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Abstract. Let M be the family of inner functions whose non-
trivial Frostman shifts are Carleson-Newman Blaschke products.
It is known that for any closed subset of the unit circle ∂D there
is a discrete singular inner function Sµ with supp (µ) = E and
Sµ ∈ M. In this paper, we are interested in continuous singular
inner functions Sµ inM or not inM with nonporous supp (µ). For
example, if E is a perfect subset of ∂D then there is a continuous
singular inner function Sµ ∈M with supp (µ) = E (Theorem 2.6).
We also show that if E is a perfect subset of ∂D which is not
porous then there is a continuous singular inner function Sµ /∈ M
with supp (µ) = E (Corollary 3.4).

1. Introduction

Let H∞ be the Banach algebra of bounded analytic functions in the
open unit disk D with the supremum norm. The pseudo-hyperbolic
distance in D is given by

ρ(z, w) =
∣∣∣ z − w

1− wz

∣∣∣, z, w ∈ D.

A pseudo-hyperbolic open disk with center z ∈ D and radius 0 < r < 1
is denoted by Dρ(z, r), that is,

Dρ(z, r) = {w ∈ D : ρ(z, w) < r}.
We identify a function in H∞ with its radial limit function on the

unit circle ∂D. A function I in H∞ is called an inner function if
|I(eiθ)| = 1 for almost every eiθ ∈ ∂D. For a sequence {zn}n in D with
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∑∞
n=1(1− |zn|) < ∞, we have a Blaschke product defined by

b(z) =
∞∏

n=1

−zn

|zn|
z − zn

1− znz
, z ∈ D.

A Blaschke product b is an inner function. Moreover, if for every
bounded sequence of complex numbers {an}n there exists f in H∞

satisfying f(zn) = an for every n, then both the sequence {zn}n and
the Blaschke product b are called interpolating. In [1], Carleson proved
that {zn}n is interpolating if and only if

inf
n

∏

k:k 6=n

∣∣∣ zk − zn

1− znzk

∣∣∣ > 0.

A Blaschke product b is called Carleson-Newman if b is a product of
finitely many interpolating Blaschke products. In the study of H∞,
Carleson-Newman Blaschke products play an important role, see [2].

Let M+
s be the set of all bounded positive (nonzero) singular Borel

measures on ∂D with respect to the Lebesgue measure on ∂D. We
use familiar notations: for µ, ν ∈ M+

s , µ ¿ ν (absolutely continuous),
µ ∼ ν (equivalent, i.e., µ ¿ ν and ν ¿ µ), and δeiθ (the unit point
mass at eiθ ∈ ∂D), and supp (µ) (the closed support set). A measure
µ is called continuous if µ({eiθ}) = 0 for every eiθ ∈ ∂D. A measure
µ ∈ M+

s is called discrete if µ =
∑∞

n=1 anδeiθn . We denote by M+
s,c and

M+
s,d the sets of continuous and discrete measures in M+

s , respectively.

For each µ ∈ M+
s , the associated singular inner function Sµ is defined

by

Sµ(z) = exp

(
−

∫

∂D

eiθ + z

eiθ − z
dµ(eiθ)

)
, z ∈ D.

See [5, 6, 7] for the study of singular inner functions related to the
subject of this paper.

For each α ∈ D and an inner function I, we define the Frostman
shift τα by

τα(I)(z) =
I(z)− α

1− αI(z)
, z ∈ D.

Trivially, τα(I) is inner for every α ∈ D. It is known as the Frostman
theorem that τα(I) is a Blaschke product for every α ∈ D except for
a set of logarithmic capacity 0. We denote by M the family of inner
functions I for which τα(I) is a Carleson-Newman Blaschke product
for every α ∈ D with α 6= 0. In [8], Mortini and Nicolau studied the
class M, especially singular inner functions in M. A typical example
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in M is

Sδ
eiθ

(z) = exp
(
− eiθ + z

eiθ − z

)
, z ∈ D,

see [3]. Also we know that Sµ ∈ M for every µ =
∑n

j=1 ajδeiθj ∈ M+
s,d

with aj > 0. A nonempty closed subset E of ∂D is called ε-porous,
0 < ε < 1, if for any subarc J of ∂D with J∩E 6= ∅, there exists a subarc
J̃ ⊂ J such that J̃ ∩ E = ∅ and |J̃ | > ε|J |, where |J | is the arc length
of J . Simply E is called porous if E is ε-porous for some 0 < ε < 1. A
union of finitely many porous sets is also porous. In [8], Mortini and
Nicolau proved that for a nonempty closed subset E of ∂D, E is porous
if and only if Sµ ∈ M for every µ with supp (µ) ⊂ E. Exactly, they
showed that if E is not porous then there exists a discrete measure
µ ∈ M+

s,d satisfying supp (µ) ⊂ E and Sµ /∈M. They also showed that

there exists a continuous measure µ ∈ M+
s,c satisfying supp (µ) = ∂D

and Sµ ∈M. In [7], the first author proved that for every closed subset
E of ∂D, there is a discrete measure µ ∈ M+

s,d such that supp (µ) = E

and Sµ ∈M. More precisely, it is proved that for each λ ∈ M+
s,d, there

is µ ∈ M+
s,d satisfying µ ∼ λ and Sµ ∈M.

This paper is a continuation of the paper [7]. We are interested in a
singular inner function Sµ such that supp (µ) is not porous. In Section
2, we prove that for each perfect subset E of ∂D, there is a continuous
measure µ ∈ M+

s,c such that supp (µ) = E and Sµ ∈ M. In Section
3, we prove that if Sλ ∈ M and supp (λ) is not porous, then there
exists µ ∈ M+

s satisfying µ ∼ λ − λ({ζ0})δζ0 for some ζ0 ∈ ∂D and
Sµ /∈ M. This shows that if E is perfect but not porous, then there
exists µ ∈ M+

s,c such that supp (µ) = E and Sµ /∈M.

2. Continuous singular inner functions in M
For an inner function I, we use the following notation:

{R1 < |I| < R2} = {z ∈ D : R1 < |I(z)| < R2}, 0 < R1 < R2 < 1.

The following lemma is pointed out in [8, Theorem 1] and is essentially
due to Hoffman’s work [4].

Lemma 2.1. Let I be an inner function. Then I ∈ M if and only if
for every pair (R1, R2) with 0 < R1 < R2 < 1, there exists a constant
c(R1, R2) depending on (R1, R2) with 0 < c(R1, R2) < 1 such that
Dρ(z, r) 6⊂ {R1 < |I| < R2} for every z ∈ D and r with c(R1, R2) ≤
r < 1.

The following is proved in [7, Lemma 2.2].
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Lemma 2.2. Let {µj}j be a sequence in M+
s satisfying supp (µi) ∩

supp (µj) = ∅ for i 6= j and
∑∞

j=1 µj(∂D) < ∞. Write µ =
∑∞

j=1 µj

and µ̃n =
∑n

j=1 µj. Let {εj}j be a sequence of numbers satisfying 0 <

εj < εj+1 < 1 and
∏∞

j=1 εj > 0 (or
∑∞

j=1(1− εj) < ∞ ). Suppose that

{|Sµ̃j
| < εj} ∩ {|Sµj+1

| < εj+1} = ∅
for every j ≥ 1. Then for each pair (R1, R2) with 0 < R1 < R2 < 1,
there exists a positive integer n0 such that if Dρ(z, r) ⊂ {R1 < |Sµ| <
R2}, then either Dρ(z, r) ⊂ {R1 < |Sµ̃n0

| < εn0} or Dρ(z, r) ⊂ {R1 <
|Sµj

| < (R2 + 1)/2} for one and only one j with j ≥ n0 + 1.

One easily checks the following lemma which follows from the defi-
nition of singular inner functions.

Lemma 2.3. Let E be a closed subset of ∂D and U be an open subset
of C with E ⊂ U . Then for each 0 < δ < 1, there exists ε > 0 such that
|Sµ| > δ on D\U for every µ ∈ M+

s with supp (µ) ⊂ E and µ(∂D) < ε.

By [8, Proof of Theorem 2], we have the following.

Lemma 2.4. Let E be a 1
4
-porous subset of ∂D. For each given pair

(R1, R2) with 0 < R1 < R2 < 1, there exists a constant c(R1, R2)
depending on (R1, R2) with 0 < c(R1, R2) < 1 such that

Dρ(z, r) 6⊂ {R1 < |Sµ| < R2}
for every µ ∈ M+

s with supp (µ) ⊂ E and for every r with c(R1, R2) ≤
r < 1.

Mortini and Nicolau [8, Theorem 2] proved the following.

Lemma 2.5. If E is a porous subset of ∂D, then Sµ ∈ M for every
µ ∈ M+

s with supp (µ) ⊂ E.

It is known that there are two types of continuous singular measures
µ ∈ M+

s,c with Sµ ∈ M. One is µ ∈ M+
s,c such that supp (µ) is porous

(by Lemma 2.5), and another one is given in [8, Proposition 6.1]. The
following is the main theorem in this section.

Theorem 2.6. If E is a perfect subset of ∂D, then there exists µ ∈ M+
s,c

such that supp (µ) = E and Sµ ∈M.

Proof. We may assume that E is not porous. We devide the proof into
three steps.

Step 1. We shall prove that for every perfect subset A of ∂D, there
exists a perfect 1

4
-porous subset B of A,
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First, we take a closed subarc I0 of ∂D such that |I0| ≤ 1, A ∩ I0 is
perfect, and two end points of I0 are contained in A. Next, we take an
open subarc J0 of I0 satisfying

(2.1) |J0| > |I0|/2,

(2.2) I0 \ J0 consists of two closed arcs I0,0 and I0,1,

(2.3) A ∩ I0,0 and A ∩ I0,1 are perfect sets,

(2.4) all end points of I0,0 and I0,1 are contained in A.

For each I0,i, i = 0, 1, we take an open subarc J0,i of I0,i satisfying

(2.5) |J0,i| > |I0,i|/2,

(2.6) I0,i \ J0,i consists of two closed arcs I0,i,0 and I0,i,1,

(2.7) A ∩ I0,i,0 and A ∩ I0,i,1 are perfect sets,

(2.8) all end points of I0,i,0 and I0,i,1 are contained in A.

Repeating the same argument, we get a family of closed arcs {Iλ :
λ ∈ Λn, n = 1, 2, · · · }, where Λn = {(0, i1, · · · , in) : ij = 0 or 1}, and it
is not difficult to see that

∞⋂
n=1

( ⋃

λ∈Λn

Iλ

)
∩ A

is a perfect 1
4
-porous subset of A.

Setp 2. In this step, we show that there is a sequence of mutually
disjoint perfect 1

4
-porous subsets {En}n of E such that

⋃∞
n=1 En is dense

in E.
By Step 1, there is a perfect 1

4
-porou subset E1 of E. Let

σ1 = sup
ξ∈E

dist(ξ, E1).

Since E is not porous, σ1 > 0. We take a perfect set E ′
1 with

E ′
1 ⊂

{
ζ ∈ E : dist(ζ, E1) > σ1/2

}
.

By Step 1, there is a perfect 1
4
-porous subset E2 of E ′

1. Obviously,
E1 ∩ E2 = ∅. Let

σ2 = sup
ξ∈E

dist(ξ, E1 ∪ E2).

Since E1 ∪ E2 is porous, σ2 > 0. We take a perfect set E ′
2 with

E ′
2 ⊂

{
ζ ∈ E : dist(ζ, E1 ∪ E2) > σ2/2

}
.
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By Step 1, there is a perfect 1
4
-porous subset E3 of E ′

2. Then E1, E2, E3

are mutually disjoint. Repeating the same argument, we have a se-
quence of mutually disjoint perfect 1

4
-porous subsets {En}n of E satis-

fying

En+1 ⊂
{

ζ ∈ E : dist
(
ζ,

n⋃
j=1

Ej

)
> σn/2

}
,

where

σn = sup
ξ∈E

dist
(
ξ,

n⋃
j=1

Ej

)
> 0.

We shall prove that
⋃∞

n=1 En is dense in E. To prove this, suppose
not. Then there exists σ0 satisfying σn ≥ σ0 > 0 for every n. Take a
sequence of points {ζn}n with ζn ∈ En. There is a subsequence {ζnj

}j

of {ζn}n such that ζnj
→ ζ0 as j → ∞ for some ζ0 ∈ E. By the

construction of the sequence {En}n,

dist(ζnj+1
, ζnj

) > σnj+1−1/2 ≥ σ0/2 > 0

for every j. This is a contradiction.

Step 3. We follow the proof of Theorem 2.5 given in [7]. Let {εj}j

be a sequence of numbers with 0 < εj < εj+1 < 1 for every j ≥ 1
and

∏∞
j=1 εj > 0. By Step 2, there is a sequence of mutually disjoint

perfect 1
4
-porous subsets {En}n of E such that

⋃∞
n=1 En is dense in

E. For each n, take µn ∈ M+
s,c with supp (µn) = En and ‖µn‖ = 1.

Applying Lemma 2.3, we can find a sequence of positive numbers {aj}j

with
∑∞

j=1 aj < ∞ satisfying
{∣∣∣S∑n

j=1 ajµj

∣∣∣ < εn

}
∩ {|San+1µn+1| < εn+1

}
= ∅

for every n ≥ 1. Write

µ =
∞∑

j=1

ajµj and µ̃n =
n∑

j=1

ajµj.

To prove Sµ ∈ M by contradiction, we assume that Sµ /∈ M. By
Lemma 2.1, there exists a pair (R1, R2) with 0 < R1 < R2 < 1 and a
sequence of pseudo-hyperbolic disks {Dρ(zk, rk)}k such that

Dρ(zk, rk) ⊂ {R1 < |Sµ| < R2}
for every k and rk → 1 as k → ∞. By Lemma 2.2, there exists a
positive integer n0 such that for each k, either

(2.9) Dρ(zk, rk) ⊂ {R1 < |Sµ̃n0
| < εn0}
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or

(2.10) Dρ(zk, rk) ⊂ {R1 < |Saj(k)µj(k)
| < (R2 + 1)/2}

for one and only one j(k) with j(k) ≥ n0 + 1. Since
⋃n0

j=1 Ej is a
porous set, by Lemma 2.5 we have Sµ̃n0

∈ M. Hence by Lemma 2.1,
the number of integers k satisfying (2.9) is finite, so that (2.10) holds
for all large enough k’s. Since rk → 1, this contradicts the assertion of
Lemma 2.4. ¤

3. Equivalent measures and M
We denote by M(∂D) the space of all bounded complex Borel mea-

sures on ∂D. With the total variation norm, M(∂D) is a Banach
space, and M(∂D) = C(∂D)∗, where C(∂D) is the Banach space of all
continuous functions on ∂D. We may consider the weak∗-topology on
M(∂D).

Lemma 3.1. Let λ, ν ∈ M+
s with supp (ν) ⊂ supp (λ). Then there

exists a sequence of measures {λn}n in M+
s satisfying that ‖λn‖ ≤ 2‖ν‖,

λn ∼ λ, and λn → ν in the weak∗-topology in M(∂D).

Proof. Let {εn}n be a sequence of positive numbers with εn‖λ‖ ≤ ‖ν‖
and εn → 0. For each positive integer n, let

Jn,j =
{

eiθ :
2π(j − 1)

n
≤ θ <

2πj

n

}
, 1 ≤ j ≤ n

and

λn = εnλ +
∑

j

{ν(Jn,j))

λ(Jn,j)
λ|Jn,j

: λ(Jn,j) 6= 0
}

.

It is not difficult to check that {λn}n has the desired properties. ¤
Note that if λn → ν in the weak∗-topology in M(∂D), then Sλn → Sν

uniformly on each compact subset of D as n →∞.

Theorem 3.2. Let λ ∈ M+
s with Sλ ∈M. If supp (λ) is not a porous

set, then there exists µ ∈ M+
s satisfying µ ∼ λ − λ({ζ0})δζ0 for some

ζ0 ∈ ∂D and Sµ /∈M.

Proof. By [8, Theorem 2], there exists ν ∈ M+
s satisfying supp (ν) ⊂

supp (λ) and Sν /∈ M. By Lemma 2.1, there exist R1, R2 with 0 <
R1 < R2 < 1 and a sequence of pseudo-hyperbolic disks {Dρ(zj, rj)}j

with rj → 1 such that

(3.1) Dρ(zj, rj) ⊂ {z ∈ D : R1 < |Sν(z)| < R2}
for every j. Note that |zn| → 1. We may assume that zj → ζ0 for
some ζ0 ∈ ∂D. Since Sν = Sν−ν({ζ0})δζ0

Sν({ζ0})δζ0
, we may assume that
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ν({ζ0}) = 0. Let {Jn}n be a sequence of open arcs in ∂D with Jn+1 ⊂
Jn and

⋂∞
n=1 Jn = {ζ0}. Write J0 = ∂D. Let αn, βn be the end points

of Jn. We may further assume that λ({αn, βn}) = ν({αn, βn}) = 0 for
every n. For each n ≥ 1, let

(3.2) νn = ν|Jn .

Since ‖νn‖ → 0,

(3.3) |Sνn| → 1 uniformly on Dρ(zj, rj)

as n →∞ for each fixed j. Let {εi}i be a sequence of positive numbers
with

(3.4) 0 < εi < 1 and
∞∏
i=1

εi > 0.

By induction, we can choose a subsequence {Jnk
}k of {Jn}n, a subse-

quence {Dρ(zjk
, rjk

)}k of {Dρ(zj, rj)}j, and a sequence {µk}k in M+
s

with µk ¿ λ satisfying certain additional properties mentioned later.
Let j1 = 1. By (3.1), (3.2), and (3.3), there exists a positive integer

n1 such that

(3.5) R1 < |Sν−νn1
| < R2 on Dρ(zj1 , rj1)

and

(3.6) |Sνn1
| > ε2 on Dρ(zj1 , rj1).

For convenience, let n0 = 0.
Since supp (ν) ⊂ supp (λ), by (3.2) supp (ν − νn1) ⊂ supp (λ) \ Jn1 .

By Lemma 3.1, there exists µ1 ∈ M+
s such that ‖µ1‖ ≤ 2‖ν − νn1‖,

µ1 ∼ λ|Jn0\Jn1
, and by (3.5), R1 < |Sµ1| < R2 on Dρ(zj1 , rj1). Since

ζ0 /∈ supp (ν − νn1),

inf
z∈Dρ(zj ,rj)

|Sν−νn1
(z)| → 1

as j →∞. Then by (3.1), there exists a positive integer j2 with j2 > j1

such that

(3.7) R1 < |Sνn1
| < R2 on Dρ(zj2 , rj2).

Since µ1 ∼ λ|Jn0\Jn1
,

inf
z∈Dρ(zj ,rj)

|Sµ1(z)| → 1

as j →∞, so we may further assume that

|Sµ1| > ε1 on Dρ(zj2 , rj2).
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By (3.3) and (3.7), there exists a positive integer n2 with n2 > n1

such that
R1 < |Sνn1−νn2

| < R2 on Dρ(zj2 , rj2),

(3.8) |Sνn2
| > ε3 on Dρ(zj1 , rj1) ∪Dρ(zj2 , rj2),

and by (3.6)
|Sνn1−νn2

| > ε2 on Dρ(zj1 , rj1).

By Lemma 3.1, there exists µ2 ∈ M+
s such that ‖µ2‖ ≤ 2‖νn1 − νn2‖,

µ2 ∼ λ|Jn1\Jn2
,

R1 < |Sµ2| < R2 on Dρ(zj2 , rj2),

and
|Sµ2| > ε2 on Dρ(zj1 , rj1).

There exists a positive integer j3 with j3 > j2 such that

R1 < |Sνn2
| < R2 on Dρ(zj3 , rj3)

and
|Sµi

| > εi on Dρ(zj3 , rj3) for i = 1, 2.

Take a positive integer n3 with n3 > n2 satisfying

R1 < |Sνn2−νn3
| < R2 on Dρ(zj3 , rj3),

|Sνn3
| > ε4 on

3⋃

k=1

Dρ(zjk
, rjk

),

and by (3.8)

|Sνn2−νn3
| > ε3 on Dρ(zj1 , rj1) ∪Dρ(zj2 , rj2).

Then there exists µ3 ∈ M+
s such that ‖µ3‖ ≤ 2‖νn2 − νn3‖, µ3 ∼

λ|Jn2\Jn3
,

R1 < |Sµ3| < R2 on Dρ(zj3 , rj3),

and
|Sµ3| > ε3 on Dρ(zj1 , rj1) ∪Dρ(zj2 , rj2).

Inductively, we can get sequences of positive integers {nk}k and
{jk}k, and a sequence {µk}k in M+

s such that

(3.9) ‖µk‖ ≤ 2‖νnk−1
− νnk

‖,
(3.10) µk ∼ λ|Jnk−1

\Jnk
,

(3.11) R1 < |Sµk
| < R2 on Dρ(zjk

, rjk
),

(3.12) |Sµk
| > εk on

k−1⋃
i=1

Dρ(zji
, rji

),
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and

(3.13) |Sµi
| > εi on Dρ(zjk

, rjk
) for 1 ≤ i < k.

Let

(3.14) µ =
∞∑

k=1

µk.

Then

‖µ‖ ≤
∞∑

k=1

‖µk‖

≤ 2‖ν − νn1‖+ 2
∞∑

k=2

‖νnk−1
− νnk

‖ by (3.9)

= 2
(
‖ν‖ − ‖νn1‖+

∞∑

k=2

(‖νnk−1
‖ − ‖νnk

‖)
)

≤ 2‖ν‖ < ∞.

Hence µ ∈ M+
s , and by (3.10) µ ∼ λ− λ({ζ0})δζ0 . Also by (3.11),

sup
z∈Dρ(zjk

,rjk
)

|Sµ(z)| ≤ sup
z∈Dρ(zjk

,rjk
)

|Sµk
(z)| ≤ R2,

and by (3.11), (3.12), and (3.13), we have

inf
z∈Dρ(zjk

,rjk
)
|Sµ(z)| = inf

z∈Dρ(zjk
,rjk

)

∞∏
i=1

|Sµi
(z)|

≥
( k−1∏

i=1

εi

)
R1

( ∞∏

i=k+1

εi

)

= R1

∞∏
i=1

εi

> 0 by (3.4).

Therefore, we have

Dρ(zjk
, rjk

) ⊂
{

z ∈ D : R1

∞∏
i=1

εi ≤ |Sµ(z)| ≤ R2

}

for every k. By Lemma 2.1, Sµ /∈M. ¤

Corollary 3.3. If λ ∈ M+
s,c and supp (λ) is not porous, then there

exists µ ∈ M+
s,c such that µ ∼ λ and Sµ /∈M.



SINGULAR INNER FUNCTIONS II 11

Corollary 3.4. If E be a perfect subset of ∂D which E is not porous,
then there exists µ ∈ M+

s,c satisfying supp (µ) = E and Sµ /∈M.

We end the paper with the following two problems.

Problem 3.5. Is there λ ∈ M+
s,c satisfying Sµ /∈M for every µ ∈ M+

s,c

with µ ∼ λ?

Problem 3.6. Is there λ ∈ M+
s,d such that Sµ ∈M for every µ ∈ M+

s,d

with µ ∼ λ and supp (λ) is not porous?
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