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Abstract

Two kinds of optimal convergence orders in L1-norm to a self-similar solution are
proved or conjectured for various evolutionary problems so far. The first convergence
order is of the magnitude of the similarity solution itself and the second one is of
order 1/t. Employing a potential comparison technique to scalar conservation laws
we may easily see that these asymptotic convergence orders are related to space
and time translation of potentials. We present the technique clearly in the simple
setting of scalar conservation laws in one space dimension.
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1 Introduction

Recently the optimal convergence orders have been actively studied for evo-
lutionary problems with nonlinear convection or diffusion. In the literature
one may find two kinds of optimal convergence orders in L1-norm. The first
one is the magnitude of the source-type solution. For example the Barenblatt
solution to the nonlinear diffusion equation ut = ∆um has the order O(t−n/λ)
for t large, where n is the space dimension and λ := 2− n(1−m). The L1

convergence of exactly this order can be found in various cases [2,3,8,18,24].

On the other hand a different kind of convergence order O(t−1) for t large has
been observed for solutions to nonlinear diffusion equations [4,13], for solutions
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to its linearized problems [7,25], and for solutions to scalar conservation laws
[12]. Similar convergence order O(t−(1−ε)) for any ε > 0 has been obtained for
convection [9] and fast diffusion equations [21]. Notice that this convergence
order is independent of the space dimension and the similarity structure of
the problem.

In this article we apply the potential comparison technique, which has been
developed for nonlinear diffusion [13]. In the simplified setting of scalar con-
servation laws of this paper, one can easily see that those convergence orders
are related to a space and a time shift of potentials. We hope this approach
gives readers an insight on the role of potentials and on the asymptotics of
evolutionary equations.

The study of the solutions to the Cauchy problem of scalar conservation laws
in one-space dimension,

ut + f(u)x = 0, u(x, 0) = u0(x), x ∈ R, t > 0, (1)

serves as a prototype of hyperbolic conservation laws. Here the flux f is as-
sumed to be smooth without the convexity assumption. In this paper we con-
sider the primitive of the solution,

U(x, t) =

x∫

−∞
u(y, t)dy, (2)

as its potential and show the optimal convergence orders to source-type solu-
tions in L1-norm as the time variable t tends to infinity.

Liu [19] proved that, if the flux is convex (f ′′(u) ≥ 0), two quantities,

p = − inf
x

U(x, t) and q = p + lim
x↑∞

U(x, t),

are constant and that the asymptotic structure of the solution is decided by
these invariant constants. One can also find the primitive U explicitly from the
Hopf-Lax formula ([10], Section 3.3). These clearly indicate that the primitive
of the solution should play the key role in the asymptotics of the problem.
The potential comparison technique presented in this note shows how the
structure of the convection equation is decoupled by employing the primitive
as its potential. Note that the Newtonian potential was taken as a potential
for the fast diffusion equations [13] to decouple the Laplace operator in the
problem.

One of the main goals in the asymptotic study is to find the contraction order
between two solutions. In this note we consider a positive solution with initial
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value u0(x) satisfying

u0 ≥ 0, spt(u0) ⊂ [0, L],

L∫

0

u0(x)dx = M > 0, L > 0,

where constants M, L > 0 depend on the initial value u0. Let ρ(x, t) be the
positive solution of the source-type sharing the same mass and R(x, t) be its
potential, i.e., ρ(x, t) satisfies

ρt + f(ρ)x = 0, ρ(x, 0) = Mδ(x), x ∈ R, t > 0, (3)

and

R(x, t) =

x∫

−∞
ρ(y, t)dy,

where δ(x) is the Dirac-delta measure.

The first convergence order we are going to show is that

‖u(t)− ρ(t)‖1 ≤ 2L max
x

ρ(x, t) = O
(

max
x
|ρ(x, t)|

)
as t →∞. (4)

(Here, we denote u(t) for a function on R given by u(t)|x = u(x, t).) This
convergence order is obtained in [12] under the convexity assumption employ-
ing a comparison technique between a solution and a rarefaction wave. The
convergence order without a convexity assumption is a new result. However,
the main contribution of this note is on the simplicity and the generality of
the method.

One may expect a higher convergence order by placing the source-type solution
at the correct spacial location. In fact we will see that there exists c ∈ R such
that

‖u(t)− ρc(t)‖1 = O
(
f( max

x
|ρ(x, t)|)

)
as t →∞, (5)

where ρc is the space translation given by ρc(x, t) = ρ(x− c, t).

One of the goals of this article is to introduce a potential comparison technique
in the simple setting of scalar conservation laws. In this article, the maximum
potential of results is not pursued to keep the presentation simple. Extension of
this method to more general cases including nonlinear diffusions is in progress.

This note consists as followings. In Section 2 several preliminary steps are con-
structed including the potential comparison principle. The asymptotic conver-
gence orders in (4) and (5) are achieved in Sections 3 and 4, respectively. To
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show the convergence orders explicitly we apply the theory to the power law,
f(u) = uq/q, q > 1, in Section 5. In this case the convergence order in (4)
corresponds to O(t−1/q) which shows the dependence on the flux. However,
the convergence order corresponding to (5) is O(t−1) which is independent of
the flux.

2 Preliminaries

The flux f(u) is assumed to be smooth but not necessarily convex. Moreover,
we may assume

f(0) = f ′(0) = 0 (6)

without loss of generality. For the simplicity we take a compactly supported
positive initial value, i.e.,

u0 ≥ 0, spt(u0) ⊂ [0, L],

L∫

0

u0(x)dx = M > 0, L > 0. (7)

Due to the singularity property of the problem the solution is defined in a
weak sense that satisfies

∫ ∫
(uφt + f(u)φx )dxdt = −

∫
u0(x)φ(x, 0)dx (8)

for any test function φ ∈ C∞
0 (R × [0,∞) ). However the weak solution is

not unique and, to single out the physically meaningful one, we consider the
solution that satisfies the Oleinik’s entropy condition, i.e., for any point x0 ∈
R, t > 0,

l(u) ≤ f(u) for all ul < u < ur, and l(u) ≥ f(u) for all ur < u < ul, (9)

where l(u) is the linear function connecting two states ur and ul, i.e.,

l(u) =
f(ul)− f(ur)

ul − ur

(u− ul) + f(ul), ul = lim
x↑x0

u(x, t), ur = lim
x↓x0

u(x, t).

Such an entropy solution is well-posed [23] and one can easily check that, if
the flux is convex, f ′′(u) ≥ 0, the condition is equivalent to the the condition,

lim
x↑x0

u(x, t) ≥ lim
x↓x0

u(x, t) x0 ∈ R, t ≥ 0. (10)
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Lemma 1 (Monotone decay of potentials) For any given t > t0 ≥ 0 and
x ∈ R,

U(x, t) = U(x, t0)−
t∫

t0

f(u(x, s))ds. (11)

PROOF. Since the wave speed is finite, for any fixed t > 0, there exists
x0 ∈ R such that u(y, s) = 0 for all y < x0 and s < t. Let Ω := [x0, x]× [t0, t]
and consider the characteristic function φ(y, t) = χ|Ω. Since φ is not smooth,
we may not directly apply φ to (8). However, using classical approximation
arguments with smooth functions, φε → φ, spt(φε) ⊂ Ω, one may obtain

U(x, t)− U(x, t0) = −
t∫

t0

[f(u(x, s))− f(u(x0, s))]ds.

Since u(x0, s) = 0 for all t0 ≤ s ≤ t, one obtains (11). 2

Remark 2 This lemma implies that the potential U is a weak solution solu-
tion of the following Hamilton-Jacobi equation,

Ut + f(Ux) = 0. (12)

The first step of the potential comparison technique is to choose the potential
function that may decouple the structure of the problem under consideration.
The primitive in (2) will play the role of the potential to the conservation law.
The second step is to obtain the potential comparison property.

Proposition 3 (Potential comparison) Let U(x, t) and Ũ(x, t) be the po-
tentials of two integrable solutions u, ũ to (1). If U(x, 0) ≤ Ũ(x, 0) for all
x ∈ R, then U(x, t) ≤ Ũ(x, t) for all x ∈ R, t > 0.

PROOF. The equation (11) implies that the potential U satisfies Ut+f(u) =
0 in a weak sense and, hence, E(x, t) = Ũ(x, t)− U(x, t) is a weak solution of

Et + a(x, t)Ex = 0, a(x, t) = (f(ũ)− f(u))/(ũ− u),

where a(x, t) is understood as the derivative of the smooth flux if u = ũ. For
any given point (ξ0, t0) ∈ R×R+, one may consider a backward characteristic
ξ(t) such that

ξ′(t) ∈ I(ul, ur), ξ(t0) = ξ0, 0 < t < t0 almost everywhere,

where ul = limx↑ξ(t) a(x, t), ur = limx↓ξ(t) a(x, t) and I(ul, ur) is the closed
interval having ul, ur as its end points. Since E(x, 0) ≥ 0, one clearly has
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E(ξ(0)±, 0) ≥ 0 for any characteristics that emanates from the point (ξ0, t0).
Therefore, E(ξ0, t0) ≥ 0 and hence U(x, t) ≤ Ũ(x, t) for all t > 0 and x ∈
R. 2

The theory of characteristics is employed in the proof of Proposition 3. For
more detailed theory we refer readers to [5,6]. In the proof the convexity of the
problem is not used. The only thing required is the finite speed of propagation
which comes from the smoothness of the flux.

If the flux is convex, then, under the assumptions in (6), we may easily see
that, for all t > 0,

min{spt(ũ(t))} ≤ min{spt(u(t))} if min{spt(ũ(0))} ≤ min{spt(u(0))}

since the wave speed is positive, and hence the minimum of the support of
a solution is not changed. For nonconvex flux, this relation does not hold
in general. However, Lemma 3 immediately provides some useful information
regarding evolution of support of solutions.

Corollary 4 (Evolution of supports) Let u, ũ satisfy (1). If

x∫

−∞
(ũ(y, 0)− u(y, 0))dy ≥ 0 for all x ∈ R,

then min{spt(ũ(t))} ≤ min{spt(u(t))} for all t ≥ 0.

PROOF. Let c = min{spt(u(t))} and c̃ = min{spt(ũ(t))}. If c < c̃, then
U(x, t) > Ũ(x, t) for x ∈ (c, c̃) which contradicts to Lemma 3. Therefore,
c̃ ≤ c for all t > 0. 2

The convergence order between two primitives can be transferred to their
derivatives. One may found such regularity property from Ladyženskaja et.
al. [16] (see Theorem 4.1 in Chapter VII). In the following lemma we obtain
similar result using the diminishing property of the number of intersection
points between two solutions. The proof depends on the fact that ρ(t)− u(t)
changes its sign only once. For the convex case the Oleinik inequality implies
that ρ is the steepest one and hence one can easily show that there is only one
sign-changing point. In the following proof we employ the diminishing property
of lap numbers of uniformly parabolic problems to show the uniqueness of the
sign-changing point for a general flux without the convexity.
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Lemma 5 Let u(x, t) be the solution to the Cauchy problem (1),(7) and ρ be
the source-type solution (3). Then,

‖ρ(t)− u(t)‖1 = 2‖R(t)− U(t)‖∞.

PROOF. It is well known that the solution uε that satisfies the viscous prob-
lem,

uε
t + f(uε)x = εuε

xx, lim
t↓0

uε(x, t) = u0(x),

converges to the solution u of the inviscid problem (1) as ε → 0. Let eε :=
ρε−uε, where ρε and uε are the solutions to the viscous problem that converges
to ρ and u, respectively. Then, eε satisfies

eε
t = εeε

xx + f(ρε)x − f(uε)x

(
= εeε

xx +
f(ρε)x − f(uε)x

ρε
x − uε

x

ex

)
. (13)

Let U ε and Rε be the potentials (or primitives) of uε and ρε, respectively,
and Eε = Rε−U ε. Then, integrating the above relation on (−∞, x) gives the
relation for Eε, which is

Eε
t = εEε

xx +
f(ρε)− f(uε)

ρε − uε
Ex. (14)

Employing the theory of intersection comparison (see [11], Chapter 1) or of
lap number (see [22]), we may conclude that the number of sign changes is
at most once since limt↓0 ρ(x, t) = δ(x) and spt(u0) ⊂ [0, L]. Let xε(t) be the
sign-changing point of eε = ρε − uε. Then, clearly,

‖u(t)− ρ(t)‖1 =
∫
|u(x, t)− ρ(x, t)|dx = lim

ε↓0

∫
|uε(x, t)− ρε(x, t)|dx

= 2 lim
ε↓0

xε∫

−∞
[ρε(x, t)− uε(x, t)]dx = 2 lim

ε↓0
‖U ε(t)−Rε(t)‖∞

= 2‖U(t)−R(t)‖∞. 2

3 Convergence order of the similarity scale

The next step, which is the third one, is to trap the potential U between R
and its translation. In this section we take a space translation of R and show
the convergence order in (4).
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Lemma 6 (Trapped!) Let u be the entropy solution of (1),(7) and ρ be the
canonical solution (3). Then, for all x ∈ R, t > 0,

R(x− L, t) ≤ U(x, t) ≤ R(x, t), (15)

min{spt(ρ(t))} ≤ min{spt(u(t))}. (16)

PROOF. Since ρ(x, 0) = δ(x), R(x, 0) is the Heaviside step function

R(x, 0) =





0, if x < 0,

1, if x ≥ 0.

Therefore the restrictions in (7) imply that

R(x− L, 0) ≤ U(x, 0) ≤ R(x, 0).

Proposition 3 implies that (15) holds for all t > 0. The estimate (16) comes
from Corollary 4. 2

The fourth step is to compute the decay rate of the potential difference which
comes directly from the estimate (15):

Lemma 7 (Convergence rate of potentials) Under the same conditions
as in Lemma 6,

‖U(t)−R(t)‖∞ ≤ L max
x

ρ(x, t). (17)

PROOF. Using the comparison inequality (15), one obtain

|U(x, t)−R(x, t)| ≤ |R(x− L, t)−R(x, t)| =
x∫

x−L

ρ(y, t)dy ≤ L max
x

ρ(x, t).

The right hand side is independent of the point x and hence the estimate is
uniform. 2

The last step is to transfer the decay order of the potential difference to the
convergence order of the general solution u to the source-type solution ρ in
L1 sense. This step is already obtained in Lemma 5 and, hence, the following
theorem on the convergence rate immediately follows.
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Theorem 8 Let u(x, t) be the solution to the Cauchy problem (1),(7) and ρ
be the source-type solution (3). Then,

||u(t)− ρ(t)||1 ≤ 2L max
x

ρ(x, t) as t →∞. (18)

Employing the potential comparison technique makes the proof simple with-
out using the theory of characteristics which is rather complicate for the non-
convex case. In the proof of Proposition 3 only the finite speed of characteris-
tics is used. One may also obtain the comparison property by employing the
maximum principle to (14) and then taking the zero viscosity limit.

Remark 9 The asymptotic convergence in the Wasserstein metric has been
shown for solutions to scalar conservation laws (1) in [1]. Their method is
also based on the primitives of solutions and the corresponding convergence
order in the L1 norm is the one in (18). This result is under a general con-
vexity assumption and the technique is based on the Hopf-Lax formula for the
Hamilton-Jacobi equation (12).

4 Convergence order beyond the similarity scale

In this section we show the convergence order in (5). The main idea is to
estimate the potential difference U −Rc using R and its time translation such
as

‖U(t)−Rc(t)‖∞ ≤ ‖R(t)−R(t + T )‖∞,

where Rc(x, t) = R(x − c, t). Suppose that u = 0 is not a limit point of the
inflection points of the flux f(u). Then there exists u1 > 0 such that there is
no inflection point on the interval (0, u1). Since the solution decays to zero,
there exists S > 0 such that ρ(x, t), u(x, t) < u1 for all t > S. By taking
T := T +S if needed, the convexity assumption is acceptable for the estimate
using a time translation in this section. Therefore, we assume that the flux is
convex in this section, i.e.,

f ′′(u) ≥ 0. (19)

Under the convexity hypothesis, f ′(u) is an increasing function and one may
consider the profile u = g(x) defined uniquely by the relation

g(0) = 0, f ′(g(x)) = x, x ∈ R. (20)

One may easily check that g(x) is also an increasing function and rarefaction
waves are given by u(x, t) = g((x − x0)/(t + t0)) for some constants x0 ∈
R, t0 ≥ 0.
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It is well known that the positive source-type solution ρ is given explicitly by

ρ(x, t) =





g(x/t), 0 ≤ x ≤ b(t),

0 , otherwise,
(21)

where b(t) > 0 satisfy

M =

b(t)∫

0

g(y/t)dy . (22)

One can easily check that ρ(x, t) satisfies the equation (1) at a regularity point
and the entropy condition (10) at the unique singularity point x = b(t).

Lemma 10 (Trapped!) Let u be the entropy solution of (1),(7), ρ be the
canonical solution (21), and the flux f(u) be convex. Let U and R be the
potentials of u and ρ, respectively, and c = min(spt(u0)). If there exist ε, t0 > 0
that satisfy

R(x− c, t0) ≤ U(x, 0), c < x < c + ε, (23)

then there exists T > 0 such that

R(x− c, t + T ) ≤ U(x, t) ≤ R(x− c, t) for all t > 0, x ∈ R. (24)

PROOF. We may assume c = 0 after a translation. From the explicit formula
(21) we have

R(L, t) =

L∫

0

g(x/t)dx = t

L/t∫

0

g(y)dy ≤ g(L/t)L → 0 as t →∞.

Therefore, there exists T > t0 such that R(L, T ) ≤ U(ε, 0). Furthermore, since
U(x, t) and R(x, t) are increasing functions in x variable, U(x, 0) = 1 for all
x ≥ L and R(x, T ) ≤ 1, we obtain R(x, T ) ≤ U(x, 0) for all x > 0, which
complete our initial comparison

R(x, T ) ≤ U(x, 0) ≤ R(x, 0).

Therefore, Proposition 3 implies (24) for all t > 0. 2

The fourth step is to compute the decay rate of the potential difference which
comes directly from the estimate (24):
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Lemma 11 (Convergence rate of potentials) Under the same conditions
as in Lemma 10, there exists T > 0 such that

‖U(t)−Rc(t)‖∞ ≤ Tf( max
x

ρ(x, t)). (25)

PROOF. Using the comparison inequality (24) and the evolution equation
for potentials (11), we obtain

|U(x, t)−R(x− c, t)| ≤ |R(x− c, t + T )−R(x− c, t)|

=

t+T∫

t

f(ρ(x− c, s))ds ≤ Tf( max
x

ρ(x, t)).

Since the right hand side is independent of x ∈ R, the estimate is uniform. 2

The last step is to transfer the decay order in (25) to the convergence order of
the solution u, which is already done in Lemma 5. Therefore, the convergence
order immediately follows.

Theorem 12 Let u be the entropy solution of (1),(7), ρ be the canonical
solution (21), and the flux f(u) be convex. Let U and R be the potentials
of u and ρ, respectively, and c = min(spt(u0)). If there exist ε, t0 > 0 that
satisfies (23), then there exists T > 0 such that

||u(t)− ρc(t)||1 ≤ 2T f( max
x

ρ(x, t)). (26)

Remark 13 The convergence order (18) is based on the fact that u and ρ
share the same total mass which is preserved. On the other hand the or-
der (26) has been obtained after placing ρ at the correct spacial location. It
seems that the center of mass is controlled asymptotically if ρ is located at
c = min(spt(u0) ).

Remark 14 The condition (23) on the initial value u0 is a necessary one
which corresponds to the condition (15) in [12]. Notice that rarefaction waves
are given by g(x/t) and become flatter as the they are getting older, i.e., as
t →∞. The condition (23) implies that the initial value u0(x) is steeper than
g(x/t0) on the interval c < x < c + ε and one may roughly say that the initial
value is younger than the age of t0. It is natural to ask if one may improve the
convergence order beyond O(1/t) by considering space and time shifts together,
i.e.,

‖u(t)− ρc,k(t)‖1 = O(t−α) as t →∞,

where ρc,k(x, t) = ρ(x − c, t + k). This kind of approach has been made for
linearized problems by setting the variance using the extra time shift(see [25])
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or controlling higher moments (see [7,14]). However the variance and higher
moments are not conserved for nonlinear problems and any higher convergence
order is not known.

5 Explicit computations of convergence orders

As a simplified model the power law is commonly considered:

f(u) = uq/q, q > 1. (27)

Then the rarefaction profile is simply given by g(x) = (f ′)−1(x) = q−1
√

x. The
convergence to source-type solution is well studied in [20]. In this case we
can compute the convergence orders in previous sections explicitly. First the
positive source-type solution (or a positive N -wave), is given by

ρ(x, t) =





q−1

√
x/t, 0 ≤ x ≤

(
qM
q−1

) q−1
q q
√

t,

0 , otherwise.
(28)

Substituting the end point of support we can easily check that

max
x
|ρ(x, t)| = ( (q − 1)t/(qM) )−1/q. (29)

Therefore, the convergence order in Theorem 8 corresponds to

‖u(t)− ρ(t)‖1 ≤ 2L ( (q − 1)t/(qM) )−1/q = O(t−1/q) as t →∞.

For the well-known Burgers equation case, f(u) = u2/2, this estimate gives
the well known result of convergence order 1/

√
t , [17], i.e.,

‖u(t)− ρ(t)‖1 ≤ 2L (t/(2M) )−1/2 = O(t−1/2 ) as t →∞.

On the other hand, the convergence order in Theorem 12 corresponds to

||u(t)− ρc(t)||1 ≤ 2TM

q − 1
t−1 = O(t−1) as t →∞,

where the convergence order O(t−1) is independent from the power of the flux.

The convergence order in (18) seems natural since the order of the magnitude
of the source-type solution depends on the flux. However, the convergence
order in (26) is independent of the flux at least for the power law case. One
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may guess the convergence order should be O(t−1) for a more general flux, but
we could not show that.
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