SINGULAR INNER FUNCTIONS WHOSE FROSTMAN SHIFTS ARE CARLESON-NEWMAN BLASCHKE PRODUCTS II

KEI JI IZUCHI AND HONG OH KIM

ABSTRACT. Let \mathcal{M} be the family of inner functions whose nontrivial Frostman shifts are Carleson-Newman Blaschke products. It is known that for any closed subset of the unit circle ∂D there is a discrete singular inner function S_{μ} with $supp(\mu) = E$ and $S_{\mu} \in \mathcal{M}$. In this paper, we are interested in continuous singular inner functions S_{μ} in \mathcal{M} or not in \mathcal{M} with nonporous $supp(\mu)$. For example, if E is a perfect subset of ∂D then there is a continuous singular inner function $S_{\mu} \in \mathcal{M}$ with $supp(\mu) = E$ (Theorem 2.6). We also show that if E is a perfect subset of ∂D which is not porous then there is a continuous singular inner function $S_{\mu} \notin \mathcal{M}$ with $supp(\mu) = E$ (Corollary 3.4).

1. INTRODUCTION

Let H^{∞} be the Banach algebra of bounded analytic functions in the open unit disk D with the supremum norm. The pseudo-hyperbolic distance in D is given by

$$\rho(z,w) = \left|\frac{z-w}{1-\overline{w}z}\right|, \quad z,w \in D.$$

A pseudo-hyperbolic open disk with center $z \in D$ and radius 0 < r < 1 is denoted by $D_{\rho}(z, r)$, that is,

$$D_{\rho}(z,r) = \{ w \in D : \rho(z,w) < r \}.$$

We identify a function in H^{∞} with its radial limit function on the unit circle ∂D . A function I in H^{∞} is called an inner function if $|I(e^{i\theta})| = 1$ for almost every $e^{i\theta} \in \partial D$. For a sequence $\{z_n\}_n$ in D with

¹⁹⁹¹ Mathematics Subject Classification. 46J15.

Key words and phrases. Singular inner function, Frostman shift, Carleson-Newman Blaschke product.

The first author was supported by Grant-in-Aid for Scientific Research (No.16340037), Japan Society for the Promotion of Science. The second author was supported by KOSEF R01-2006-000-10424-0.

 $\sum_{n=1}^{\infty} (1 - |z_n|) < \infty$, we have a Blaschke product defined by

$$b(z) = \prod_{n=1}^{\infty} \frac{-\overline{z}_n}{|z_n|} \frac{z - z_n}{1 - \overline{z}_n z}, \quad z \in D.$$

A Blaschke product b is an inner function. Moreover, if for every bounded sequence of complex numbers $\{a_n\}_n$ there exists f in H^{∞} satisfying $f(z_n) = a_n$ for every n, then both the sequence $\{z_n\}_n$ and the Blaschke product b are called interpolating. In [1], Carleson proved that $\{z_n\}_n$ is interpolating if and only if

$$\inf_{n} \prod_{k:k \neq n} \left| \frac{z_k - z_n}{1 - \overline{z}_n z_k} \right| > 0.$$

A Blaschke product b is called Carleson-Newman if b is a product of finitely many interpolating Blaschke products. In the study of H^{∞} , Carleson-Newman Blaschke products play an important role, see [2].

Let M_s^+ be the set of all bounded positive (nonzero) singular Borel measures on ∂D with respect to the Lebesgue measure on ∂D . We use familiar notations: for $\mu, \nu \in M_s^+$, $\mu \ll \nu$ (absolutely continuous), $\mu \sim \nu$ (equivalent, i.e., $\mu \ll \nu$ and $\nu \ll \mu$), and $\delta_{e^{i\theta}}$ (the unit point mass at $e^{i\theta} \in \partial D$), and $supp(\mu)$ (the closed support set). A measure μ is called continuous if $\mu(\{e^{i\theta}\}) = 0$ for every $e^{i\theta} \in \partial D$. A measure $\mu \in M_s^+$ is called discrete if $\mu = \sum_{n=1}^{\infty} a_n \delta_{e^{i\theta_n}}$. We denote by $M_{s,c}^+$ and $M_{s,d}^+$ the sets of continuous and discrete measures in M_s^+ , respectively. For each $\mu \in M_s^+$, the associated singular inner function S_{μ} is defined by

$$S_{\mu}(z) = \exp\left(-\int_{\partial D} \frac{e^{i\theta} + z}{e^{i\theta} - z} d\mu(e^{i\theta})\right), \quad z \in D.$$

See [5, 6, 7] for the study of singular inner functions related to the subject of this paper.

For each $\alpha \in D$ and an inner function I, we define the Frostman shift τ_{α} by

$$\tau_{\alpha}(I)(z) = \frac{I(z) - \alpha}{1 - \overline{\alpha}I(z)}, \quad z \in D.$$

Trivially, $\tau_{\alpha}(I)$ is inner for every $\alpha \in D$. It is known as the Frostman theorem that $\tau_{\alpha}(I)$ is a Blaschke product for every $\alpha \in D$ except for a set of logarithmic capacity 0. We denote by \mathcal{M} the family of inner functions I for which $\tau_{\alpha}(I)$ is a Carleson-Newman Blaschke product for every $\alpha \in D$ with $\alpha \neq 0$. In [8], Mortini and Nicolau studied the class \mathcal{M} , especially singular inner functions in \mathcal{M} . A typical example in \mathcal{M} is

$$S_{\delta_{e^{i\theta}}}(z) = \exp\left(-\frac{e^{i\theta}+z}{e^{i\theta}-z}\right), \quad z \in D,$$

see [3]. Also we know that $S_{\mu} \in \mathcal{M}$ for every $\mu = \sum_{j=1}^{n} a_j \delta_{e^{i\theta_j}} \in M_{s,d}^+$ with $a_j > 0$. A nonempty closed subset E of ∂D is called ε -porous, $0 < \varepsilon < 1$, if for any subarc J of ∂D with $J \cap E \neq \emptyset$, there exists a subarc $\tilde{J} \subset J$ such that $\tilde{J} \cap E = \emptyset$ and $|\tilde{J}| > \varepsilon |J|$, where |J| is the arc length of J. Simply E is called porous if E is ε -porous for some $0 < \varepsilon < 1$. A union of finitely many porous sets is also porous. In [8], Mortini and Nicolau proved that for a nonempty closed subset E of ∂D , E is porous if and only if $S_{\mu} \in \mathcal{M}$ for every μ with $supp(\mu) \subset E$. Exactly, they showed that if E is not porous then there exists a discrete measure $\mu \in M_{s,d}^+$ satisfying $supp(\mu) \subset E$ and $S_{\mu} \notin \mathcal{M}$. They also showed that there exists a continuous measure $\mu \in M_{s,c}^+$ satisfying $supp(\mu) = \partial D$ and $S_{\mu} \in \mathcal{M}$. In [7], the first author proved that for every closed subset E of ∂D , there is a discrete measure $\mu \in M_{s,d}^+$ such that $supp(\mu) = E$ and $S_{\mu} \in \mathcal{M}$. More precisely, it is proved that for each $\lambda \in M_{s,d}^+$, there is $\mu \in M_{s,d}^+$ satisfying $\mu \sim \lambda$ and $S_{\mu} \in \mathcal{M}$.

This paper is a continuation of the paper [7]. We are interested in a singular inner function S_{μ} such that $supp(\mu)$ is not porous. In Section 2, we prove that for each perfect subset E of ∂D , there is a continuous measure $\mu \in M_{s,c}^+$ such that $supp(\mu) = E$ and $S_{\mu} \in \mathcal{M}$. In Section 3, we prove that if $S_{\lambda} \in \mathcal{M}$ and $supp(\lambda)$ is not porous, then there exists $\mu \in M_s^+$ satisfying $\mu \sim \lambda - \lambda(\{\zeta_0\})\delta_{\zeta_0}$ for some $\zeta_0 \in \partial D$ and $S_{\mu} \notin \mathcal{M}$. This shows that if E is perfect but not porous, then there exists $\mu \in M_{s,c}^+$ such that $supp(\mu) = E$ and $S_{\mu} \notin \mathcal{M}$.

2. Continuous singular inner functions in \mathcal{M}

For an inner function I, we use the following notation:

 $\{R_1 < |I| < R_2\} = \{z \in D : R_1 < |I(z)| < R_2\}, \quad 0 < R_1 < R_2 < 1.$

The following lemma is pointed out in [8, Theorem 1] and is essentially due to Hoffman's work [4].

Lemma 2.1. Let I be an inner function. Then $I \in \mathcal{M}$ if and only if for every pair (R_1, R_2) with $0 < R_1 < R_2 < 1$, there exists a constant $c(R_1, R_2)$ depending on (R_1, R_2) with $0 < c(R_1, R_2) < 1$ such that $D_{\rho}(z, r) \not\subset \{R_1 < |I| < R_2\}$ for every $z \in D$ and r with $c(R_1, R_2) \leq r < 1$.

The following is proved in [7, Lemma 2.2].

Lemma 2.2. Let $\{\mu_j\}_j$ be a sequence in M_s^+ satisfying $supp(\mu_i) \cap supp(\mu_j) = \emptyset$ for $i \neq j$ and $\sum_{j=1}^{\infty} \mu_j(\partial D) < \infty$. Write $\mu = \sum_{j=1}^{\infty} \mu_j$ and $\widetilde{\mu}_n = \sum_{j=1}^n \mu_j$. Let $\{\varepsilon_j\}_j$ be a sequence of numbers satisfying $0 < \varepsilon_j < \varepsilon_{j+1} < 1$ and $\prod_{j=1}^{\infty} \varepsilon_j > 0$ (or $\sum_{j=1}^{\infty} (1 - \varepsilon_j) < \infty$). Suppose that

 $\{|S_{\widetilde{\mu}_j}| < \varepsilon_j\} \cap \{|S_{\mu_{j+1}}| < \varepsilon_{j+1}\} = \emptyset$

for every $j \geq 1$. Then for each pair (R_1, R_2) with $0 < R_1 < R_2 < 1$, there exists a positive integer n_0 such that if $D_{\rho}(z, r) \subset \{R_1 < |S_{\mu}| < R_2\}$, then either $D_{\rho}(z, r) \subset \{R_1 < |S_{\mu_{n_0}}| < \varepsilon_{n_0}\}$ or $D_{\rho}(z, r) \subset \{R_1 < |S_{\mu_j}| < (R_2 + 1)/2\}$ for one and only one j with $j \geq n_0 + 1$.

One easily checks the following lemma which follows from the definition of singular inner functions.

Lemma 2.3. Let *E* be a closed subset of ∂D and *U* be an open subset of \mathbb{C} with $E \subset U$. Then for each $0 < \delta < 1$, there exists $\varepsilon > 0$ such that $|S_{\mu}| > \delta$ on $D \setminus U$ for every $\mu \in M_s^+$ with $supp(\mu) \subset E$ and $\mu(\partial D) < \varepsilon$.

By [8, Proof of Theorem 2], we have the following.

Lemma 2.4. Let E be a $\frac{1}{4}$ -porous subset of ∂D . For each given pair (R_1, R_2) with $0 < R_1 < R_2 < 1$, there exists a constant $c(R_1, R_2)$ depending on (R_1, R_2) with $0 < c(R_1, R_2) < 1$ such that

$$D_{\rho}(z,r) \not\subset \{R_1 < |S_{\mu}| < R_2\}$$

for every $\mu \in M_s^+$ with $supp(\mu) \subset E$ and for every r with $c(R_1, R_2) \leq r < 1$.

Mortini and Nicolau [8, Theorem 2] proved the following.

Lemma 2.5. If E is a porous subset of ∂D , then $S_{\mu} \in \mathcal{M}$ for every $\mu \in M_s^+$ with supp $(\mu) \subset E$.

It is known that there are two types of continuous singular measures $\mu \in M_{s,c}^+$ with $S_{\mu} \in \mathcal{M}$. One is $\mu \in M_{s,c}^+$ such that $supp(\mu)$ is porous (by Lemma 2.5), and another one is given in [8, Proposition 6.1]. The following is the main theorem in this section.

Theorem 2.6. If E is a perfect subset of ∂D , then there exists $\mu \in M_{s,c}^+$ such that supp $(\mu) = E$ and $S_{\mu} \in \mathcal{M}$.

Proof. We may assume that E is not porous. We devide the proof into three steps.

Step 1. We shall prove that for every perfect subset A of ∂D , there exists a perfect $\frac{1}{4}$ -porous subset B of A,

First, we take a closed subarc I_0 of ∂D such that $|I_0| \leq 1$, $A \cap I_0$ is perfect, and two end points of I_0 are contained in A. Next, we take an open subarc J_0 of I_0 satisfying

 $(2.1) |J_0| > |I_0|/2,$

(2.2) $I_0 \setminus J_0$ consists of two closed arcs $I_{0,0}$ and $I_{0,1}$,

(2.3) $A \cap I_{0,0}$ and $A \cap I_{0,1}$ are perfect sets,

(2.4) all end points of $I_{0,0}$ and $I_{0,1}$ are contained in A.

For each $I_{0,i}$, i = 0, 1, we take an open subarc $J_{0,i}$ of $I_{0,i}$ satisfying (2.5) $|J_{0,i}| > |I_{0,i}|/2$,

(2.6) $I_{0,i} \setminus J_{0,i}$ consists of two closed arcs $I_{0,i,0}$ and $I_{0,i,1}$,

(2.7) $A \cap I_{0,i,0}$ and $A \cap I_{0,i,1}$ are perfect sets,

(2.8) all end points of $I_{0,i,0}$ and $I_{0,i,1}$ are contained in A.

Repeating the same argument, we get a family of closed arcs $\{I_{\lambda} : \lambda \in \Lambda_n, n = 1, 2, \cdots\}$, where $\Lambda_n = \{(0, i_1, \cdots, i_n) : i_j = 0 \text{ or } 1\}$, and it is not difficult to see that

$$\bigcap_{n=1}^{\infty} \left(\bigcup_{\lambda \in \Lambda_n} I_{\lambda}\right) \cap A$$

is a perfect $\frac{1}{4}$ -porous subset of A.

Setp 2. In this step, we show that there is a sequence of mutually disjoint perfect $\frac{1}{4}$ -porous subsets $\{E_n\}_n$ of E such that $\bigcup_{n=1}^{\infty} E_n$ is dense in E.

By Step 1, there is a perfect $\frac{1}{4}$ -porou subset E_1 of E. Let

$$\sigma_1 = \sup_{\xi \in E} dist(\xi, E_1).$$

Since E is not porous, $\sigma_1 > 0$. We take a perfect set E'_1 with

$$E_1' \subset \left\{ \zeta \in E : dist(\zeta, E_1) > \sigma_1/2 \right\}.$$

By Step 1, there is a perfect $\frac{1}{4}$ -porous subset E_2 of E'_1 . Obviously, $E_1 \cap E_2 = \emptyset$. Let

$$\sigma_2 = \sup_{\xi \in E} dist(\xi, E_1 \cup E_2)$$

Since $E_1 \cup E_2$ is porous, $\sigma_2 > 0$. We take a perfect set E'_2 with

$$E_2' \subset \{\zeta \in E : dist(\zeta, E_1 \cup E_2) > \sigma_2/2\}.$$

By Step 1, there is a perfect $\frac{1}{4}$ -porous subset E_3 of E'_2 . Then E_1, E_2, E_3 are mutually disjoint. Repeating the same argument, we have a sequence of mutually disjoint perfect $\frac{1}{4}$ -porous subsets $\{E_n\}_n$ of E satisfying

$$E_{n+1} \subset \left\{ \zeta \in E : dist\left(\zeta, \bigcup_{j=1}^{n} E_j\right) > \sigma_n/2 \right\},\$$

where

$$\sigma_n = \sup_{\xi \in E} dist\Big(\xi, \bigcup_{j=1}^n E_j\Big) > 0.$$

We shall prove that $\bigcup_{n=1}^{\infty} E_n$ is dense in E. To prove this, suppose not. Then there exists σ_0 satisfying $\sigma_n \geq \sigma_0 > 0$ for every n. Take a sequence of points $\{\zeta_n\}_n$ with $\zeta_n \in E_n$. There is a subsequence $\{\zeta_{n_j}\}_j$ of $\{\zeta_n\}_n$ such that $\zeta_{n_j} \to \zeta_0$ as $j \to \infty$ for some $\zeta_0 \in E$. By the construction of the sequence $\{E_n\}_n$,

$$dist(\zeta_{n_{j+1}}, \zeta_{n_j}) > \sigma_{n_{j+1}-1}/2 \ge \sigma_0/2 > 0$$

for every j. This is a contradiction.

Step 3. We follow the proof of Theorem 2.5 given in [7]. Let $\{\varepsilon_j\}_j$ be a sequence of numbers with $0 < \varepsilon_j < \varepsilon_{j+1} < 1$ for every $j \ge 1$ and $\prod_{j=1}^{\infty} \varepsilon_j > 0$. By Step 2, there is a sequence of mutually disjoint perfect $\frac{1}{4}$ -porous subsets $\{E_n\}_n$ of E such that $\bigcup_{n=1}^{\infty} E_n$ is dense in E. For each n, take $\mu_n \in M_{s,c}^+$ with $supp(\mu_n) = E_n$ and $\|\mu_n\| = 1$. Applying Lemma 2.3, we can find a sequence of positive numbers $\{a_j\}_j$ with $\sum_{j=1}^{\infty} a_j < \infty$ satisfying

$$\left\{ \left| S_{\sum_{j=1}^{n} a_{j} \mu_{j}} \right| < \varepsilon_{n} \right\} \cap \left\{ \left| S_{a_{n+1} \mu_{n+1}} \right| < \varepsilon_{n+1} \right\} = \emptyset$$

for every $n \ge 1$. Write

$$\mu = \sum_{j=1}^{\infty} a_j \mu_j$$
 and $\widetilde{\mu}_n = \sum_{j=1}^n a_j \mu_j$.

To prove $S_{\mu} \in \mathcal{M}$ by contradiction, we assume that $S_{\mu} \notin \mathcal{M}$. By Lemma 2.1, there exists a pair (R_1, R_2) with $0 < R_1 < R_2 < 1$ and a sequence of pseudo-hyperbolic disks $\{D_{\rho}(z_k, r_k)\}_k$ such that

$$D_{\rho}(z_k, r_k) \subset \{R_1 < |S_{\mu}| < R_2\}$$

for every k and $r_k \to 1$ as $k \to \infty$. By Lemma 2.2, there exists a positive integer n_0 such that for each k, either

(2.9)
$$D_{\rho}(z_k, r_k) \subset \{R_1 < |S_{\tilde{\mu}_{n_0}}| < \varepsilon_{n_0}\}$$

or

(2.10)
$$D_{\rho}(z_k, r_k) \subset \{R_1 < |S_{a_{j(k)}\mu_{j(k)}}| < (R_2 + 1)/2\}$$

for one and only one j(k) with $j(k) \ge n_0 + 1$. Since $\bigcup_{j=1}^{n_0} E_j$ is a porous set, by Lemma 2.5 we have $S_{\tilde{\mu}_{n_0}} \in \mathcal{M}$. Hence by Lemma 2.1, the number of integers k satisfying (2.9) is finite, so that (2.10) holds for all large enough k's. Since $r_k \to 1$, this contradicts the assertion of Lemma 2.4.

3. Equivalent measures and \mathcal{M}

We denote by $M(\partial D)$ the space of all bounded complex Borel measures on ∂D . With the total variation norm, $M(\partial D)$ is a Banach space, and $M(\partial D) = C(\partial D)^*$, where $C(\partial D)$ is the Banach space of all continuous functions on ∂D . We may consider the weak*-topology on $M(\partial D)$.

Lemma 3.1. Let $\lambda, \nu \in M_s^+$ with $supp(\nu) \subset supp(\lambda)$. Then there exists a sequence of measures $\{\lambda_n\}_n$ in M_s^+ satisfying that $\|\lambda_n\| \leq 2\|\nu\|$, $\lambda_n \sim \lambda$, and $\lambda_n \to \nu$ in the weak*-topology in $M(\partial D)$.

Proof. Let $\{\varepsilon_n\}_n$ be a sequence of positive numbers with $\varepsilon_n \|\lambda\| \leq \|\nu\|$ and $\varepsilon_n \to 0$. For each positive integer n, let

$$J_{n,j} = \left\{ e^{i\theta} : \frac{2\pi(j-1)}{n} \le \theta < \frac{2\pi j}{n} \right\}, \quad 1 \le j \le n$$

and

$$\lambda_n = \varepsilon_n \lambda + \sum_j \left\{ \frac{\nu(J_{n,j})}{\lambda(J_{n,j})} \lambda |_{J_{n,j}} : \lambda(J_{n,j}) \neq 0 \right\}.$$

It is not difficult to check that $\{\lambda_n\}_n$ has the desired properties. \Box

Note that if $\lambda_n \to \nu$ in the weak*-topology in $M(\partial D)$, then $S_{\lambda_n} \to S_{\nu}$ uniformly on each compact subset of D as $n \to \infty$.

Theorem 3.2. Let $\lambda \in M_s^+$ with $S_\lambda \in \mathcal{M}$. If $supp(\lambda)$ is not a porous set, then there exists $\mu \in M_s^+$ satisfying $\mu \sim \lambda - \lambda(\{\zeta_0\})\delta_{\zeta_0}$ for some $\zeta_0 \in \partial D$ and $S_\mu \notin \mathcal{M}$.

Proof. By [8, Theorem 2], there exists $\nu \in M_s^+$ satisfying $supp(\nu) \subset supp(\lambda)$ and $S_{\nu} \notin \mathcal{M}$. By Lemma 2.1, there exist R_1, R_2 with $0 < R_1 < R_2 < 1$ and a sequence of pseudo-hyperbolic disks $\{D_{\rho}(z_j, r_j)\}_j$ with $r_j \to 1$ such that

(3.1)
$$D_{\rho}(z_j, r_j) \subset \{ z \in D : R_1 < |S_{\nu}(z)| < R_2 \}$$

for every j. Note that $|z_n| \to 1$. We may assume that $z_j \to \zeta_0$ for some $\zeta_0 \in \partial D$. Since $S_{\nu} = S_{\nu-\nu(\{\zeta_0\})\delta_{\zeta_0}}S_{\nu(\{\zeta_0\})\delta_{\zeta_0}}$, we may assume that $\nu(\{\zeta_0\}) = 0$. Let $\{J_n\}_n$ be a sequence of open arcs in ∂D with $\overline{J}_{n+1} \subset J_n$ and $\bigcap_{n=1}^{\infty} J_n = \{\zeta_0\}$. Write $J_0 = \partial D$. Let α_n, β_n be the end points of J_n . We may further assume that $\lambda(\{\alpha_n, \beta_n\}) = \nu(\{\alpha_n, \beta_n\}) = 0$ for every n. For each $n \geq 1$, let

(3.2)
$$\nu_n = \nu|_{J_n}.$$

Since $\|\nu_n\| \to 0$,

(3.3)
$$|S_{\nu_n}| \to 1$$
 uniformly on $D_{\rho}(z_j, r_j)$

as $n \to \infty$ for each fixed j. Let $\{\varepsilon_i\}_i$ be a sequence of positive numbers with

(3.4)
$$0 < \varepsilon_i < 1 \text{ and } \prod_{i=1}^{\infty} \varepsilon_i > 0.$$

By induction, we can choose a subsequence $\{J_{n_k}\}_k$ of $\{J_n\}_n$, a subsequence $\{D_{\rho}(z_{j_k}, r_{j_k})\}_k$ of $\{D_{\rho}(z_j, r_j)\}_j$, and a sequence $\{\mu_k\}_k$ in M_s^+ with $\mu_k \ll \lambda$ satisfying certain additional properties mentioned later.

Let $j_1 = 1$. By (3.1), (3.2), and (3.3), there exists a positive integer n_1 such that

(3.5)
$$R_1 < |S_{\nu-\nu_{n_1}}| < R_2 \text{ on } D_{\rho}(z_{j_1}, r_{j_1})$$

and

(3.6)
$$|S_{\nu_{n_1}}| > \varepsilon_2$$
 on $D_{\rho}(z_{j_1}, r_{j_1}).$

For convenience, let $n_0 = 0$.

Since $supp(\nu) \subset supp(\lambda)$, by (3.2) $supp(\nu - \nu_{n_1}) \subset supp(\lambda) \setminus J_{n_1}$. By Lemma 3.1, there exists $\mu_1 \in M_s^+$ such that $\|\mu_1\| \leq 2\|\nu - \nu_{n_1}\|$, $\mu_1 \sim \lambda|_{J_{n_0}\setminus J_{n_1}}$, and by (3.5), $R_1 < |S_{\mu_1}| < R_2$ on $D_{\rho}(z_{j_1}, r_{j_1})$. Since $\zeta_0 \notin supp(\nu - \nu_{n_1})$,

$$\inf_{z \in D_{\rho}(z_j, r_j)} |S_{\nu - \nu_{n_1}}(z)| \to 1$$

as $j \to \infty$. Then by (3.1), there exists a positive integer j_2 with $j_2 > j_1$ such that

(3.7)
$$R_1 < |S_{\nu_{n_1}}| < R_2 \text{ on } D_{\rho}(z_{j_2}, r_{j_2}).$$

Since $\mu_1 \sim \lambda |_{J_{n_0} \setminus J_{n_1}}$,

$$\inf_{z \in D_{\rho}(z_j, r_j)} |S_{\mu_1}(z)| \to 1$$

as $j \to \infty$, so we may further assume that

$$|S_{\mu_1}| > \varepsilon_1$$
 on $D_{\rho}(z_{j_2}, r_{j_2})$.

By (3.3) and (3.7), there exists a positive integer n_2 with $n_2 > n_1$ such that

 $R_1 < |S_{\nu_{n_1} - \nu_{n_2}}| < R_2$ on $D_{\rho}(z_{j_2}, r_{j_2})$,

(3.8) $|S_{\nu_{n_2}}| > \varepsilon_3$ on $D_{\rho}(z_{j_1}, r_{j_1}) \cup D_{\rho}(z_{j_2}, r_{j_2}),$

and by (3.6)

 $|S_{\nu_{n_1}-\nu_{n_2}}| > \varepsilon_2$ on $D_{\rho}(z_{j_1}, r_{j_1})$.

By Lemma 3.1, there exists $\mu_2 \in M_s^+$ such that $\|\mu_2\| \leq 2\|\nu_{n_1} - \nu_{n_2}\|$, $\mu_2 \sim \lambda|_{J_{n_1} \setminus J_{n_2}}$,

$$R_1 < |S_{\mu_2}| < R_2$$
 on $D_{\rho}(z_{j_2}, r_{j_2})$,

and

$$|S_{\mu_2}| > \varepsilon_2$$
 on $D_{\rho}(z_{j_1}, r_{j_1})$

There exists a positive integer j_3 with $j_3 > j_2$ such that

$$R_1 < |S_{\nu_{n_2}}| < R_2$$
 on $D_{\rho}(z_{j_3}, r_{j_3})$

and

 $|S_{\mu_i}| > \varepsilon_i$ on $D_{\rho}(z_{j_3}, r_{j_3})$ for i = 1, 2.

Take a positive integer n_3 with $n_3 > n_2$ satisfying

$$R_{1} < |S_{\nu_{n_{2}}-\nu_{n_{3}}}| < R_{2} \quad \text{on} \quad D_{\rho}(z_{j_{3}}, r_{j_{3}}),$$
$$|S_{\nu_{n_{3}}}| > \varepsilon_{4} \quad \text{on} \quad \bigcup_{k=1}^{3} D_{\rho}(z_{j_{k}}, r_{j_{k}}),$$

and by (3.8)

$$|S_{\nu_{n_2}-\nu_{n_3}}| > \varepsilon_3$$
 on $D_{\rho}(z_{j_1}, r_{j_1}) \cup D_{\rho}(z_{j_2}, r_{j_2}).$

Then there exists $\mu_3 \in M_s^+$ such that $\|\mu_3\| \leq 2\|\nu_{n_2} - \nu_{n_3}\|$, $\mu_3 \sim \lambda|_{J_{n_2} \setminus J_{n_3}}$,

$$R_1 < |S_{\mu_3}| < R_2$$
 on $D_{\rho}(z_{j_3}, r_{j_3})$,

and

$$|S_{\mu_3}| > \varepsilon_3$$
 on $D_{\rho}(z_{j_1}, r_{j_1}) \cup D_{\rho}(z_{j_2}, r_{j_2})$.

Inductively, we can get sequences of positive integers $\{n_k\}_k$ and $\{j_k\}_k$, and a sequence $\{\mu_k\}_k$ in M_s^+ such that

(3.9)
$$\|\mu_k\| \le 2\|\nu_{n_{k-1}} - \nu_{n_k}\|,$$

(3.10)
$$\mu_k \sim \lambda|_{J_{n_{k-1}} \setminus J_{n_k}},$$

(3.11)
$$R_1 < |S_{\mu_k}| < R_2 \text{ on } D_{\rho}(z_{j_k}, r_{j_k}),$$

(3.12)
$$|S_{\mu_k}| > \varepsilon_k \quad \text{on} \quad \bigcup_{i=1}^{k-1} D_{\rho}(z_{j_i}, r_{j_i}),$$

and

(3.13)
$$|S_{\mu_i}| > \varepsilon_i \quad \text{on } D_{\rho}(z_{j_k}, r_{j_k}) \quad \text{for } 1 \le i < k.$$

Let

(3.14)
$$\mu = \sum_{k=1}^{\infty} \mu_k.$$

Then

$$\begin{aligned} \|\mu\| &\leq \sum_{k=1}^{\infty} \|\mu_k\| \\ &\leq 2\|\nu - \nu_{n_1}\| + 2\sum_{k=2}^{\infty} \|\nu_{n_{k-1}} - \nu_{n_k}\| \quad \text{by (3.9)} \\ &= 2\Big(\|\nu\| - \|\nu_{n_1}\| + \sum_{k=2}^{\infty} (\|\nu_{n_{k-1}}\| - \|\nu_{n_k}\|)\Big) \\ &\leq 2\|\nu\| < \infty. \end{aligned}$$

Hence $\mu \in M_s^+$, and by (3.10) $\mu \sim \lambda - \lambda(\{\zeta_0\})\delta_{\zeta_0}$. Also by (3.11),

$$\sup_{z \in D_{\rho}(z_{j_k}, r_{j_k})} |S_{\mu}(z)| \le \sup_{z \in D_{\rho}(z_{j_k}, r_{j_k})} |S_{\mu_k}(z)| \le R_2,$$

and by (3.11), (3.12), and (3.13), we have

$$\inf_{z \in D_{\rho}(z_{j_k}, r_{j_k})} |S_{\mu}(z)| = \inf_{z \in D_{\rho}(z_{j_k}, r_{j_k})} \prod_{i=1}^{\infty} |S_{\mu_i}(z)|$$

$$\geq \left(\prod_{i=1}^{k-1} \varepsilon_i\right) R_1\left(\prod_{i=k+1}^{\infty} \varepsilon_i\right)$$

$$= R_1 \prod_{i=1}^{\infty} \varepsilon_i$$

$$> 0 \quad \text{by } (3.4).$$

Therefore, we have

$$D_{\rho}(z_{j_k}, r_{j_k}) \subset \left\{ z \in D : R_1 \prod_{i=1}^{\infty} \varepsilon_i \le |S_{\mu}(z)| \le R_2 \right\}$$

for every k. By Lemma 2.1, $S_{\mu} \notin \mathcal{M}$.

Corollary 3.3. If $\lambda \in M_{s,c}^+$ and $supp(\lambda)$ is not porous, then there exists $\mu \in M_{s,c}^+$ such that $\mu \sim \lambda$ and $S_{\mu} \notin \mathcal{M}$.

Corollary 3.4. If E be a perfect subset of ∂D which E is not porous, then there exists $\mu \in M_{s,c}^+$ satisfying $supp(\mu) = E$ and $S_{\mu} \notin \mathcal{M}$.

We end the paper with the following two problems.

Problem 3.5. Is there $\lambda \in M_{s,c}^+$ satisfying $S_{\mu} \notin \mathcal{M}$ for every $\mu \in M_{s,c}^+$ with $\mu \sim \lambda$?

Problem 3.6. Is there $\lambda \in M_{s,d}^+$ such that $S_{\mu} \in \mathcal{M}$ for every $\mu \in M_{s,d}^+$ with $\mu \sim \lambda$ and supp (λ) is not porous?

References

- Carleson, L., An interpolation problem for bounded analytic functions, Amer. J. Math., 80(1958), 921–930.
- [2] Garnett, J. Bounded Analytic Functions, Academic Press, New York, 1981.
- [3] Gorkin, P., and Izuchi, K. J., Some counterexamples in subalgebras of L[∞](D), Indiana Univ. Math. J., 40(1991), 1301–1313.
- [4] Hoffman, K., Bounded analytic functions and Gleason parts, Ann. of Math.,
 (2) 86(1967), 74–111.
- [5] Izuchi, K. J., Outer and inner vanishing measures and division in H[∞] + C, *Rev. Mat. Iberoamericana*, 18(2002), 511–540.
- [6] Izuchi, K. J., Common zero sets of equivalent singular inner functions, *Studia Math.*, 163(2004), 231–255.
- [7] Izuchi, K. J., Singular inner functions whose Frostman shifts are Carleson-Newman Blaschke products, *Complex Variables and Elliptic Equations*, 51(2006), 255–266.
- [8] Mortini, R., and Nicolau, A., Forstman shifts of inner functions, J. d'Anal. Math., 92(2004), 285–326.

Department of Mathematics, Niigata University, Niigata, 950-2181, Japan

E-mail address: izuchi@@math.sc.niigata-u.ac.jp

DIVISION OF APPLIED MATHEMATICS, KAIST, DAEJEON 305-701, KOREA E-mail address: hkim@@amath.kaist.ac.kr