±

√√√√− b

4a
±

√(
b

4a

)2

− 1. (3.11)

If b = 0, then all the zeros of p(z) have even multiplicities if and only if

c = ±2a. (3.12)

In this case, the zeros are

z =

{
±
√

2
2 ±

√
2

2 i if c = 2a,

{±1,±i} if c = −2a.
(3.13)

By Lemma 3.1, we obtain the parameter ω’s as

ω =
25(13± 5

√
37)

65536
,

21
32768

. (3.14)

Finally, we have the parameter ω’s as 25(13+5
√

37)
65536 and 21

32768 which are contained
in the interval (3.7). The symbol H2 is then obtained by the spectral factorization
of A(z). Table 2 shows all the ω’s of the degree from 1 to 5 which permits our
symmetric tight wavelet frames. As one can see in Table 2, the resulting free tension
parameters are of not numerical but algebraic forms except for the case of degree
5. One might obtain algebraic form even for the case of degree 5 after the tedious
and complex computation. Also, it is very interesting that only particular values of
parameters guarantee our wavelet frame.

Table 3 and 4 presents the filters in the case of the degree from 1 to 5. Note that
the filter h3 := (h3,k)n

k=0 which is not seen in Table 3 and 4 is just the one shift
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Table 2. The tension parameter ω’s of the degree from 1 to 5 guaranteeing
our symmetric tight wavelet frames.

Degree ω

1 [0, 1)

2 1±√2
4

3 − 1
64

, 15
64

4 n/a

5
25(13+5

√
37)

65536
, 21
32768

version of the filter h2 := (h2,k)n
k=0. By this reason, the third channel in the filter

bank does not have the down and up sampling process.
Figure 13 presents some of the refinable function φ’s and the mother framelets

ψ1’s and ψ2’s in each degree with the corresponding tension parameter ω’s. Note
that the mother framelet ψ3 which is not seen in Figure 13 is the half shift version
of ψ2.

Table 5 shows the smoothness and the vanishing moments of the refinable func-
tions and the framelets with various parameters in the degree L = 1, 2, 3, 4, and
5. Note that the maximum smoothness in each degree is included as a reference.
Table 6 shows the approximation orders of the refinable functions and the vanishing
moments of our framelets with various parameters in the degree L = 1, 2, 3, and 5.

4. Applications

In this section, the applications of our framelet systems to signal and image pro-
cessing are provided. To determine the performance of our framelet systems in the
applications, Daubechies’s orthonomal and biorthogonal wavelet systems are em-
ployed. Specifically, we compare the framelet system (F5) generated by the tension
parameter ω = 25(13+5

√
37)

65536 in the case of the degree 5 of the subdivision mask with
Daubechies’s orthonomal wavelet 3 (D3) and biorthogonal wavelet (7,9) (D(7,9))
systems. D3 and D(7,9) have the vanishing moments of 3 and 4, respectively, while
F5 has that of 3. In spite that D(7,9) has the different vanishing moment, it is
employed due to its popularity in many applications.

4.1. Signal denoising

For signal denoising, we use a real data as the original signal extracted from a 2D-
image named “Peppers.jpg”. The original signal is presented in Figure 3(a). The
white Gaussian noises with the standard deviation 10 are scattered on the original
signal to generate the noised signal as shown in Figure 3(b). The hard threshold
method is used to cut off the detail coefficients up to the fifth resolution level. In
every resolution level, the fixed amount of the threshold is employed for cutting off
the detail coefficients. Note that since our framelets are not normalized, the amount
of the threshold needs to be multiplied by the norms of the framelet filters. The
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denoised signal is reconstructed from the resulting coefficients. Figure 4 shows the
denoised signals for threshold 25 by different wavelet systems. One can recognize
that the denoised signal by F5 is smoother than the others. For each threshold,
the averaged root mean square error (RMSE) of 20 trials between the original and
the denoised signals are presented in Figure 5. As Figure 5 shows, F5 presents the
best performance among the three competitors. The reason is because our framelet
systems have intermediate frequency band, which yield ternary frequency scales.
Our framelet systems have more chances to cut off the detail coefficients containing
the noises than Daubechies’s wavelet systems without intermediate frequency band.
On the other hand, from the denoised signals in Figure 4, one can recognize Gibbs
phenomena, which occurs at the location of the discontinuities due to the lack of
the shift invariance of the wavelet systems. The denoised signal by F5 also presents
Gibbs phenomena. However, the magnitudes of them are remarkably smaller than
those of D3 and D(7,9), which is resulted from the less shift variance of our framelet
systems.

0 100 200 300 400 500 600

−20

0

20

40

60

80

100

120
Original Signal

(a) Original signal

0 100 200 300 400 500 600

−20

0

20

40

60

80

100

120
Noised Signal

(b) Noised signal

Fig. 3. The original and the noised signals with white Gaussian noises of the standard deviation
10.

4.2. Image denoising

In the image denoising, all the methods are the same as those of the signal denois-
ing except that the soft threshold method and the white Gaussian noise with the
standard deviation 20 are employed. Figure 6 shows the original image of Lenna of
size 512 by 512 pixels and the noised one. The graph of the peak signal to noise
ratio (PSNR) vs threshold of the denoised images are shown in Figure 7. The graph
says that the denoised image with threshold 20 using F5 has the highest PSNR
among the others. More precisely, The highest PSNR’s from the D3, D(7,9), and
F5 are 28.677, 28.608, and 28.995 dB respectively. Figure 8 shows the denoised im-
ages with the highest PSNR’s from each wavelet systems. The denoised images look
very similar to each other. However, the close lookup images in Figure 9 shows the



January 19, 2007 15:22 WSPC/WS-IJWMIP IJWMIP-quasiframe

12 B. Jeong, M. Choi, and H. O. Kim

0 100 200 300 400 500 600

−20

0

20

40

60

80

100

120
Denoised Signal Using Daubechies 3

(a) Denoised signal by D3
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(b) Denoised signal by D(7,9)
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(c) Denoised signal by F5

Fig. 4. The denoised signals using D3, D(7,9), and F5, from top to bottom respectively .
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Fig. 5. The root mean square error vs threshold of D3, D(7,9), and F5.

differences among three images. The denoised images by D3 and D(7,9) have Gibbs
phenomena at the edges of Lenna’s hat, while the denoised image by F5 does not.
This explains that F5 has smaller shift variance than D3 and D(7,9). On the other
hand, although the denoised images in Figure 8 have the highest PSNR’s, they still
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present a few noises so that one might want to see the more denoised images. It
is noticed that the larger threshold can make the denoised image blurred. Thus,
we must choose the adequate threshold to prevent the denoised image from the
blurring effect. Figure 10 shows the denoised images with the thresholds 50, 50, and
35 by D3, D(7,9), and F5, respectively. Again Figure 11 shows the close lookups
of Figure 10. One can recognize that the images in Figure 11 are almost noiseless.
However, the denoised images by D3 and D(7,9) still have Gibbs phenomena at the
edges of Lenna’s hat. As a result, F5 can denoise the image more efficiently than D3

and D(7,9) without Gibbs phenomena due to reduced shift variance and redundant
frequency scales of our wavelet frames.

Original Image
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(a) Original image

Noised Image
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(b) Noised image

Fig. 6. The original and the noised images with white Gaussian noises of the standard deviation
20.
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Fig. 7. The PSNR’s of the denoised images by D3, D(7,9), and F5, respectively.
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(a) Denoised image by D3
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(b) Denoised image by D(7,9)
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(c) Denoised image by F5

Fig. 8. The denoised images of the highest PSNR’s with the threshold 30, 30, and 20 by D3, D(7,9),
and F5 , respectively.

4.3. Erasure recovery

In this section, the erasure recovery of an image is provided. Note that the or-
thonomal and biorthogonal wavelet systems cannot recover the erasures since the
representations of functions via these systems are unique, i.e., not redundant. There-
fore, the erasure recovery is allowed only to redundant framelet systems. In other
words, for a framelet system to have the erasure recovery property, the redundant
frequency spectrum as the ternary frequency scale of our framelet systems is needed.
In the same manner as the denoising, F5 is tested. The original image is Boat of
size 512 by 512 pixels as shown in Figure 12(a). To put some erasures in the image,
the original image is decomposed up to the fourth level and the randomly chosen
40% of all the wavelet coefficients is set to be zeros meaning that they are erased.
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(a) Denoised image by D3
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(b) Denoised image by D(7,9)
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(c) Denoised image by F5

Fig. 9. The close lookups of the denoised images of the highest PSNR’s with the threshold 30, 30,
and 20 by D3, D(7,9), and F5 , respectively.

Here, we assume that we know positions of the erased coefficients. Then, they are
reconstructed to an image as presented in Figure 12(b). The PSNR of the erased
image is 9.730dB. The recovery starts with the erased image. Firstly, decompose the
erased image up to the fourth level. Next, wavelet coefficients of the original image
excluding ones in the erased positions are copied to the corresponding positions of
the present coefficients. After that, they are reconstructed to an image. These three
steps are repeated certain times to obtain the recovered image. The result is shown
in Figure 12(c). The PSNR of the recovered image is 39.991 dB. As one can see, the
recovered image looks very similar to the original one and contain all the critical
features like stays and anchors of the boats. Due to the redundant nature of our
framelet systems, the erasures of the wavelet coefficients are recovered better than
expected in spite of the loss of the 40% of them.
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(a) Denoised image by D3
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(b) Denoised image by D(7,9)
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(c) Denoised image by F5

Fig. 10. The denoised images with the threshold 50, 50, and 35 by D3, D(7,9), and F5 , respectively.

5. Conclusion

Tight wavelet frames with two compactly supported symmetric generators are
preferable wavelet systems in theory and application since they have minimal num-
ber of redundant generators with necessary properties. To construct these wavelet
frames based on MRA with high approximation orders, refinable functions with
high approximation orders are needed. For this, B-splines and interpolatory refin-
able functions are good candidates. However, since B-splines guarantee at least one
mother framelet with one vanishing moment in the UEP construction, and there
are no other interpolatory refinable functions of compact support guaranteeing two
symmetric mother framelets except for the piecewise linear B-spline, some extended
methods are required. Several studies have employed rather difficult approaches to
do this.1 5 In Ref. 1, the authors sacrificed the compact support of the wavelets.
In the present paper, sacrificing the length of support of the wavelets slightly, we
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(c) Denoised image by F5

Fig. 11. The close lookup of the denoised images with the threshold 50, 50, and 35 by D3, D(7,9),
and F5 , respectively.

constructed the tight wavelet frame based on MRA with the same approximation
orders as an interpolatory MRA. We used the quasi-interplatory subdivision masks
presented in Ref. 3 as low pass filters of our framelet systems. We determined all
possible free tension parameters of the quasi-interpolatory subdivision masks to
construct our framelet systems. Due to computational complexity, we restricted
the degree of the subdivision masks to five. For less shift variance of the wavelet
transform, we employed the three times oversampling filter bank proposed in Ref.
15 and consequently made our wavelet filters have ternary frequency scales. After
constructing the wavelet frames, applications to signal/image denoising and erasure
recovery were provided. In order to measure the performance of our wavelet frame,
we compared our results with those by Daubechies’s orthonormal and biorthogonal
wavelet systems. The performance of our wavelet frame was better than that yielded
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(a) Original image
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(b) Erased image
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(c) Recovered image

Fig. 12. The original, erased, and recovered images from the erasures of 40% by F5.

by Daubechies’s wavelet systems for all applications presented in this paper due to
reduced shift variance and redundant ternary frequency scale of our wavelet frame.
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Table 3. Filters in the case of the degree from 1 to 5.

Degree ω h0 h1 h2 Factor

1 [0, 1) ω −ω
√

ω(1− ω) 1√
2

1− ω 1− ω 0

1− ω −1 + ω
√

ω(1− ω)
ω ω 0

2 1−√2
4

√
2− 2 0 2−√2 1

8
2
√

2
√

2− 2 0

2
√

2 + 4 −2
√

2 0

2
√

2 2
√

2 + 4 0√
2− 2 −2

√
2 −2 +

√
2

0
√

2− 2 0
1+
√

2
4

√
2 + 2 0 2 +

√
2 1

8
2
√

2
√

2 + 2 0

2
√

2− 4 −2
√

2 0

2
√

2 2
√

2− 4 0√
2 + 2 −2

√
2 −2−√2

0
√

2 + 2 0

3 − 1
64

1 −1
√

14
√

2
128

−7 −7 0

7 −7 −√14
63 63 0

63 −63 −√14
7 7 0

−7 7
√

14
1 1 0

15
64

−15 15 3
√

30
√

2
128

9 9 0

55 −55 −3
√

30
15 15 0

15 −15 −3
√

30
55 55 0

9 −9 3
√

30
−15 −15 0

4 n/a
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Table 4. (Continued) Filters in the case of the degree from 1 to 5.

Degree ω h0 h1 h2 Factor

5
25(13+5

√
37)

65536
0.01171043446466 −0.01171043446466 0.00295927283385

0.00037390994039 0.00037390994039 0
−0.07408918655834 0.07408918655834 −0.12196386541717
−0.02845510739303 −0.02845510739303 0
0.26211647750710 −0.26211647750710 0.35109523208227
0.53545025322578 0.53545025322578 0
0.53545025322578 −0.53545025322578 −0.35109523208227
0.26211647750710 0.26211647750710 0
−0.02845510739303 0.02845510739303 0.12196386541717
−0.07408918655834 −0.07408918655834 0
0.00037390994039 −0.00037390994039 −0.00295927283385
0.01171043446466 0.01171043446466 0

21
32768

0.00045316291519 −0.00045316291519 0.00324678921738

0.01163118148985 0.01163118148985 0
−0.01780282881100 0.01780282881100 −0.07560380606177
−0.08474146514037 −0.08474146514037 0
0.14954376201241 −0.14954376201241 0.21057747209842
0.64802296872046 0.64802296872046 0
0.64802296872046 −0.64802296872046 −0.21057747209842
0.14954376201241 0.14954376201241 0
−0.08474146514037 0.08474146514037 0.07560380606177
−0.01780282881100 −0.01780282881100 0
0.01163118148985 −0.01163118148985 −0.00324678921738
0.00045316291519 0.00045316291519 0
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Fig. 13. Some of the refinable function φ’s and the mother framelets ψ1’s and ψ2’s. In each row,
left : φ, middle : ψ1, right : ψ2. The first row : degree 1 with ω = 1

4
, the second row : degree

2 with ω = 1−√2
4

, the third row : degree 3 with ω = − 1
64

, and the fourth row : degree 5 with

ω =
25(13+5

√
37)

65536
.
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Table 5. The Hölder continuity of the refinable functions with various tension
parameters in the degree L = 1, 2, 3, 4, and 5. The parameters which provide the
maximum smoothness in each degree are included.

Degree Tension parameter ω Hölder continuity

1 1
16

0.19264507794240
1
8

0.41503749927884
1
4

2∗
1
2

1
3
4

0.41503749927884
7
8

0.19264507794240

2 1−√2
4

0.5
1
8

3∗
1+
√

2
4

0.5

3 - 1
64

2.67807190511264
5

128
2.83007499855769∗

15
64

0.24511249783653

4 3
128

3.67807190511264

5 21
32768

2.16993910723648
63

8192
4.49220535980130∗

25(13+5
√

37)
65536

3.09395033834313

* : the maximum smoothness in each degree.

Table 6. The approximation order of the refinable functions and the vanishing mo-
ments of our framelets with various parameters in the degree L = 1, 2, 3, and 5.

Degree Tension parameter ω Approximation order of Vanishing moments of
φ ψ1 ψ2 ψ3

1 1
16

1 1 1 1
1
8

1 1 1 1
1
4

3 3 1 1
1
2

1 1 1 1
3
4

1 1 1 1
7
8

1 1 1 1

2 1−√2
4

2 2 1 1
1+
√

2
4

2 2 1 1

3 - 1
64

3 3 2 2
15
64

3 3 2 2

5 21
32768

5 5 3 3
25(13+5

√
37)

65536
5 5 3 3




