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Introduction of a Symmetric Tight Wavelet Frame
to Image Fusion Methods Based on Substitutive

Wavelet Decomposition
Myungjin Choi

Abstract— A useful technique in various applications of remote
sensing involves the fusion of panchromatic and multispectral
images. Wavelet-based approaches to image fusion generally pro-
duce high-quality spectral content in fused images. However, the
spatial resolution obtained by most wavelet-based methods is less
than that obtained by the intensity-hue-saturation (IHS) method.
Recent studies show that if an undecimated discrete wavelet
transform (DWT) is used for image fusion, the spatial resolution
of the fused images can be as good as that of images obtained by
the IHS method. This effect occurs because an undecimated DWT
is exactly shift-invariant. In this paper, the author introduces
a symmetric tight wavelet frame to image fusion methods that
are based on substitutive wavelet decomposition. The introduced
tight wavelet frame transform is nearly shift-invariant with
desired properties such as wavelet smoothness, short support,
and symmetry. The experimental results show the possibility as
an alternative DWT approach for image fusion. In addition, the
author proposes a fast algorithm for an improved IHS method
introduced by González-Aud́ıcana et al. The proposed approach
enables a fast, easy, and extendable implementation. Hence, for
the fusion of IKONOS panchromatic and multispectral images,
the near-infrared band of IKONOS may be included in the
definition of the intensity component. This approach produces
satisfactory results, both visually and quantitatively.

Index Terms— Image fusion, intensity-hue-saturation trans-
form, multiresolution analysis, tight wavelet frame, IKONOS
image, wavelet transform.

I. I NTRODUCTION

T HE TECHNIQUE of fusing a panchromatic (Pan) image
that has a high-spatial and low-spectral resolution with

multispectral (MS) images that have a low-spatial and high-
spectral resolution is very useful in many remote sensing
applications that require both high-spatial and high-spectral
resolution, especially for GIS-based applications.

An image that has been well fused by an effective fusion
technique is useful for not only increasing the capability of
humans to interpret the image but also improving the accuracy
of the classification [1]. Moreover, a well-fused image gives
a visually beautiful color image, especially for visualization
purposes [2].

Many image fusion techniques and software tools have
been developed for specific applications. Of the hundreds of
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image fusion techniques, the best known are the intensity-
hue-saturation (IHS) method, principal component analysis,
arithmetic combinations, and wavelet-based fusion methods
[2].

Wavelet-based fusion methods, in particular, which are
widely used to fuse images, are based on multiresolution
analysis. The wavelet approach preserves the spectral char-
acteristics of MS images better than the IHS method. In
general, however, images fused by wavelet-based methods
have much less spatial information than images fused by the
IHS method. Nonetheless, recent studies have shown that if
an undecimated discrete wavelet transform (DWT) is used
instead of the critically sampled DWT, the spatial resolution
of fused images can be as good as the resolution of images
fused with the IHS method. An undecimated DWT, which is
a shift-invariant form of the DWT, can be implemented by
removing the down-sampling operations in the usual DWT
implementation. Undecimated DWTs can thereby avoid some
of the artifacts that arise when a critically sampled DWT is
used for image fusion [3]–[9].

Researchers have recently discussed and analyzed the the-
ory of frames and oversampled filterbanks [10]–[17]. As is
well known, the critically sampled DWT does not allow for
symmetry, except for the Haar wavelet. In addition, because
of the critical sampling, orthogonal filters suffer from a
pronounced lack of shift invariance. The desirable properties
can be achieved through the design of tight frame filterbanks,
of which orthogonal filters are a special case. In contrast
to orthogonal filters, tight frame filters have a redundancy
that allows for an approximate shift invariance due to the
dense plane of the time scale. Tight frame filterbanks are also
shorter and result in smoother scaling and wavelet functions,
in addition to producing symmetry [17]. In the next chapter,
the design of a three-band symmetric tight frame filterbank
will be introduced.

Wavelet-based fusion methods are not efficient enough to
quickly merge massive volumes of data from new satellite im-
ages because of their high computational complexity. Hence,
an advanced fusion scheme is needed, particularly a scheme
with a fast computing capability and one which can obtain
a high spatial quality and preserve spectral information. The
author therefore introduce a fast algorithm for the substitutive
wavelet on the intensity (SWI) method that was recently in-
troduced by Gonźalez-Aud́ıcana et al. [7]. In the SWI method,
multiresolution wavelet decomposition is used to execute the
detailed extraction phase, and the IHS transform is followed
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to inject the spatial detail of a Pan image into an MS image.
This approach performs significantly better than other wavelet-
based methods [7], [9].

One disadvantage of fusion methods that are based on the
IHS transform is that they can only be applied to three-band
RGB compositions. Therefore, the fast IHS method (FIHS)
introduced by Tu et al. [18] was considered in this paper.
Aside from its fast computing capability for fusing images, this
method can extend traditional three-order transformations to
an arbitrary order. In addition, in the SWI method, Gonzalez-
Audicana et al. applied the wavelet transform to both the inten-
sity image and the Pan image and then performed an inverse
wavelet transform to a set composed of the low-frequency
version (or the smoothed plane) of the wavelet-transformed
intensity image and the sum of the high-frequency versions
(or the sum of wavelet planes) of the wavelet-transformed Pan
image. This is to add the spatial detail information of the Pan
image into the intensity image. To simplify this procedure,
a wavelet transform was used to directly extract detailed
information from the difference image of the Pan image and
the intensity image. As a result, we could easily obtain fused
images with the fast scheme of the SWI method; We simply
added the detailed information extracted from the difference
image of the Pan image and the intensity image to each MS
image. The fast SWI (FSWI) scheme is much simpler and
faster than the SWI method. Moreover, the FSWI scheme is
theoretically the same as the SWI method.

In contrast, the most popular wavelet transforms for image
fusion are Mallat’s algorithm and thèa trous algorithm.
Mallat’s algorithm is an orthogonal, decimated, nonredundant
DWT algorithm, but it is nonsymmetric (except for the Haar
wavelet) and non-shift-invariant. Thèa trous algorithm is
a symmetric, shift-invariant DWT algorithm, but it is non-
orthogonal, undecimated and redundant. The author therefore
introduce, as an alternative approach to the two popular DWTs,
a symmetric, nearly shift-invariant, decimated DWT algorithm
that is nonorthogonal and redundant (though only about twice
as redundant as Mallat’s algorithm). We call the critically
sampled Mallat’s algorithm the DWT [19]; the undecimated
à trous DWT the ADWT [20]; and the introduced twice-
redundant DWT the 2XDWT [21].

To verify the 2XDWT for image fusion, the fusion of an
IKONOS Pan image and an MS image was considered. In
addition, the spatial and spectral quality of the resulting images
with the five estimators was analyzed.

II. THE CONSTRUCTION OF A SYMMETRIC TIGHT
WAVELET FRAME BASED ON A THREE-BAND

FILTERBANK

As is well known, except for the Haar filterbank, two-band
finite impulse response (FIR) orthogonal filterbanks do not al-
low for symmetry. In addition, the imposition of orthogonality
for the two-band FIR filterbanks requires relatively long filter
support for such properties as a high level of smoothness in
the resulting scaling function and wavelets, as well as a high
approximation order. Symmetry and orthogonality can both be
obtained if the filterbanks have more than two bands (see [22]

Fig. 1. A three-band perfect reconstruction filterbank

for more details). Furthermore, due to the critical sampling,
orthogonal filters suffer from a pronounced lack of shift invari-
ance, though the desirable properties can be achieved through
the design of tight frame filterbanks, of which orthogonal
filters are a special case. In contrast to orthogonal filters,
tight frame filters have a level of redundancy that allows
for the approximate shift invariance behavior caused by the
dense time-scale plane. Besides producing symmetry, tight
frame filterbanks are shorter and result in smoother scaling
and wavelet functions. For more information on the basic
concepts of frame theory and oversampled filterbanks, refer
to references [10]–[17]. In this section, the construction of
a symmetric tight wavelet frame based on a three-band tight
frame filterbank will be briefly introduced (see [21] and [23]
for more details). The results and an example will be also
provided.

A. A Symmetric Tight Wavelet Frame with Two Generators

1) PR Conditions and Symmetry Condition:The PR con-
ditions for the three-band filterbank, which are illustrated in
Fig. 1, can be obtained by the following two equations:

2∑

i=0

Hi(z)Hi(z−1) = 2 (1)

2∑

i=0

Hi(−z)Hi(z−1) = 0 (2)

The PR conditions can also be written in matrix form as

HT (z)H(z−1) = I, (3)

where

H(z) =




H0(z) H0(−z)
H1(z) H1(−z)
H2(z) H2(−z)


 .

Also, if h0(n) is compactly supported, then a solution
{h1(n), h2(n)} to Eq.(3) exists if and only if

|H0(z)|2 + |H0(−z)|2 < 2, |z| = 1. (4)

A wavelet tight frame with only two symmetric or antisym-
metric wavelets is generally impossible to obtain with a com-
pactly supported symmetric scaling function,φ(t). However,
Petukhov states a condition that the lowpass filterh0(n) must
satisfy so that this becomes possible [24]. Therefore, ifh0(n)
is symmetric, compactly supported, and satisfies Eq.(4), then
an (anti)symmetric solution{h1(n), h2(n)} to Eq.(3) exists if
and only if all the roots of

2−H0(z)H0(z−1) + H0(−z)H0(−z−1) (5)

have even multiplicity.
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Fig. 2. The frequency responses ofh0, h1, andh2 in the example

2) CaseH2(z) = H1(−z): The goal is to design a set of
three filters that satisfy the PR conditions in which the lowpass
filter, h0(n), is symmetric and the filtersh1(n) andh2(n) are
each either symmetric or antisymmetric. There are two cases.
Case I denotes the case whereh1(n) is symmetric andh2(n)
is antisymmetric. Case II denotes the case whereh1(n) and
h2(n) are both antisymmetric. The symmetry condition for
h0(n) is

h0(n) = h0(N − 1− n), (6)

whereN is the length of the filterh0(n).
We dealt only with Case I of even-length filters. Solutions

for Case I can be obtained from solutions whereh2(n) is
a time-reversed version ofh1(n) (and where neither filter is
(anti)symmetric).

To show this, suppose thath0(n), h1(n), andh2(n) satisfy
the PR conditions and that

h2(n) = h1(N − 1− n). (7)

Then, by defining

hnew
1 =

1√
2
(h1(n) + h2(n− 2d)), (8)

hnew
2 =

1√
2
(h1(n)− h2(n− 2d)) with d ∈ Z, (9)

the filtersh0, h
new
1 , andhnew

2 also satisfy the PR conditions,
and hnew

1 and hnew
2 are symmetric and antisymmetric as

follows:

hnew
1 (n) = hnew

1 (N2 − 1− n),
hnew

2 (n) = hnew
2 (N2 − 1− n),

whereN2 = N + 2d.
We state main results of the paper [21] without the proof.

The filtersh0(n), h1(n), andh2(n) with symmetries in Eq.(6)
and Eq.(7) satisfy the PR conditions if polyphase components
of the filters are given by

H0,0(z) = z−M/2
√

2A(z)B(z−1), (10)

H1,0(z) = A2(z), (11)

H1,1(z) = −B2(z), (12)
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Fig. 3. The symmetric scaling function,φ(t), and the two waveletsψ1(t)
andψ2(t) of the example

TABLE I

COEFFICIENTS FOR THE EXAMPLE

n h0(n) h1(n) h2(n)

0 0.00069616789827 -0.00014203017443 0.00014203017443

1 -0.02692519074183 0.00549320005590 -0.00549320005590

2 -0.04145457368920 0.01098019299363 -0.00927404236573

3 0.19056483888763 -0.13644909765612 0.07046152309968

4 0.58422553883167 -0.21696226276259 0.13542356651691

5 0.58422553883167 0.33707999754362 -0.64578354990472

6 0.19056483888763 0.33707999754362 0.64578354990472

7 -0.04145457368920 -0.21696226276259 -0.13542356651691

8 -0.02692519074183 -0.13644909765612 -0.07046152309968

9 0.00069616789827 0.01098019299363 0.00927404236573

10 0 0.00549320005590 0.00549320005590

11 0 -0.00014203017443 -0.00014203017443

where

A(z)A(z−1) = 0.5 + 0.5U(z),

B(z)B(z−1) = 0.5− 0.5U(z),

U(z)U(z−1) = 1− 2H0,0(z)H0,0(z−1), M = N/2− 1,

and Hi,l(z) =
∑

n

hi(2n− l)z−n for i, l = 0, 1.

3) Filter Design: First, obtain a lowpass filter,h0(n), which
has an even-length and which satisfies the symmetric condition
of Eq.(5). The design procedure is as follows:

1) Knowing H0(z) and, thusH0,0(z), use spectral factor-
ization to findU(z) from 1− 2H0,0(z)H0,0(z−1).

2) Find A(z) andB(z) from H0,0(z) andU(z) by using
factorization and root selection.

3) FindH1,0(z) andH1,1(z) by using Eq.(11) and Eq.(12),
respectively.

4) Find H1(z) andH2(z) by usingH1,0(z), H1,1(z) and
Eq.(7).

5) Obtain (anti)symmetric waveletsh1 and h2 by using
Eq.(8) and Eq.(9).

4) Example:To obtain a lowpass filter,h0(n), with a min-
imal length, the researchers in [25] and [26] used a maximally
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flat lowpass even-length FIR filter with the following transfer
function:

Fm,n(z) =
(

1 + z−1

2

)(
z + 2 + z−1

4

)m

n∑

k=0

(
m + k − 0.5

k

)(−z + 2− z−1

4

)k

.

Unfortunately, although the setting ofH0(z) := Fm,n(z) gives
an H0(z) that does not satisfy Eq.(5), we can use a linear
combination of variousFm,n(z) values to obtain aH0(z) filter
that does satisfy Eq.(5). For example, if we use a setting of

H0(z) = z−4
√

2 (αF2,1(z) + (1− α)F3,1(z)) , (13)

then, for special values ofα, H0(z) satisfies Eq.(5).
Figure 2 shows the filters forα = 1.0720. Figure 3 shows

the resulting scaling function and wavelets. Table I lists the
coefficients of the filtersh0, h1 andh2.

5) Two-Dimensional Extension:The 2-D extension can be
obtained by alternating between rows and columns, as is
usually done for typical DWTs. The corresponding filter bank,
which is illustrated in Fig. 4, is iterated on the lowpass branch
(the first branch).

III. FAST MULTIRESOLUTION-BASED IMAGE
FUSION WITH ADDITIVE WAVELET

DECOMPOSITION

A. The FIHS Fusion Method

The IHS fusion method, which is widely used in image
fusion to exploit the complementary nature of MS images,
converts the RGB space of a color image into IHS color
space. The intensity component in the IHS space is replaced
by a high-resolution Pan image and then transformed back into
the original RGB space together with the previous hue band
and saturation band, resulting in an IHS fused image. The
IHS fusion for each pixel can be formulated by the following
procedure:

1)



I
v1

v2


 =




1
3

1
3

1
3

−√2
6

−√2
6

2
√

2
6

1√
2

−1√
2

0







R
G
B


 . (14)

2) The intensity component,I, is replaced by the Pan
image.

3)



F(R)
F(G)
F(B)


 =




1 −1√
2

1√
2

1 −1√
2

−1√
2

1
√

2 0







Pan
v1

v2




=




1 −1√
2

1√
2

1 −1√
2

−1√
2

1
√

2 0







I + (Pan− I)
v1

v2




=




R + (Pan− I)
G + (Pan− I)
B + (Pan− I)


 ,

(15)

Fig. 4. An oversampled filterbank for a 2-D image

whereF(X) is the fused image of theX band, forX = R, G,
andB, respectively.

Equation (15) states that the fused image
[F(R), F(G), F(B)]T can be easily obtained from the original
image [R, G, B]T simply by using addition operations. That
is, with this procedure, the IHS method can be implemented
efficiently [18]. Aside from its fast computing capability for
fusing images, this method can extend traditional three-order
transformations to an arbitrary order.

The problem with the IHS-like fusion method is that spectral
distortion may occur during the merging process. In Eq.(15),
the large difference between the values of the Pan and the
intensity images appears to cause the large spectral distortion
of fused images. Indeed, the difference between the Pan and
the intensity images causes the altered saturation component
in the RGB-IHS conversion model [27].

B. The SWI Method Proposed by González-Aud́ıcana et al.

Recently, a SWI method proposed by González-Aud́ıcana
et al. provided a solution based on the IHS method for image
fusion. They used multiresolution wavelet decomposition to
execute the detailed extraction phase, and they followed the
IHS procedure to inject the spatial detail of the Pan image into
the MS image. In other words, instead of using the Pan image
in Eq. (15), they used the fusion results of the Pan image and
the intensity image fused by the substitutive wavelet (SW)
method. The fusion results of the Pan image and the intensity
image are expressed as follows:

Inew = Ir +
n∑

k=1

WPank
, (16)

where Ir is the low-frequency version of the wavelet-
transformed intensity image and

∑n
k=1 WPank

is the sum
of high-frequency versions of the wavelet-transformed Pan
image. Therefore,Inew contains the structural details of the
Pan image’s higher spatial resolution along with the rich
spectral information of the MS images.

To apply any of the methods of image fusion described in
this paper, the MS image and the Pan image must be accurately
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superimposed. Thus, both images must be co-registered, and
the MS image must be resampled to make its pixel size the
same as the Pan image.

The steps for fusing images with the SWI method are as
follows:

1) Apply the IHS transform to the RGB composition
of the MS image. This transformation separates the
spatial information of the MS image into the intensity
component.

2) Generate a new Pan image, the histogram of which
matches the histogram of the intensity image.

3) Apply the wavelet transform to the intensity image and
to the histogram-matched Pan image. Because the spatial
resolution ratio between the Pan image and the MS
image is2n: 1, ann-level wavelet decomposition must
be performed.

4) Apply the inverse wavelet transform to the set com-
posed of the low-frequency version of the wavelet-
transformed intensity image and the sum of the high-
frequency versions of the wavelet-transformed Pan im-
age. This step adds the spatial details of the Pan image
to the intensity image.

5) Apply the inverse IHS transform.

C. The FSWI Scheme

The proposed FSWI scheme involves the simple procedure
based on the FIHS fusion method.

The general procedure is as follows:

1) Obtain an intensity image from MS images. In general,
I = (R + G + B)/3.

2) Generate a new Pan image, the histogram of which
matches the histogram of the intensity image.

3) Apply the wavelet transform to the difference image of
the Pan image and the intensity image, that is, Pan -I,
with n-level decomposition.

4) Fill the zeros in the low-frequency version of the
wavelet-transformed difference image, and then perform
the inverse wavelet transform.

5) Use simple addition operators to add the image obtained
from steps 3) and 4) to each MS image.

In this general procedure, the choice of the intensity image
is free but the choice of then-level decomposition depends
on the spatial resolution ratio of the Pan image and the MS
image.

The FSWI scheme has a much simpler and faster approach
than the SWI method. Moreover, theoretically, it is the exactly
the same as the SWI method. Indeed, we show that the FSWI
scheme is the same as the SWI method that is based on the
FIHS fusion method.

Assume that, without the loss of generality, the SWI method
is based on the FIHS fusion method instead of the standard
IHS transform. This is because Eq. (15) holds. Moreover, as
shown in the Appendix, when the value of Pan in Eq. (15)
is replaced with theInew value of Eq. (16), the following

equation is produced:




F(R)
F(G)
F(B)


 =




R + (Inew − I)
G + (Inew − I)
B + (Inew − I)




=




R + (Ir +
∑n

k=1 WPank
− I)

G + (Ir +
∑n

k=1 WPank
− I)

B + (Ir +
∑n

k=1 WPank
− I)




=




R + (
∑n

k=1 WPank
−∑n

k=1 WIk
)

G + (
∑n

k=1 WPank
−∑n

k=1 WIk
)

B + (
∑n

k=1 WPank
−∑n

k=1 WIk
)




=




R +
∑n

k=1 W(Pan−I)k

G +
∑n

k=1 W(Pan−I)k

B +
∑n

k=1 W(Pan−I)k




(17)

where
∑n

k=1 WIk
is the sum of the high-frequency versions of

the wavelet-transformed intensity image and
∑n

k=1 W(Pan−I)k

is the sum of the high-frequency versions of the wavelet-
transformed difference image of the Pan image and the in-
tensity image.

In addition, the idea of the FSWI scheme can be applied
to the SW method. The SW method in [3] can be simplified
with the following procedure:




F(R)
F(G)
F(B)


 =




∑n
k=1 WPank

+ Rr∑n
k=1 WPank

+ Gr∑n
k=1 WPank

+ Br




=




∑n
k=1 WPank

+ (R−∑n
k=1 WRk

)∑n
k=1 WPank

+ (G−∑n
k=1 WGk

)∑n
k=1 WPank

+ (B−∑n
k=1 WBk

)




=




R + (
∑n

k=1 WPank
−∑n

k=1 WRk
)

G + (
∑n

k=1 WPank
−∑n

k=1 WGk
)

B + (
∑n

k=1 WPank
−∑n

k=1 WBk
)




=




R +
∑n

k=1 W(Pan−R)k

G +
∑n

k=1 W(Pan−G)k

B +
∑n

k=1 W(Pan−B)k




(18)

where
∑n

k=1 WRk
,

∑n
k=1 WGk

, and
∑n

k=1 WBk
are the

sum of the high-frequency versions of the wavelet-
transformed MS image, respectively, and

∑n
k=1 W(Pan−R)k

,∑n
k=1 W(Pan−G)k

, and
∑n

k=1 W(Pan−B)k
are the sum of the

high-frequency versions of the wavelet-transformed difference
image of the Pan and the MS images, respectively.

The simply and fast procedure of the SW method is as
follows:

1) Generate new Pan images, the histograms of which
match the histograms of each band of the MS image.

2) Apply the wavelet transform to the difference image of
the Pan image and the MS image, that is,Pan− R,
Pan−G, and Pan− B, with n-level decomposition,
respectively.

3) Fill the zeros in the low-frequency version of the
wavelet-transformed difference images, and then per-
form the inverse wavelet transform, respectively.

4) Use simple addition operators to add images obtained
from steps 2) and 3) to each MS image.
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Fig. 5. Relative spectral responses of IKONOS image

D. The Spectral Distorsion Problem for the IHS-like Method

As mentioned, a spectral distortion problem arises from the
change of saturation during the fusion process. In an RGB-
IHS conversion model, the saturation component (S) can be
represented as follows:

S = 1− 3min{R, G,B}
R + G + B

=
I−X0

I
, (19)

where I is the intensity image andX0 is the smallest value
amongR, G, andB for each pixel [27].

The new saturation value for the image fused by the FSWI
method then becomes

SFSWI = 1− 3min{R + δ,G + δ,B + δ}
R + G + B + 3δ

= 1− X0 + δ

I + δ
=

I−X0

I + δ
,

(20)

whereδ =
∑n

k=1 W(Pan−I)k
.

The relation between Eq.(19) and Eq.(20) is

SFSWI

S
=

I−X0
I+δ

I−X0
I

=
I

I + δ
. (21)

This δ parameter is therefore a crucial factor in the spectral
distortion problem when the value ofδ is large. See [28] for
more details.

E. IKONOS image fusion

When IHS-like fusion methods are used with IKONOS
imagery, there is a significant color distortion, due primarily to
the range of wavelengths in an IKONOS Pan image. Unlike the
Pan images of SPOT and IRS sensors, IKONOS Pan images
(as shown Fig. 5) have an extensive range of wavelengths-
from visible to near-infrared (NIR). This difference obviously
induces the color distortion problem in IHS fusion as a result
of the mismatches; that is, the Pan image and the intensity
image are spectrally dissimilar. In particular, the grey values
of the Pan image in the green vegetated regions are far
larger than the grey values of the intensity image because
the areas covered by the vegetation are characterized by a
relatively high reflectance of NIR and Pan bands as well as a
low reflectance in the RGB bands. To minimize the radiance
differences between the intensity image and the Pan image, Tu
et al. included the NIR band in the definition of the intensity
component [18].

The FIHS transform can be extended from three to four
bands by 



F(R)
F(G)
F(B)

F(NIR)


 =




R + δ′

G + δ′

B + δ′

NIR + δ′


 , (22)

where δ′ = Pan − L and L = (R + G + B + NIR)/4. We
call this method the eFIHS method. Indeed, compared with
the IHS method, the eFIHS method provides much less the
color distortions in fused images [18].

Similarly, the proposed FSWI method can be extended from
three to four bands by




F(R)
F(G)
F(B)

F(NIR)


 =




R + δ′′

G + δ′′

B + δ′′

NIR + δ′′


 , (23)

whereδ′′ =
∑n

k=1 W(Pan−L)k
. We call it the eFSWI method.

Tu et al. [18] introduced eFIHS method with spectral
adjustment applied to the intensity component, considering
that

Pan− L′ = Pan− R + a ∗G + b ∗ B + NIR
3

, (24)

wherea and b are weighting parameters defined to take into
account that the spectral response of the Pan image does not
cover that of the blue and green band. The value of these
parameters was estimated experimentally after the fusion of 92
IKONOS images, covering different areas. According to the
experimental results obtained by Tu et al., the best weighting
parameters ofa and b for G and B bands are 0.75 and 0.25,
respectively. We call it the eFIHS-SA method.

Additionally, I propose the method of IKONOS image
fusion based on the eFSWI and eFIHS-SA methods, which
is as follows:

1) Obtain a new intensity image,L′ = (R + a ∗G + b ∗ B
+NIR)/3.

2) Generate a new Pan image, the histogram of which
matches the histogram of the new intensity image.

3) Apply the wavelet transform to the difference image
of the Pan image and the new intensity image, that is,
Pan− L′, with level two decomposition.

4) Fill the zeros in the low-frequency version of the
wavelet-transformed difference image, and then perform
the inverse wavelet transform.

5) Use simple addition operators to add the image obtained
from steps 3) and 4) to each MS image.

We call this method the eFSWI-SA method.

IV. EXPERIMENTAL STUDY AND ANALYSIS

To merge an IKONOS Pan image and an MS image, an
image of the Korean city of Daejeon, which was acquired on
9 March 2002, is used. The IKONOS imagery contains a 1 m
Pan image and four-band 4 m MS images. The data for this
experiment comprised a Pan image and four R, G, B, and NIR
MS images.
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A. The Factors for Quantitative Analysis

The quantitative analysis is based on the experimental
results for the factors used in [28]–[31]: namely, the standard
deviation (SD); the correlation coefficients (CCs); the relative
average spectral error (RASE); the relative global dimensional
synthesis error, which is known asthe erreur relative globale
adimensionnelle de synthése(ERGAS); and the spatial quality
measurement proposed by Zhou et al.

1) The SD and the CCs:The SD of the difference image in
relation to the mean of the original image indicates the level
of the error at any pixel. The lower the value of this parameter,
the better the spectral quality of the fused image.

The CC between the original image and the fused image is
defined as

CC(A, B) =

∑
m,n(Amn −A)(Bmn −B)√

(
∑

m,n(Amn −A)2)(
∑

m,n(Bmn −B)2)
,

(25)
whereA andB stand for the mean values of the corresponding
data set, and CC is calculated globally for the entire image.
The result of this equation shows similarity in the small
structures between the original image and the fused image.

2) The RASE and the ERGAS:To estimate the global
spectral quality of the fused images, we expressed the RASE
index as a percentage [29], [30]. This percentage characterizes
the average performance of the method of image fusion in the
spectral bands considered. The RASE index is expressed as
follows:

RASE =
100
M

√√√√ 1
N

N∑

i=1

RMSE2(Bi), (26)

whereM is the mean radiance of theN spectral bands(Bi)
of the original MS bands, andRMSE is the root mean square
error. TheRMSE value is as computed as follows:

RMSE2(Bi) = bias2(Bi) + SD2(Bi). (27)

The ERGAS index for the fusion is expressed as follows:

ERGAS = 100
h

l

√√√√ 1
N

N∑

i=1

RMSE2(Bi)
M2

i

, (28)

whereh is the resolution of the high spatial resolution image,
l is the resolution of the low spatial resolution image, and
Mi is the mean radiance of each spectral band involved in the
fusion.The lower the value of the RASE index and the ERGAS
index, the higher the spectral quality of the fused images.

3) Spatial quality measurement proposed by Zhou et al.:To
evaluate the detailed spatial information, a procedure proposed
by Zhou et al. is used [31]. In this procedure, we filtered the
Pan image and fused image with a Laplacian filter as follows:



−1 −1 −1
−1 8 −1
−1 −1 −1


 . (29)

The high correlation coefficients between the fused filtered
image and the Pan filtered image (sCCs) indicate that most
of the spatial information of the Pan image was incorporated

during the merging process. The sCC has the same definition
as the CC.

B. Quantitative analysis

To assess the spectral and spatial quality of the fused
images, spatially degraded Pan image and MS images were
derived from the original images. For the experiment on the
fusion of IKONOS images, the derived images had a resolution
of 4 m and 16 m, respectively. These images were synthesized
at a 4 m resolution and then compared to the original IKONOS
MS images.

Using five estimators, Tables II shows the comparative
analysis for IKONOS image fusion.

1) Comparative analysis of the eFIHS method and the
eFIHS-SA method of IKONOS image fusion:In Table II, the
images fused by the eFIHS method have lower spectral and
spatial quality than images fused by the eFIHS-SA method.
This difference is due to the non-ideal spectral responses of
IKONOS imagery. Ideally, the RGB bands should fall just
within the spectral range of the Pan band. In Fig. 5, the green
and blue bands appear to overlap substantially, and the blue
band mostly falls outside of the Pan band. Furthermore, the
response of the Pan band is extended beyond the NIR band,
thereby inducing the color distortion in IHS fusion. To cope
with this problem, Tu et al. considered a simple spectral-
adjusted scheme based on FIHS fusion. This scheme is very
suitable for IKONOS image fusion, and the experimental
results of Table II support this fact. Thus, in the IHS-like
method, the precise choice of intensity component affects the
performance of image fusion.

2) Comparative analysis of the eFSWI method and the
eFSWI-SA method of IKONOS image fusion:The eFSWI
method and the eFSWI-SA method are SW methods. The
eFSWI method is based on the eFIHS method, and the eFSWI-
SA method is based on the eFIHS-SA method. According
to the above analysis, the eFSWI-SA method should perform
much better than the eFSWI method. However, the eFSWI-SA
method’s values for the SD, CC, sCC, RASE and ERGARS
are similar to the values of the eFSWI method for each DWT.
The similarity of values means that the precise choice of
the intensity component no longer affects the performance
of image fusion in wavelet-based methods. One explanation
for this phenomenon is that, unlike the eFIHS method and
the eFIHS-SA method, the eFSWI method and the eFSWI-SA
method inject MS images with detailed information extracted
from the difference image of the Pan image and the new
intensity image. That is, in wavelet-like methods, performance
of image fusion is affected by the manner of extracting
detailed information from a difference image (where detailed
information refers to information that is not contained in the
intensity image). Hence, the precise choice of DWT affects
the performance of image fusion for wavelet-based methods.

3) The possiblitiy of using the introduced 2XDWT for image
fusion: Although the 2XDWT is not shift-invariant, it can
be nearly shift-invariant. When the spacing between adjacent
wavelets of the same scale is closer, the 2XDWT is less shift-
sensitive than the DWT. In Table II, the sCC values of the
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TABLE II

COMPARATIVE IKONOS FUSION RESULTS

Initial eFIHS eFIHS-SA eFSWI
DWT

eFSWI
2XDWT

eFSWI
ADWT

eFSWI-SA
DWT

eFSWI-SA
2XDWT

eFSWI-SA
ADWT

SD(%) R 20.56 14.00 12.47 13.42 12.41 13.00 13.40 12.42 13.04

(ideal value:0) G 19.19 14.76 13.42 13.24 12.38 12.67 13.18 12.32 12.67

B 19.56 19.14 17.77 15.83 15.20 15.03 15.70 15.04 14.97

NIR 22.99 14.46 12.93 12.88 11.61 12.52 12.93 11.73 12.62

SD 20.57 15.59 14.14 13.84 12.90 13.30 13.80 12.87 13.32

CC R 0.911 0.958 0.967 0.962 0.967 0.964 0.962 0.967 0.964

(ideal value:1) G 0.925 0.955 0.963 0.964 0.968 0.967 0.964 0.969 0.967

B 0.929 0.932 0.942 0.954 0.957 0.958 0.954 0.958 0.958

NIR 0.846 0.939 0.951 0.951 0.960 0.954 0.951 0.960 0.953

CC 0.902 0.946 0.955 0.957 0.963 0.960 0.957 0.963 0.960

sCC R 0.284 0.998 0.998 0.991 0.997 0.995 0.992 0.998 0.995

G 0.273 0.999 0.999 0.991 0.998 0.994 0.991 0.997 0.994

B 0.257 0.998 0.997 0.989 0.996 0.993 0.989 0.996 0.992

NIR 0.291 0.995 0.996 0.991 0.997 0.995 0.992 0.997 0.995

sCC 0.276 0.998 0.998 0.990 0.997 0.994 0.991 0.997 0.994

RASE(%) 21.09 15.43 13.99 13.74 12.75 13.22 13.71 12.74 13.25

ERGAS 5.157 3.932 3.577 3.474 3.244 3.336 3.462 3.236 3.341

eFSWI 2XDWT and the eFSWI-SA 2XDWT are greater than
the sCC values of the eFSWI DWT, the eFSWI-SA DWT,
the eFSWI ADWT and the eFSWI-SA ADWT. In addition,
the sCC values of the eFSWI 2XDWT and the eFSWI-SA
2XDWT are closer to the sCC values of the eFIHS method
and the eFIHS-SA method than to the sCC values of other
methods. This result confirms that 2XDWT produces a more
satisfactory spatial resolution than other DWTs based on the
eFSWI method and the eFSWI-SA method.

The values for the SD, RASE and ERGAS of the eFSWI
2XDWT and the eFSWI-SA 2XDWT are slightly lower than
the corresponding values of the eFSWI DWT, the eFSWI-
SA DWT, the eFSWI ADWT and the eFSWI-SA ADWT. In
addition, the values for the CC of the eFSWI 2XDWT and the
eFSWI-SA 2XDWT are slightly greater that the corresponding
values of the eFSWI DWT, the eFSWI-SA DWT, the eFSWI
ADWT and the eFSWI-SA ADWT. Hence, the spectral quality
of images fused by the 2XDWT is slightly greater than the
spectral quality of images fused by the DWT and ADWT based
on the eFSWI and the eFSWI-SA methods.

In summary, the images fused by the 2XDWT have a more
satisfactory spatial and spectral quality than those fused by
the DWT and ADWT based on the eFSWI and the eFSWI-
SA methods. Finally, the 2XDWT is a possible alternative to
the two popular DWTs for image fusion.

4) Comparative analysis of the proposed eFSWI-SA
2XDWT and other methods of IKONOS image fusion:In
Table II, the values for the bias, SD, RASE, and ERGAS
of the eFSWI-SA 2XDWT method are all lower than the
corresponding values of other methods, and the values of
the CC are slightly greater. Hence, the spectral quality of
images fused by the proposed eFSWI-SA 2XDWT method
is much better than the spectral quality of images fused by
other methods. In contrast, the sCC values of the eFSWI-SA

2XDWT method are similar to the sCC values of the eFIHS
and the eFIHS-SA methods. The eFSWI-SA 2XDWT method
consequently produces a satisfactory spatial resolution.

In summary, the author used five spectral and spatial estima-
tors to analyze the spatial and spectral quality of the resulting
images, and then compared the results with the quality of the
fused images. The results show that the proposed eFSWI-SA
2XDWT method produces satisfactory quantitative results for
IKONOS image fusion.

C. Visual analysis

Figure 6 shows the results of the visual fusion. In spite of
the difficulty of determining which fusion method produces
images with the best spatial and spectral quality, most fusion
methods other than the DWT produce images of good spa-
tial quality, and most fusion methods other than the eFIHS
method produce images of good spectral quality. Even if only
the 2XDWT is used to fuse images, some artifacts can be
prevented from arising when the DWT is used.

V. CONCLUSION

A symmetric tight wavelet frame transform for image fusion
that is based on additive wavelet decomposition have been
presented. To validate this new approach, IKONOS Pan images
and MS images were merged. To analyze the spatial and
spectral quality of the resulting images, the following five
factors were used: the bias, SD, CC, RASE, ERGAS, and
sCC. And then the results with the quality of images fused by
other methods of image fusion were compared. The values for
the bias, SD, RASE, and ERGAS of the proposed eFSWI-SA
2XDWT method are all lower than the corresponding values
of other wavelet-like methods, and the values of the CC are
slightly greater. In addition, the sCC values of the eFSWI-SA
2XDWT method are similar to the sCC values of IHS-like
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methods. The eFSWI 2XDWT method consequently produces
a more satisfactory spectral and spatial resolution than other
methods.

APPENDIX

In Eq.(18), we must show that

n∑

k=1

WPank
−

n∑

k=1

WIk
=

n∑

k=1

W(Pan−I)k
.

We assume that, without the loss of generality, theà trous
algorithm can be used as a DWT. Other DWTs can also be
used for proof.

Given image P, we construct the sequence of approximations
as follows:

C(P) = P1,C(P1) = C2(P) = P2,C(P2) = C3(P) = P3, · · · .

To construct the sequence of approximations, theà trous
algorithm performs successive convolutions with a filter ob-
tained from an auxiliary function, named a scaling function.
A B3 cubic spline, which is generally used as the scaling
function, leads to a convolution with a mask of5× 5.

1
256




1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1




.

That is,

Ck(P) = P∗ B3 ∗ · · · ∗ B3︸ ︷︷ ︸
k

:= P∗ Bk
3 = Pk.

The wavelet planes are computed as the differences between
two consecutive approximations: Pk−1 and Pk. By letting
WPk

= Pk−1 − Pk, k = 1, . . . , n, where P0 = P, we can
write the reconstruction formula as

P = Pr +
n∑

k=1

WPk

where Pr is a low-frequency version of P. We then have

n∑

k=1

WPank
−

n∑

k=1

WIk

=
n∑

k=1

(WPank
−WIk

)

=
n∑

k=1

((Pank−1 − Pank)− (Ik−1 − Ik))

=
n∑

k=1

((Pank−1 − Ik−1)− (Pank − Ik))

=
n∑

k=1

(
(Pan∗ Bk−1

3 − I ∗ Bk−1
3 )− (Pan∗ Bk

3 − I ∗ Bk
3)

)

=
n∑

k=1

(
(Pan-I) ∗ Bk−1

3 − (Pan-I) ∗ Bk
3

)

=
n∑

k=1

((Pan-I)k−1 − (Pan-I)k)

=
n∑

k=1

W(Pan−I)k
.
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[3] J. Núñez, X. Otazu, O. Fors, A. Prades, V. Palà, and R. Arbiol,
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

Fig. 6. (a) IKONOS Pan image; (b) degraded color image; (c) original IKONOS color image; (d) fused by the eFIHS; (e) fused by the eFIHS-SA; (f)
fused by the eFSWI DWT; (g) fused by the eFSWI 2XDWT; (h) fused by the eFSWI ADWT; (i) fused by the eFSWI-SA DWT; (j) fused by the eFSWI-SA
2XDWT; (k) fused by the eFSWI-SA ADWT


