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Abstract

We start with a characterization of a pair of frames to be orthogonal in a

shift-invariant space and then give a simple construction of a pair of orthogonal

shift-invariant frames. This is applied to obtain a construction of a pair of Ga-

bor orthogonal frames as an example. We also give a construction of a pair of

orthogonal wavelet frames.

∗This work was supported by several grants at the National University of Singapore; The first-

named author was supported by KOSEF(NC36490).

2000 Mathematics Subject Classification: 42C15; 42C40.

Key words: Orthogonal frames; Frame; Wavelet System; Affine System; Gabor System;
†Division of Applied Mathematics, KAIST, 373-1 Guseong-dong, Yuseong-gu Daejeon 305-701,

Republic of Korea (hkim@amath.kaist.ac.kr)
‡Department of Mathematics, Yeungnam University, 214-1 Dae-dong, Gyeongsan-si,

Gyeongsangbuk-do 712-749 Republic of Korea (rykim@ynu.ac.kr)
§Department of Computational Mathematics and Informatics, Hankyong National University, 67

Seokjeong-dong, Anseong-si Gyeonggi-do 456-749, Republic of Korea (jaekun@hknu.ac.kr)
¶Department of Mathematics, National University of Singapore, 10 Kent Ridge Crescent, Singapore

119260, Republic of Singapore (matzuows@nus.edu.sg)

1



1 Introduction

Let X be a (countable) system for a separable Hilbert space H over the complex field

C. The synthesis operator TX : `2(X) → H is defined by

TXa :=
∑
h∈X

ahh

for a = (ah)h∈X . The adjoint operator T ∗
X of TX , called the analysis operator, is

T ∗
X : H → `2(X); T ∗

Xf := (〈f, h〉)h∈X .

Recall that X is a frame for H if and only SX := TXT
∗
X : H → H, the frame operator

or dual Gramian, is bounded and has a bounded inverse [3, 6] and it is a tight frame

(with frame bound 1) if and only if SX is the identity operator. The system X is a

Riesz system (might be a subspace of H) if and only if its Gramian GX := T ∗
XTX is

bounded and has a bounded inverse and it is an orthonormal system of H if and only

if GX is the identity operator.

Definition 1.1 Let X and Y = RX, where R : h → Rh is an association between X

and Y , be two frames of H. We call that X and Y are a pair of orthogonal frames if

TY T
∗
X = 0, i.e.,

∑
h∈X 〈f, h〉Rh = 0, for all f ∈ H.

Notice that the definition is symmetric with respect toX and Y . The orthogonal frames

have been studied in [11] and [12]. The various applications of orthogonal frames are

also discussed in both papers.

For a pair of frames X and Y = RX in H, we have the following simple character-

ization of orthogonal frames via its Gramians.

Proposition 1.2 Let X and Y = RX be frames for H with synthesis operators TX

and TY , respectively. Then, X and Y are a pair of orthogonal frames if and only if

GYGX = 0.
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Proof. Suppose that TY T
∗
X = 0. Then T ∗

Y TY T
∗
XTX = T ∗

Y 0TX = 0. Suppose, on the

other hand, that T ∗
Y TY T

∗
XTX = 0. Then

0 = (TY T
∗
Y )(TY T

∗
X)(TXT

∗
X) = SY (TY T

∗
X)SX .

Since SY , TY T
∗
X and SX are bounded operators from H to H and since SX and SY are

invertible, 0 = TY T
∗
X . �

The paper is organized as follows: in Section 2, we discuss the orthogonal frames in

a general shift-invariant subspace of L2(Rd), and apply the results to construct Gabor

orthogonal frames. Section 3 provides construction of wavelet orthogonal frames.

2 Orthogonal frames in shift invariant space

In this section, we consider orthogonal frames in a shift-invariant subspace of L2(Rd).

Let Φ be a countable subset of L2(Rd), and E(Φ) := {φ(· − k) : k ∈ Zd}. Define

S(Φ) := spanE(Φ),

the smallest closed subspace that contains E(Φ). The space S(Φ) is called the shift-

invariant space generated by Φ and Φ is called a generating set for S(Φ). The shift

invariant space has been studied in the literature, e.g., [1, 2, 5, 7].

For ω ∈ Td we define the pre-Gramian via

JΦ(ω) =
(
φ̂(ω + α)

)
α∈2πZd,φ∈Φ

,

where φ̂ is the Fourier transform of φ. Note that the domain of the pre-Gramian matrix

as an operator is `2(Φ) and its co-domain is `2(Zd). The pre-Gramian can be regarded

as the synthesis operator represented in Fourier domain as it was extensively studied

in [7]. In particular, we have (see, e.g., [7, 2])

Proposition 2.1 The shift invariant system E(Φ) is a frame of S(Φ) if and only

if JΦ(ω)J∗
Φ(ω) is uniformly bounded with uniformly bounded inverse on the range of
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JΦ(ω) for a.e. ω such that ran JΦ(ω) 6= {0}. In particularly, when S(Φ) = L2(Rd),

E(Φ) is a frame of L2(Rd) if and only if there are 0 < A ≤ B < ∞, such that

AI`2(Zd) ≤ JΦ(ω)J∗
Φ(ω) ≤ BI`2(Zd), a.e. ω ∈ Rd; and it is a tight frame of L2(Rd) if and

only if JΦ(ω)J∗
Φ(ω) = I`2(Zd), for a.e. ω ∈ Rd.

Let Φ and Ψ = RΦ where R is an association satisfying Rφ(· − k) = (Rφ)(· − k)

be countable subsets of L2(Rd). Suppose that S(Φ) = S(Ψ) and both E(Φ) and E(Ψ)

are frames of S(Φ). Then, E(Φ) and E(Ψ) are orthogonal frames in S(Φ) if and only

if for all f ∈ S(Φ),

Sf := TE(Ψ)T
∗
E(Φ)f = 0.

We define the mixed dual Gramian as in [9] as

G̃(ω) = JΨ(ω)J∗
Φ(ω),

and Gramians as

GΦ(ω) = J∗
Φ(ω)JΦ(ω), GΨ(ω) = J∗

Ψ(ω)JΨ(ω).

Then, it was proven in [9] that for an arbitrary f ∈ L2(Rd)

Ŝf |ω+α
= G̃(ω)f̂|ω+α ,

where ĝ|ω+α is the column vector (ĝ(ω+γ)γ∈2πZd)T . With this, one can prove easily that

Sf = 0 for all f ∈ L2(Rd) if and only if G̃(ω) = 0 for a.e. ω ∈ Rd. When f ∈ S(Φ),

then

f̂ =
∑
φ∈Φ

âφφ̂,

where âφ is defined on Td. Further the column vector

f̂|ω+α = JΦ(ω)A(ω)

where column vector A(ω) = (âφ(ω))T
φ∈Φ. Putting everything together, we have:

Theorem 2.2 Let Φ and Ψ = RΦ be defined as above. Suppose that S(Φ) = S(Ψ)

and that E(Φ) and E(Ψ) are frames for S(Φ). Then, the following are equivalent:
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(1) Systems E(Φ) and E(Ψ) are orthogonal frames for S(Φ);

(2) JΨ(ω)J∗
Φ(ω)JΦ(ω) = 0 a.e. ω ∈ Rd;

(3) GΨ(ω)GΦ(ω) = 0 a.e. ω ∈ Rd.

In particular, when S(Φ) = L2(Rd), E(Φ) and E(Ψ) are a pair of orthogonal frames if

and only if JΨ(ω)J∗
Φ(ω) = 0 a.e. ω ∈ Rd.

Item (3) follows from (2) and the fact that J∗
Ψ(ω) has bounded inverse on the range

of JΨ(ω) a.e. ω ∈ Rd, whenever E(Ψ) is a frame of S(Ψ) (see [7]).

Suppose that Φ := {φ1, φ2, · · · , φr} ⊂ L2(Rd) where r can be ∞, and that E(Φ) is

a frame for S(Φ). We now give a construction of a pair of orthogonal frames in S(Φ).

Let U := (U1;U2) be a 2r × 2r matrix with each entry being a 2π periodic function of

L2(Td) satisfying U∗(ω)U(ω) = I2r a.e. ω ∈ Rd, where U1 is the submatrix of the first

r columns and U2 the last r columns. Define Φ̂1 := U1Φ̂, and Φ̂2 := U2Φ̂. It is easy to

check by the Bessel property of E(Φ) that S(Φ) = S(Φ1) = S(Φ2) with each of Φ1 and

Φ2 consists of 2r elements of L2(Rd). Furthermore, it is direct to check that

JΦ1(ω) = JΦ(ω)UT
1 (ω); and JΦ2(ω) = JΦ(ω)UT

2 (ω).

It is easy to see that ran JΦ1(ω) = ran JΦ(ω) a.e., since UT
1 (ω) : `2(Φ1) → `2(Φ) is

onto by UT (ω)(UT (ω))∗ = I2r a.e. ω ∈ Td. Moreover,

JΦ1(ω)JΦ1(ω)∗ = JΦ(ω)UT
1 (ω)(JΦ(ω)UT

1 (ω))∗ = JΦ(ω)(U∗
1 (ω)U1(ω))TJΦ(ω)∗

= JΦ(ω)IrJΦ(ω)∗ = JΦ(ω)JΦ(ω)∗.

Hence, E(Φ1) is a frame on S(Φ1) = S(Φ) by Proposition 2.1. Similarly, we have that

E(Φ2) forms a frame of S(Φ2) = S(Φ) as well. Furthermore, E(Φ1) and E(Φ2) form a
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pair of orthogonal frames of S(Φ). Indeed, this follows from the fact for a.e. ω ∈ Rd

GΦ1(ω)GΦ2(ω) = JΦ1(ω)∗JΦ1(ω)JΦ2(ω)∗JΦ2(ω)

= JΦ1(ω)∗JΦ(ω)UT
1 (ω)(UT

2 (ω))∗JΦ(ω)∗JΦ2(ω)

= JΦ1(ω)∗JΦ(ω)UT
1 (ω)(U∗

2 (ω))TJΦ(ω)∗JΦ2(ω)

= JΦ1(ω)∗JΦ(ω)(U∗
2 (ω)U1(ω))TJΦ(ω)∗JΦ2(ω)

= JΦ1(ω)∗JΦ(ω)0JΦ(ω)∗JΦ2(ω) = 0

and Theorem 2.2. Finally, we note that the matrix U can be chosen to be a constant

2r × 2r unitary matrix.

Since the Gabor system is shift-invariant, we next apply the above construction to

the Gabor system to give an example. Let G := {g1, g2, · · · , gγ} ⊂ L2(Rd), where γ is

a positive integer, and

Φ := {M lgj : l ∈ Zd, 1 ≤ j ≤ γ},

where M tf(x) := eit·xf(x) is the modulation operator for t ∈ Rd. Then E(Φ) is

equivalent to a Gabor system generated by G [10]. Note, in general, the shift operator

and modulation operator can be chosen to be any d-dimensional lattice instead of Zd.

For the simplicity, we assume that both the shift lattice and the modulation lattice are

Zd, however, the discussion here can be carried out similarly for the more general shift

and modulation lattices.

Suppose that E(Φ) is a frame for its closed linear span. Let V := (V1;V2) be a

2γ × 2γ constant unitary matrix, where V1 is the submatrix formed by the first γ

columns of V and V2 is the submatrix formed by the last γ columns of V . We show

that the Gabor systems generated by G1 := V1G and G2 := V2G are orthogonal frames

by using the above result.

Let U1 be the block diagonal (infinite) matrix of size (Zd × {1, 2 · · · , 2γ})× (Zd ×

{1, 2, · · · , γ}) such that

the (l, j)(l′, j′)-th entry of U1 =

 0 if l 6= l′,

(V1)j,j′ if l = l′.
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Similarly, one can define block diagonal matrix U2 by V2. Then, the matrix U :=

(U1;U2) is unitary. Furthermore, the Gabor system generated by V1G is E(Φ1) satisfy-

ing Φ1 := U1Φ and the system generated by V2G is E(Φ2) satisfying Φ2 := U2Φ. Hence

E(Φ1) and E(Φ2) are a pair of orthogonal frames.

3 Orthogonal wavelet frames

Let Ψ := {ψ1, ψ2, · · · , ψr} ⊂ L2(Rd), where r is a positive integer, and s be an integer-

valued invertible d × d matrix such that s−1 is contractive. Define a unitary dilation

operator D on L2(Rd) via

D : L2(Rd) → L2(Rd) : f 7→ | det s|1/2f(s·).

Then, the following collection is called a wavelet (or affine) system generated by Ψ =

{ψ1, . . . , ψr}:

X(Ψ) := {DjEkψl : j ∈ Z, k ∈ Zd, 1 ≤ l ≤ r}, (3.1)

where Ekf := f(· − k).

The wavelet system is not shift-invariant. To apply the theorem in the previous

section, one needs to use quasi-affine system Xq(Ψ), i.e. the smallest shift invariant

system containing X(Ψ). Then, applying the similar approach of [9], one can obtain

that two wavelet frame systems X(Ψ1) and X(Ψ2) are a pair of orthogonal frames if

and only if the mixed dual Gramian of the corresponding quasi-affine systems Xq(Ψ)

and Xq(Ψ2) are zero almost everywhere. This is exactly what has been obtained by

Weber in [11], with a different approach, as given below:

Proposition 3.1 ([11]) Let Ψ1 := {ψ1
1, ψ

1
2, . . . , ψ

1
r} and Ψ2 := {ψ2

1, ψ
2
2, . . . , ψ

2
r}. Sup-

pose that X(Ψ1) and X(Ψ2) are frames in L2(Rd). X(Ψ1) and X(Ψ2) generate a pair

of orthogonal frames for L2(Rd) if and only if the following two equations are satisfied
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a.e.:

r∑
i=1

∑
j≥0

ψ̂2
i (s

∗jω)ψ̂1
i

(
s∗j(ω + q)

)
= 0, q ∈ 2πZd \ 2πs∗Zd; (3.2)

r∑
i=1

∑
j∈Zd

ψ̂2
i (s

∗jω)ψ̂1
i (s

∗jω) = 0. (3.3)

We remark here that the double sums in (3.2) and (3.3) are the entries of the ‘mixed

dual Gramian’ of the affine systems generated by Ψ1 and Ψ2 [9].

Applying above result of Weber, one can construct a pair of orthogonal wavelet

frames easily. Suppose that X(Ψ) is a frame for L2(Rd). Let V := (V1;V2) = (vi,j) be

a 2r× 2r constant unitary matrix, where V1 denotes the submatrix formed by the first

r columns of V and V2 denotes the submatrix formed by the last r columns of V . Also

let Ψ1 := V1Ψ and Ψ2 := V2Ψ. It is easy to show that X(Ψ1) and X(Ψ2) are frames

by using dual Gramian characterization of frames given by Corollary 5.7 in [8] by a

simple computing of the dual Gramian of Xq(Ψ1) and Xq(Ψ2). Or one can compute

each entry of the dual Gramian of Xq(Ψ1) and Xq(Ψ2) similar to what are we doing

next.

We show that the wavelet systems generated by Ψ1 and Ψ2 are a pair of orthogonal

frames for L2(Rd). Since X(Ψ) is assumed to be a frame, the double sums converge

absolutely a.e. Now, we apply Theorem 3.1 to Ψ1 := {ψ1
1, ψ

1
2, · · · , ψ1

2r} and Ψ2 :=

{ψ2
1, ψ

2
2, · · · , ψ2

2r}. For a fixed q ∈ 2πZd \ 2πs∗Zd, we then have

2r∑
i=1

∑
j≥0

ψ̂1
i (s

∗jω)ψ̂2
i

(
s∗j(ω + q)

)
=

2r∑
i=1

∑
j≥0

r∑
l=1

vi,lψ̂l(s
∗jω)

r∑
l′=1

vi,r+l′ψ̂l′
(
s∗j(ω + q)

)
=

∑
j≥0

r∑
l=1

ψ̂l(s
∗jω)

r∑
l′=1

ψ̂l′
(
s∗j(ω + q)

) 2r∑
i=1

vi,lvi,r+l′

=
∑
j≥0

r∑
l=1

ψ̂l(s
∗jω)

r∑
l′=1

ψ̂l′
(
s∗j(ω + q)

)
0 = 0,

(3.4)
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where we used the orthogonality of the columns of V . A similar calculation shows that

(3.3) holds also. This completes the proof that Ψ1 and Ψ2 generate a pair of orthogonal

frames by Theorem 3.1.

When the wavelet tight frame system X(Ψ) is constructed from a multiresolution

analysis based on the unitary extension principle (UEP) of [8], one can construct a

pair of orthogonal tight frames from the same multiresolution analysis as we describe

below.

We first give a brief discussion here on the UEP for the one variable case with

trigonometric polynomial masks, while the more general version and comprehensive

discussions of the UEP can be found in [4] and [8].

Let φ ∈ L2(R) be a refinable function, i.e., φ̂(2ξ) = â0(ξ)φ̂(ξ), where â0 is a trigono-

metric polynomial called the refinement mask of φ ∈ L2(R) satisfying â0(0) = 1 and

let âj, j = 1, 2, . . . , r, be a set of trigonometric polynomials called the wavelet masks.

The column vector ~̂a = (â0, â1, . . . , âr)
T is called the refinement-wavelet mask. Let

A(ω) =


â0(ω) â0(ω + π)

â1(ω) â1(ω + π)
...

...

ârω) âr(ω + π)

 = (~̂a(ω), ~̂a(ω + π)).

Assuming

A∗(ω)A(ω) = I.

for a.e. ω ∈ [−π, π]. Define Ψ := {ψ1, ψ2, . . . , ψr} ⊂ L2(R) by

ψ̂l(2ξ) := âj(ξ)φ̂(ξ), l = 1, 2, . . . , r,

then the UEP asserts that X(Ψ) is a tight frame for L2(R).

By using the UEP the construction of compactly supported tight frame becomes

painless. For example, it is easy to obtain the compactly supported symmetric spline

tight wavelet frames as shown in [8] and [4]
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Next, we briefly describe how to obtain a pair of compactly supported orthogonal

tight frames from a given compactly supported tight frame system X(Ψ) constructed

via the UEP. The main idea of this construction is from a paper by Bhatt, Johnson and

Weber [12] where orthogonal tight frames are constructed from orthogonal wavelets.

Let V (ω) := (V1(ω);V2(ω)) = (vi,j(ω)) be a 2r× 2r unitary matrix with each entry

being a π periodic trigonometric polynomial, where V1 denotes the submatrix formed

by the first r columns of V and V2 denotes the submatrix formed by the last r columns

of V . Let

U1 =

 1 0

0 V1

 ; U2 =

 1 0

0 V2

 .

Define two new sets of the refinement-wavelet mask from ~̂a by

~̂a1 = U1
~̂a; ~̂a2 = U2

~̂a.

The corresponding wavelets are defined via its Fourier transform as: Ψ̂1 := V1Ψ̂ and

Ψ̂2 := V2Ψ̂ with their wavelet masks given above. It is easy to check that both entries

in the column vectors Ψ1 and Ψ2 are compactly supported. Let

A1(ω) = (~̂a1(ω); ~̂a1(ω + π)); A2(ω) = (~̂a2(ω); ~̂a2(ω + π)).

Then, it is easy to see

A1 = U1A; A2 = U2A,

since each entry of U1 and U2 are π periodic. This leads to

A∗
1(ω)A1(ω) = I; A∗

2(ω)A2(ω) = I,

for all ω ∈ [−π, π]. Hence, both X(Ψ1) and X(Ψ2) are tight frames by the UEP.

Let B1 and B2 be the matrices generated by A1 and A2 respectively by removing

the first rows of them. Then, it is clear that

B∗
1(ω)B2(ω) = 0,
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for all ω ∈ [−π, π]. This asserts that X(Ψ1) and X(Ψ2) are a pair of orthogonal frames

by Theorem 2.1.1 of [12] whose proof was obtained by a computation similar to (3.4).

In fact, Theorem 2.1.1 of [12] can also be proved via a method similar to the proof of

the mixed unitary extension principle in [9]. Finally, we remark that this construction

can be modified to more general cases, e.g., one may start with two different tight

frames instead of starting with one tight frame X(Ψ).
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