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ABSTRACT. Let M be the family of inner functions whose non-
trivial Frostman shifts are Carleson-Newman Blaschke products.
It is known that for any closed subset of the unit circle 9D there
is a discrete singular inner function S, with supp (n) = E and
Sy € M. In this paper, we are interested in continuous singular
inner functions S, in M or not in M with nonporous supp (p). For
example, if F is a perfect subset of 9D then there is a continuous
singular inner function S, € M with supp (1) = E (Theorem 2.6).
We also show that if E is a perfect subset of 9D which is not
porous then there is a continuous singular inner function S,, ¢ M
with supp (u) = E (Corollary 3.4).

1. INTRODUCTION

Let H* be the Banach algebra of bounded analytic functions in the
open unit disk D with the supremum norm. The pseudo-hyperbolic
distance in D is given by

zZ—Ww

p(z,w) = , zZ,w € D.

1 —wz
A pseudo-hyperbolic open disk with center z € D and radius 0 < r < 1
is denoted by D,(z,7), that is,

D,(z,r) ={w € D : p(z,w) <r}.

We identify a function in H* with its radial limit function on the
unit circle 9D. A function I in H* is called an inner function if
[1(e)] = 1 for almost every e € 9D. For a sequence {z,}, in D with
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> (1 —zn]) < 00, we have a Blaschke product defined by

n=1

H it Lep

|zn] 1 —Zp2

A Blaschke product b is an inner function. Moreover, if for every
bounded sequence of complex numbers {a,}, there exists f in H>
satisfying f(z,) = a, for every n, then both the sequence {z,}, and
the Blaschke product b are called interpolating. In [1], Carleson proved
that {z,}, is interpolating if and only if

1an‘
ank

k:k#n

A Blaschke product b is called Carleson-Newman if b is a product of
finitely many interpolating Blaschke products. In the study of H®,
Carleson-Newman Blaschke products play an important role, see [2].
Let M be the set of all bounded positive (nonzero) singular Borel
measures on 0D with respect to the Lebesgue measure on dD. We
use familiar notations: for u,v € M}, u < v (absolutely continuous),
p ~ v (equivalent, ie., 4 < v and v < ), and d.e (the unit point
mass at e € 9D), and supp (1) (the closed support set). A measure
p is called continuous if p({e?}) = 0 for every e € dD. A measure
p € M} is called discrete if = )77 | apdeio,. We denote by M, and
M : , the sets of continuous and dlscrete measures in MJ, respectively.
For each p € M, the associated singular inner function S, is defined

by
i0
Su(z) = exp (—/ - i Zd,u(ew)) , z€D.
)

p el —z

See [5, 6, 7] for the study of singular inner functions related to the
subject of this paper.

For each @ € D and an inner function I, we define the Frostman
shift 7, by
I(z) — «
ol)(2) = — =7
D) = 7510

Trivially, 7,(1) is inner for every o € D. It is known as the Frostman
theorem that 7,(/) is a Blaschke product for every a € D except for
a set of logarithmic capacity 0. We denote by M the family of inner
functions I for which 7,(I) is a Carleson-Newman Blaschke product
for every a € D with o # 0. In [8], Mortini and Nicolau studied the
class M, especially singular inner functions in M. A typical example

z€D.
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in M is

eif 1 »
), z€eD,
z

S50 (2) = exp ( -

see [3]. Also we know that S, € M for every = 37 a0, € M_,
with a; > 0. A nonempty closed subset £ of dD is called e-porous,
0 < e < 1, if for any subarc J of 9D with JNE # (), there exists a subarc
J C J such that J N E = () and |J| > &|.J|, where |.J| is the arc length
of J. Simply F is called porous if E is e-porous for some 0 < e < 1. A
union of finitely many porous sets is also porous. In [8], Mortini and
Nicolau proved that for a nonempty closed subset E of 0D, E is porous
if and only if S, € M for every p with supp (1) C E. Exactly, they
showed that if ' is not porous then there exists a discrete measure
p € M, satistying supp (1) C E and S, ¢ M. They also showed that
there exists a continuous measure y € M ;FC satisfying supp (u) = 0D
and S, € M. In [7], the first author proved that for every closed subset
E of 0D, there is a discrete measure p € M j , such that supp (u) = E
and S, € M. More precisely, it is proved that for each A € M j 4> there
is p € M, satisfying yu ~ X and S, € M.

This paper is a continuation of the paper [7]. We are interested in a
singular inner function S, such that supp (1) is not porous. In Section
2, we prove that for each perfect subset E of 0D, there is a continuous
measure p € M, such that supp () = E and S, € M. In Section
3, we prove that if Sy, € M and supp () is not porous, then there
exists p € M satisfying u ~ A — A({(o})d¢, for some (o € 0D and
S, ¢ M. This shows that if E is perfect but not porous, then there
exists p € M, such that supp (1) = E and S, ¢ M.

c

it —

2. CONTINUOUS SINGULAR INNER FUNCTIONS IN M
For an inner function I, we use the following notation:
{Ri<|I|<Ry}={z€D:R <|I(2)|] < Re}, 0< R <Ry<l.

The following lemma is pointed out in [8, Theorem 1] and is essentially
due to Hoffman’s work [4].

Lemma 2.1. Let I be an inner function. Then I € M if and only if
for every pair (Ry, Ry) with 0 < Ry < Ry < 1, there exists a constant
c(Ry, Ry) depending on (Ri, Ry) with 0 < ¢(Ry,Ry) < 1 such that
D,(z,7) ¢ {R1 < |I| < Ry} for every z € D and r with ¢(Ry, Ry) <
r<1.

The following is proved in [7, Lemma 2.2].
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Lemma 2.2. Let {u;}; be a sequence in M satisfying supp (p1;) N

supp (p;) = 0 for i # j and 3772 1;(0D) < oo. Write p = 3772 p;

and fi, = 7, py. Let {;}; be a sequence of numbers satisfying 0 <

gj <egjpn <land [[}Z,6; >0 (or 3277 (1 —¢;) < oo ). Suppose that
{‘Sﬁj’ < 5]'} N {‘SMH‘ < 5j+1} =0

for every j > 1. Then for each pair (Ry, Ry) with 0 < Ry < Ry < 1,

there exists a positive integer ng such that if D,(z,7) C {Ry < |S,| <

Ry}, then either D,(z,7) C {Ry < |Sq, | < €no} or Dp(2z,7) C {R; <
1Sy,] < (Ry 4+ 1)/2} for one and only one j with j > ng + 1.

One easily checks the following lemma which follows from the defi-
nition of singular inner functions.

Lemma 2.3. Let E be a closed subset of 0D and U be an open subset
of C with E C U. Then for each 0 < § < 1, there exists € > 0 such that
|S,| > 8 on D\U for every p € M} with supp (1) C E and p(0D) < e.

By [8, Proof of Theorem 2|, we have the following.

Lemma 2.4. Let E be a i-pomus subset of OD. For each given pair
(Ry, Ry) with 0 < Ry < Ry < 1, there exists a constant ¢(Ry, Ry)
depending on (Ry, Re) with 0 < ¢(Ry, R2) < 1 such that

Dp(z,r) ¢ {R: < |Su| < Ry}

for every € M} with supp (1) C E and for every r with ¢(Ry, Re) <
r<l1.

Mortini and Nicolau [8, Theorem 2] proved the following.

Lemma 2.5. If E is a porous subset of 0D, then S, € M for every
w € MI with supp (1n) C E.

It is known that there are two types of continuous singular measures
p € M7, with S, € M. One is p € M, such that supp (1) is porous

(by Lemma 2.5), and another one is given in [8, Proposition 6.1]. The
following is the main theorem in this section.

Theorem 2.6. If I is a perfect subset of 0D, then there evists u € M,
such that supp () = E and S, € M.

Proof. We may assume that E is not porous. We devide the proof into
three steps.

Step 1. We shall prove that for every perfect subset A of 9D, there
exists a perfect i—porous subset B of A,
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First, we take a closed subarc Iy of D such that |Iy] <1, ANy is
perfect, and two end points of I, are contained in A. Next, we take an
open subarc Jy of I satisfying

2.1) 1] > 11ol/2
(2.2) In \ Jy consists of two closed arcs Ipo and Iy,

(2.3) ANy and AN Iy, are perfect sets,

(2.4) all end points of Iy and Iy ; are contained in A.

For each 1j;,7 = 0,1, we take an open subarc Jy; of Iy; satisfying
(2.5) |Josl > |Lol/2,

(2.6) In; \ Jo, consists of two closed arcs Ip;o and I, 1,

(2.7) AN 1y,o and AN Iy, are perfect sets,

(2.8) all end points of Iy, and Iy;; are contained in A.

Repeating the same argument, we get a family of closed arcs {1, :
AeAN,,n=1,2,---} where A,, = {(0,41,--- ,4,) : i, =0 or 1}, and it
is not difficult to see that

is a perfect }l—porous subset of A.

Setp 2. In this step, we show that there is a sequence of mutually
disjoint perfect $-porous subsets { £, },, of E such that | J,-, E, is dense
in E.

By Step 1, there is a perfect }L—porou subset E; of E. Let

o1 = sup dist(&, Ey).
¢eE

Since F is not porous, o1 > 0. We take a perfect set E] with

Ey C {¢ € E : dist(¢, Ey) > 01/2}.
By Step 1, there is a perfect }E—porous subset Fy of Ej. Obviously,
El N E2 = @ Let

o9 = sup dist(§, E1 U Es).
éelk

Since Fy U Es is porous, oo > 0. We take a perfect set E} with
Eé C {C S dZSt(C,El U EQ) > 0'2/2}.
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By Step 1, there is a perfect i—porous subset F5 of E). Then E,, Ey, E3
are mutually disjoint. Repeating the same argument, we have a se-
quence of mutually disjoint perfect %—porous subsets {E, },, of F satis-

fying
E,1 C {g cE: dist(C,jL:JlEj) > an/z},

where

Op = sSup dist(ﬁ, E) > 0.

We shall prove that |J,~ | E,, is dense in E. To prove this, suppose
not. Then there exists og satisfying o, > g9 > 0 for every n. Take a
sequence of points {(,}, with ¢, € E,. There is a subsequence {(y,};
of {Cu}n such that ¢,, — (o as j — oo for some (; € E. By the
construction of the sequence {E, },,

dist(Cnyyrs Cny) > Onyor—1/2 2 00/2 >0
for every j. This is a contradiction.

Step 3. We follow the proof of Theorem 2.5 given in [7]. Let {¢,};
be a sequence of numbers with 0 < ¢; < €41 < 1 for every j > 1
and H;’il g; > 0. By Step 2, there is a sequence of mutually disjoint

perfect t-porous subsets {E,}, of E such that |~ E, is dense in
E. For each n, take p, € MJ, with supp (p,) = E, and [[u,|| = 1.
Applying Lemma 2.3, we can find a sequence of positive numbers {a;};
with 3% | a; < oo satisfying

{ ’SZ?:I Ajhj

for every n > 1. Write

p=> aju; and i, =Y aju;.
j=1

j=1

< gn} N {‘San+lﬂn+l’ < 5n+1} =0

To prove S, € M by contradiction, we assume that S, ¢ M. By
Lemma 2.1, there exists a pair (R, Ry) with 0 < Ry < Ry < 1 and a
sequence of pseudo-hyperbolic disks {D,(2k, 1) }x such that

Dy(2k; 1) € {B1 < [Su| < Ra}

for every k and r, — 1 as k — oo. By Lemma 2.2, there exists a
positive integer ng such that for each k, either

(2.9) D,(zk, 1) C{R1 < |Sq,,| < é€no}
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or
(210) Dp(Zk,Tk) C {Rl < ‘Saj(k)#j(k)’ < <R2 + 1)/2}

for one and only one j(k) with j(k) > mny + 1. Since U?L E; is a
porous set, by Lemma 2.5 we have S, € M. Hence by Lemma 2.1,
the number of integers k satisfying (2.9) is finite, so that (2.10) holds

for all large enough k’s. Since r, — 1, this contradicts the assertion of
Lemma 2.4. 0

3. EQUIVALENT MEASURES AND M

We denote by M(0D) the space of all bounded complex Borel mea-
sures on dD. With the total variation norm, M(0D) is a Banach
space, and M (0D) = C(9D)*, where C(0D) is the Banach space of all
continuous functions on dD. We may consider the weak*-topology on
M(0D).

Lemma 3.1. Let \,v € M with supp(v) C supp()). Then there
exists a sequence of measures {\, },, in M satisfying that |\, || < 2|y,
An ~ A, and N\, — v in the weak*-topology in M(0D).

Proof. Let {e,}n be a sequence of positive numbers with &, ||A|| < ||v]|
and e, — 0. For each positive integer n, let
o 2m(j—1 215
Jn7j:{ez9:M§9<ﬂ}, 1<j<n
n n
and

h=ead ot S {0, M) £ 0},

It is not difficult to check that {\,}, has the desired properties. [

Note that if A\, — v in the weak*-topology in M (0D), then Sy, — S,
uniformly on each compact subset of D as n — oc.

Theorem 3.2. Let A € M with S\ € M. If supp () is not a porous
set, then there exists p € M satisfying p ~ X — X({o})d¢, for some
Co € 9D and S, ¢ M.

Proof. By [8, Theorem 2], there exists v € M satisfying supp (v) C
supp (A) and S, ¢ M. By Lemma 2.1, there exist Ry, Ry with 0 <
R, < Ry < 1 and a sequence of pseudo-hyperbolic disks {D,(2;,7;)};
with r; — 1 such that

(3.1) D,(z;,r;) C{z € D: Ry <|5(2)| < Rz}
for every j. Note that |z, — 1. We may assume that z; — ( for

some (o € dD. Since S, = SV*V({CO})% Su({co})6407 we may assume that
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v({¢}) = 0. Let {J,}, be a sequence of open arcs in D with J, ., C
Jn and (7, J, = {Co}. Write Jy = 9D. Let a,, 8, be the end points
of J,. We may further assume that A\({a,, 5,.}) = v({an, 5,}) = 0 for
every n. For each n > 1, let

(32) Vp = V|Jn'
Since ||v,|| — 0,
(3.3) 1Sy, — 1 uniformly on D,(z;,7;)

as n — oo for each fixed j. Let {g;}; be a sequence of positive numbers
with

(3.4) 0<eg <1 and H€¢>O.
i=1
By induction, we can choose a subsequence {.J,,, }x of {J,,}», a subse-
quence {D,(z;,, 7)1k of {D,(z;,7;)};, and a sequence {pg}x in M
with py < A satisfying certain additional properties mentioned later.
Let j; = 1. By (3.1), (3.2), and (3.3), there exists a positive integer
n, such that

(35) R < |Syfyn1’ < Ry on Dp(Zjl,T’jl)
and
(3.6) |Sy,, | > €2 on Dy(zj,,75).

For convenience, let ng = 0.
Since supp (v) C supp (M), by (3.2) supp (v — vpn,) C supp (A) \ Jn,.
By Lemma 3.1, there exists u1 € M such that ||| < 2|y — v, |,
p1 ~ Al \ga, > and by (3.5), Ry < [Sy,| < Ry on D,(zj,,75). Since

CO ¢ supp (y - yn1)7
inf  [S,_

z€Dp(zj,7;5)

() =1

Vnq

as j — oo. Then by (3.1), there exists a positive integer jo with jo > j;
such that

(37) Rl < ’San‘ < RZ on Dp(zjmrjé)'

Since M1 ~ A J"o\‘]m’

inf |5, (2)] —1

z€Dp(z5,r5)
as j — 00, so we may further assume that

|S,u1’ > €& on Dp(zjmrjz)'
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By (3.3) and (3.7), there exists a positive integer ny with ny > ny
such that

R < |S | < Ry on Dp(szaTJQ)7

(38) ’SVnQ‘ > &3 on Dp('zjm 71]'1) U D,O(ijﬂrjz)a
and by (3.6)
’St/nlfvn2| >ey on Dpy(zj,, 7).

By Lemma 3.1, there exists pus € M such that ||| < 2||vn, — Vnsll,
Mo ~ >\|Jn1\Jn27
Ry < [Su,| < Ry on Dp(24,,75,),
and
|S,,] > €2 on D,(zj,75).
There exists a positive integer j3 with j3 > jo such that
Ry <|[S,,,| <Ry on Dpy(2j,7)
and
1S, | > e on D,(zj,,1;,) fori=1,2.
Take a positive integer ng with ns > ns satisfying
Ry < |S | <Ry on D,(zj,,75),

Vng —Vng

3
Sy, | > €4 on U D, (%5, 7)),
k=1

and by (3.8)
|5,

Then there exists us € M such that [|us]| < 2||vn, — Vnsll, 3 ~
)\|Jn2\Jn37

| >e3 on Dy(zj,,75) UDp(24,,75,).

ng —Vng

Ry < |S,u3| <R, on Dﬂ(zj377ﬂj3)a
and
‘S%’ > €3 on DP(Zjl?rjl) U DP(ijuer)'
Inductively, we can get sequences of positive integers {n;}, and
{jr}x, and a sequence {py}r in M such that

(3.9) ] < 2wmg s = v

(3.10) e ~ Al N\ s

(3.11) R, < ’S,U«k| < Ry on DP(ij7rjk)7
k—1

(312) |S,U«k‘ > € on U Dp(zjmrji)?

=1
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and
(3.13) 1S, | >e on D,(zj,,r;,) forl<i<k.
Let
(3.14) p=>
k=1
Then

lull <> Nl
k=1

< 2y = vl +2) llvn — vl by (3.9)
k=2

= 2l = Wl + DU, | = D)
k=2

< 2ly| < 0.
Hence p € M, and by (3.10) pu ~ XA — A({(o})d¢,- Also by (3.11),
sup  [Su(2)] < sup [S(2)] < R,

2€Dp(25,,,7j,) 2€Dp (25, ,7j;,)

and by (3.11), (3.12), and (3.13), we have

inf S (z = inf S (z
ZEDP(ij7Tjk)’ N( )’ ZGDP(ij’Tjk)E| ‘ul( )|

e}

> (IT=)m( 11 <)

i=k+1
= R H €
i=1
> 0 by (3.4).
Therefore, we have

Dy(zgrs) € {z€ D R[] e < 1,(2)] < B )

i=1

for every k. By Lemma 2.1, S, ¢ M. O

Corollary 3.3. If A € M. and supp()\) is not porous, then there
exists p € M, such that y ~ X\ and S, ¢ M.
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Corollary 3.4. If E be a perfect subset of 0D which E is not porous,
then there exists u € MJ, satisfying supp (u) = E and S, ¢ M.

We end the paper with the following two problems.

Problem 3.5. Is there A € M, satisfying S,, ¢ M for every u € M,
with p~ \?

Problem 3.6. Is there A € M, such that S, € M for every u € M,
with  ~ A and supp (\) is not porous?
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