A Pair of Orthogonal Frames *

Hong Oh Kim \dagger Rae Young Kim \ddagger Jae Kun Lim ${ }^{\S}$ and Zuowei Shen ${ }^{〔}$

July 31, 2006

Abstract

We start with a characterization of a pair of frames to be orthogonal in a shift-invariant space and then give a simple construction of a pair of orthogonal shift-invariant frames. This is applied to obtain a construction of a pair of Gabor orthogonal frames as an example. We also give a construction of a pair of orthogonal wavelet frames.

[^0]
1 Introduction

Let X be a (countable) system for a separable Hilbert space \mathcal{H} over the complex field \mathbb{C}. The synthesis operator $T_{X}: \ell_{2}(X) \rightarrow \mathcal{H}$ is defined by

$$
T_{X} a:=\sum_{h \in X} a_{h} h
$$

for $a=\left(a_{h}\right)_{h \in X}$. The adjoint operator T_{X}^{*} of T_{X}, called the analysis operator, is

$$
T_{X}^{*}: \mathcal{H} \rightarrow \ell_{2}(X) ; \quad T_{X}^{*} f:=(\langle f, h\rangle)_{h \in X}
$$

Recall that X is a frame for \mathcal{H} if and only $S_{X}:=T_{X} T_{X}^{*}: \mathcal{H} \rightarrow \mathcal{H}$, the frame operator or dual Gramian, is bounded and has a bounded inverse $[3,6]$ and it is a tight frame (with frame bound 1) if and only if S_{X} is the identity operator. The system X is a Riesz system (might be a subspace of \mathcal{H}) if and only if its Gramian $G_{X}:=T_{X}^{*} T_{X}$ is bounded and has a bounded inverse and it is an orthonormal system of \mathcal{H} if and only if G_{X} is the identity operator.

Definition 1.1 Let X and $Y=R X$, where $R: h \rightarrow R h$ is an association between X and Y, be two frames of \mathcal{H}. We call that X and Y are a pair of orthogonal frames if $T_{Y} T_{X}^{*}=0$, i.e., $\sum_{h \in X}\langle f, h\rangle R h=0$, for all $f \in \mathcal{H}$.

Notice that the definition is symmetric with respect to X and Y. The orthogonal frames have been studied in [11] and [12]. The various applications of orthogonal frames are also discussed in both papers.

For a pair of frames X and $Y=R X$ in \mathcal{H}, we have the following simple characterization of orthogonal frames via its Gramians.

Proposition 1.2 Let X and $Y=R X$ be frames for \mathcal{H} with synthesis operators T_{X} and T_{Y}, respectively. Then, X and Y are a pair of orthogonal frames if and only if $G_{Y} G_{X}=0$.

Proof. Suppose that $T_{Y} T_{X}^{*}=0$. Then $T_{Y}^{*} T_{Y} T_{X}^{*} T_{X}=T_{Y}^{*} 0 T_{X}=0$. Suppose, on the other hand, that $T_{Y}^{*} T_{Y} T_{X}^{*} T_{X}=0$. Then

$$
0=\left(T_{Y} T_{Y}^{*}\right)\left(T_{Y} T_{X}^{*}\right)\left(T_{X} T_{X}^{*}\right)=S_{Y}\left(T_{Y} T_{X}^{*}\right) S_{X}
$$

Since $S_{Y}, T_{Y} T_{X}^{*}$ and S_{X} are bounded operators from \mathcal{H} to \mathcal{H} and since S_{X} and S_{Y} are invertible, $0=T_{Y} T_{X}^{*}$.

The paper is organized as follows: in Section 2, we discuss the orthogonal frames in a general shift-invariant subspace of $L_{2}\left(\mathbb{R}^{d}\right)$, and apply the results to construct Gabor orthogonal frames. Section 3 provides construction of wavelet orthogonal frames.

2 Orthogonal frames in shift invariant space

In this section, we consider orthogonal frames in a shift-invariant subspace of $L_{2}\left(\mathbb{R}^{d}\right)$. Let Φ be a countable subset of $L_{2}\left(\mathbb{R}^{d}\right)$, and $E(\Phi):=\left\{\phi(\cdot-k): k \in \mathbb{Z}^{d}\right\}$. Define

$$
\mathcal{S}(\Phi):=\overline{\operatorname{span}} E(\Phi),
$$

the smallest closed subspace that contains $E(\Phi)$. The space $\mathcal{S}(\Phi)$ is called the shiftinvariant space generated by Φ and Φ is called a generating set for $\mathcal{S}(\Phi)$. The shift invariant space has been studied in the literature, e.g., $[1,2,5,7]$.

For $\omega \in \mathbb{T}^{d}$ we define the pre-Gramian via

$$
J_{\Phi}(\omega)=(\widehat{\phi}(\omega+\alpha))_{\alpha \in 2 \pi \mathbb{Z}^{d}, \phi \in \Phi},
$$

where $\widehat{\phi}$ is the Fourier transform of ϕ. Note that the domain of the pre-Gramian matrix as an operator is $\ell_{2}(\Phi)$ and its co-domain is $\ell_{2}\left(\mathbb{Z}^{d}\right)$. The pre-Gramian can be regarded as the synthesis operator represented in Fourier domain as it was extensively studied in [7]. In particular, we have (see, e.g., [7, 2])

Proposition 2.1 The shift invariant system $E(\Phi)$ is a frame of $\mathcal{S}(\Phi)$ if and only if $J_{\Phi}(\omega) J_{\Phi}^{*}(\omega)$ is uniformly bounded with uniformly bounded inverse on the range of
$J_{\Phi}(\omega)$ for a.e. ω such that $\operatorname{ran} J_{\Phi}(\omega) \neq\{0\}$. In particularly, when $\mathcal{S}(\Phi)=L_{2}\left(\mathbb{R}^{d}\right)$, $E(\Phi)$ is a frame of $L_{2}\left(\mathbb{R}^{d}\right)$ if and only if there are $0<A \leq B<\infty$, such that $A I_{\ell_{2}\left(\mathbb{Z}^{d}\right)} \leq J_{\Phi}(\omega) J_{\Phi}^{*}(\omega) \leq B I_{\ell_{2}\left(\mathbb{Z}^{d}\right)}$, a.e. $\omega \in \mathbb{R}^{d}$; and it is a tight frame of $L_{2}\left(\mathbb{R}^{d}\right)$ if and only if $J_{\Phi}(\omega) J_{\Phi}^{*}(\omega)=I_{\ell_{2}\left(\mathbb{Z}^{d}\right)}$, for a.e. $\omega \in \mathbb{R}^{d}$.

Let Φ and $\Psi=R \Phi$ where R is an association satisfying $R \phi(\cdot-k)=(R \phi)(\cdot-k)$ be countable subsets of $L_{2}\left(\mathbb{R}^{d}\right)$. Suppose that $\mathcal{S}(\Phi)=\mathcal{S}(\Psi)$ and both $E(\Phi)$ and $E(\Psi)$ are frames of $\mathcal{S}(\Phi)$. Then, $E(\Phi)$ and $E(\Psi)$ are orthogonal frames in $\mathcal{S}(\Phi)$ if and only if for all $f \in \mathcal{S}(\Phi)$,

$$
S f:=T_{E(\Psi)} T_{E(\Phi)}^{*} f=0 .
$$

We define the mixed dual Gramian as in [9] as

$$
\widetilde{G}(\omega)=J_{\Psi}(\omega) J_{\Phi}^{*}(\omega)
$$

and Gramians as

$$
G_{\Phi}(\omega)=J_{\Phi}^{*}(\omega) J_{\Phi}(\omega), \quad G_{\Psi}(\omega)=J_{\Psi}^{*}(\omega) J_{\Psi}(\omega) .
$$

Then, it was proven in [9] that for an arbitrary $f \in L_{2}\left(\mathbb{R}^{d}\right)$

$$
\widehat{S f}_{\left.\right|_{\omega+\alpha}}=\widetilde{G}(\omega) \hat{f}_{\left.\right|_{\omega+\alpha}},
$$

where $\hat{g}_{\mid \omega+\alpha}$ is the column vector $\left(\hat{g}(\omega+\gamma)_{\gamma \in 2 \pi \mathbb{Z}^{d}}\right)^{T}$. With this, one can prove easily that $S f=0$ for all $f \in L_{2}\left(\mathbb{R}^{d}\right)$ if and only if $\widetilde{G}(\omega)=0$ for a.e. $\omega \in \mathbb{R}^{d}$. When $f \in \mathcal{S}(\Phi)$, then

$$
\hat{f}=\sum_{\phi \in \Phi} \widehat{a}_{\phi} \hat{\phi},
$$

where \widehat{a}_{ϕ} is defined on \mathbb{T}^{d}. Further the column vector

$$
\hat{f}_{l_{\omega+\alpha}}=J_{\Phi}(\omega) A(\omega)
$$

where column vector $A(\omega)=\left(\widehat{a}_{\phi}(\omega)\right)_{\phi \in \Phi}^{T}$. Putting everything together, we have:
Theorem 2.2 Let Φ and $\Psi=R \Phi$ be defined as above. Suppose that $\mathcal{S}(\Phi)=\mathcal{S}(\Psi)$ and that $E(\Phi)$ and $E(\Psi)$ are frames for $\mathcal{S}(\Phi)$. Then, the following are equivalent:
(1) Systems $E(\Phi)$ and $E(\Psi)$ are orthogonal frames for $\mathcal{S}(\Phi)$;
(2) $J_{\Psi}(\omega) J_{\Phi}^{*}(\omega) J_{\Phi}(\omega)=0$ a.e. $\omega \in \mathbb{R}^{d}$;
(3) $G_{\Psi}(\omega) G_{\Phi}(\omega)=0$ a.e. $\omega \in \mathbb{R}^{d}$.

In particular, when $\mathcal{S}(\Phi)=L_{2}\left(\mathbb{R}^{d}\right), E(\Phi)$ and $E(\Psi)$ are a pair of orthogonal frames if and only if $J_{\Psi}(\omega) J_{\Phi}^{*}(\omega)=0$ a.e. $\omega \in \mathbb{R}^{d}$.

Item (3) follows from (2) and the fact that $J_{\Psi}^{*}(\omega)$ has bounded inverse on the range of $J_{\Psi}(\omega)$ a.e. $\omega \in \mathbb{R}^{d}$, whenever $E(\Psi)$ is a frame of $S(\Psi)$ (see [7]).

Suppose that $\Phi:=\left\{\phi_{1}, \phi_{2}, \cdots, \phi_{r}\right\} \subset L_{2}\left(\mathbb{R}^{d}\right)$ where r can be ∞, and that $E(\Phi)$ is a frame for $\mathcal{S}(\Phi)$. We now give a construction of a pair of orthogonal frames in $\mathcal{S}(\Phi)$. Let $U:=\left(U_{1} ; U_{2}\right)$ be a $2 r \times 2 r$ matrix with each entry being a 2π periodic function of $L_{2}\left(\mathbb{T}^{d}\right)$ satisfying $U^{*}(\omega) U(\omega)=I_{2 r}$ a.e. $\omega \in \mathbb{R}^{d}$, where U_{1} is the submatrix of the first r columns and U_{2} the last r columns. Define $\widehat{\Phi}_{1}:=U_{1} \widehat{\Phi}$, and $\widehat{\Phi}_{2}:=U_{2} \widehat{\Phi}$. It is easy to check by the Bessel property of $E(\Phi)$ that $\mathcal{S}(\Phi)=\mathcal{S}\left(\Phi_{1}\right)=\mathcal{S}\left(\Phi_{2}\right)$ with each of Φ_{1} and Φ_{2} consists of $2 r$ elements of $L_{2}\left(\mathbb{R}^{d}\right)$. Furthermore, it is direct to check that

$$
J_{\Phi_{1}}(\omega)=J_{\Phi}(\omega) U_{1}^{T}(\omega) ; \quad \text { and } \quad J_{\Phi_{2}}(\omega)=J_{\Phi}(\omega) U_{2}^{T}(\omega) .
$$

It is easy to see that $\operatorname{ran} J_{\Phi_{1}}(\omega)=\operatorname{ran} J_{\Phi}(\omega)$ a.e., since $U_{1}^{T}(\omega): \ell^{2}\left(\Phi_{1}\right) \rightarrow \ell^{2}(\Phi)$ is onto by $U^{T}(\omega)\left(U^{T}(\omega)\right)^{*}=I_{2 r}$ a.e. $\omega \in \mathbb{T}^{d}$. Moreover,

$$
\begin{aligned}
J_{\Phi_{1}}(\omega) J_{\Phi_{1}}(\omega)^{*} & =J_{\Phi}(\omega) U_{1}^{T}(\omega)\left(J_{\Phi}(\omega) U_{1}^{T}(\omega)\right)^{*}=J_{\Phi}(\omega)\left(U_{1}^{*}(\omega) U_{1}(\omega)\right)^{T} J_{\Phi}(\omega)^{*} \\
& =J_{\Phi}(\omega) I_{r} J_{\Phi}(\omega)^{*}=J_{\Phi}(\omega) J_{\Phi}(\omega)^{*}
\end{aligned}
$$

Hence, $E\left(\Phi_{1}\right)$ is a frame on $\mathcal{S}\left(\Phi_{1}\right)=\mathcal{S}(\Phi)$ by Proposition 2.1. Similarly, we have that $E\left(\Phi_{2}\right)$ forms a frame of $\mathcal{S}\left(\Phi_{2}\right)=\mathcal{S}(\Phi)$ as well. Furthermore, $E\left(\Phi_{1}\right)$ and $E\left(\Phi_{2}\right)$ form a
pair of orthogonal frames of $\mathcal{S}(\Phi)$. Indeed, this follows from the fact for a.e. $\omega \in \mathbb{R}^{d}$

$$
\begin{aligned}
G_{\Phi_{1}}(\omega) G_{\Phi_{2}}(\omega) & =J_{\Phi_{1}}(\omega)^{*} J_{\Phi_{1}}(\omega) J_{\Phi_{2}}(\omega)^{*} J_{\Phi_{2}}(\omega) \\
& =J_{\Phi_{1}}(\omega)^{*} J_{\Phi}(\omega) U_{1}^{T}(\omega)\left(U_{2}^{T}(\omega)\right)^{*} J_{\Phi}(\omega)^{*} J_{\Phi_{2}}(\omega) \\
& =J_{\Phi_{1}}(\omega)^{*} J_{\Phi}(\omega) U_{1}^{T}(\omega)\left(U_{2}^{*}(\omega)\right)^{T} J_{\Phi}(\omega)^{*} J_{\Phi_{2}}(\omega) \\
& =J_{\Phi_{1}}(\omega)^{*} J_{\Phi}(\omega)\left(U_{2}^{*}(\omega) U_{1}(\omega)\right)^{T} J_{\Phi}(\omega)^{*} J_{\Phi_{2}}(\omega) \\
& =J_{\Phi_{1}}(\omega)^{*} J_{\Phi}(\omega) 0 J_{\Phi}(\omega)^{*} J_{\Phi_{2}}(\omega)=0
\end{aligned}
$$

and Theorem 2.2. Finally, we note that the matrix U can be chosen to be a constant $2 r \times 2 r$ unitary matrix.

Since the Gabor system is shift-invariant, we next apply the above construction to the Gabor system to give an example. Let $G:=\left\{g_{1}, g_{2}, \cdots, g_{\gamma}\right\} \subset L_{2}\left(\mathbb{R}^{d}\right)$, where γ is a positive integer, and

$$
\Phi:=\left\{M^{l} g_{j}: l \in \mathbb{Z}^{d}, 1 \leq j \leq \gamma\right\}
$$

where $M^{t} f(x):=e^{i t \cdot x} f(x)$ is the modulation operator for $t \in \mathbb{R}^{d}$. Then $E(\Phi)$ is equivalent to a Gabor system generated by G [10]. Note, in general, the shift operator and modulation operator can be chosen to be any d-dimensional lattice instead of \mathbb{Z}^{d}. For the simplicity, we assume that both the shift lattice and the modulation lattice are \mathbb{Z}^{d}, however, the discussion here can be carried out similarly for the more general shift and modulation lattices.

Suppose that $E(\Phi)$ is a frame for its closed linear span. Let $V:=\left(V_{1} ; V_{2}\right)$ be a $2 \gamma \times 2 \gamma$ constant unitary matrix, where V_{1} is the submatrix formed by the first γ columns of V and V_{2} is the submatrix formed by the last γ columns of V. We show that the Gabor systems generated by $G_{1}:=V_{1} G$ and $G_{2}:=V_{2} G$ are orthogonal frames by using the above result.

Let U_{1} be the block diagonal (infinite) matrix of size $\left(\mathbb{Z}^{d} \times\{1,2 \cdots, 2 \gamma\}\right) \times\left(\mathbb{Z}^{d} \times\right.$ $\{1,2, \cdots, \gamma\})$ such that

$$
\text { the }(l, j)\left(l^{\prime}, j^{\prime}\right) \text {-th entry of } U_{1}= \begin{cases}0 & \text { if } l \neq l^{\prime} \\ \left(V_{1}\right)_{j, j^{\prime}} & \text { if } l=l^{\prime}\end{cases}
$$

Similarly, one can define block diagonal matrix U_{2} by V_{2}. Then, the matrix $U:=$ ($U_{1} ; U_{2}$) is unitary. Furthermore, the Gabor system generated by $V_{1} G$ is $E\left(\Phi_{1}\right)$ satisfying $\Phi_{1}:=U_{1} \Phi$ and the system generated by $V_{2} G$ is $E\left(\Phi_{2}\right)$ satisfying $\Phi_{2}:=U_{2} \Phi$. Hence $E\left(\Phi_{1}\right)$ and $E\left(\Phi_{2}\right)$ are a pair of orthogonal frames.

3 Orthogonal wavelet frames

Let $\Psi:=\left\{\psi_{1}, \psi_{2}, \cdots, \psi_{r}\right\} \subset L_{2}\left(\mathbb{R}^{d}\right)$, where r is a positive integer, and s be an integervalued invertible $d \times d$ matrix such that s^{-1} is contractive. Define a unitary dilation operator D on $L_{2}\left(\mathbb{R}^{d}\right)$ via

$$
D: L_{2}\left(\mathbb{R}^{d}\right) \rightarrow L_{2}\left(\mathbb{R}^{d}\right): f \mapsto|\operatorname{det} s|^{1 / 2} f(s \cdot) .
$$

Then, the following collection is called a wavelet (or affine) system generated by $\Psi=$ $\left\{\psi_{1}, \ldots, \psi_{r}\right\}:$

$$
\begin{equation*}
X(\Psi):=\left\{D^{j} E^{k} \psi_{l}: j \in \mathbb{Z}, k \in \mathbb{Z}^{d}, 1 \leq l \leq r\right\}, \tag{3.1}
\end{equation*}
$$

where $E^{k} f:=f(\cdot-k)$.
The wavelet system is not shift-invariant. To apply the theorem in the previous section, one needs to use quasi-affine system $X^{q}(\Psi)$, i.e. the smallest shift invariant system containing $X(\Psi)$. Then, applying the similar approach of [9], one can obtain that two wavelet frame systems $X\left(\Psi_{1}\right)$ and $X\left(\Psi_{2}\right)$ are a pair of orthogonal frames if and only if the mixed dual Gramian of the corresponding quasi-affine systems $X^{q}(\Psi)$ and $X^{q}\left(\Psi_{2}\right)$ are zero almost everywhere. This is exactly what has been obtained by Weber in [11], with a different approach, as given below:

Proposition 3.1 ([11]) Let $\Psi_{1}:=\left\{\psi_{1}^{1}, \psi_{2}^{1}, \ldots, \psi_{r}^{1}\right\}$ and $\Psi_{2}:=\left\{\psi_{1}^{2}, \psi_{2}^{2}, \ldots, \psi_{r}^{2}\right\}$. Suppose that $X\left(\Psi_{1}\right)$ and $X\left(\Psi_{2}\right)$ are frames in $L_{2}\left(\mathbb{R}^{d}\right) . X\left(\Psi_{1}\right)$ and $X\left(\Psi_{2}\right)$ generate a pair of orthogonal frames for $L_{2}\left(\mathbb{R}^{d}\right)$ if and only if the following two equations are satisfied
a.e.:

$$
\begin{align*}
& \sum_{i=1}^{r} \sum_{j \geq 0} \overline{\hat{\psi}_{i}^{2}}\left(s^{* j} \omega\right) \hat{\psi}_{i}^{1}\left(s^{* j}(\omega+q)\right)=0, \quad q \in 2 \pi \mathbb{Z}^{d} \backslash 2 \pi s^{*} \mathbb{Z}^{d} \tag{3.2}\\
& \sum_{i=1}^{r} \sum_{j \in \mathbb{Z}^{d}} \overline{\hat{\psi}_{i}^{2}}\left(s^{* j} \omega\right) \hat{\psi}_{i}^{1}\left(s^{* j} \omega\right)=0 . \tag{3.3}
\end{align*}
$$

We remark here that the double sums in (3.2) and (3.3) are the entries of the 'mixed dual Gramian' of the affine systems generated by Ψ_{1} and $\Psi_{2}[9]$.

Applying above result of Weber, one can construct a pair of orthogonal wavelet frames easily. Suppose that $X(\Psi)$ is a frame for $L_{2}\left(\mathbb{R}^{d}\right)$. Let $V:=\left(V_{1} ; V_{2}\right)=\left(v_{i, j}\right)$ be a $2 r \times 2 r$ constant unitary matrix, where V_{1} denotes the submatrix formed by the first r columns of V and V_{2} denotes the submatrix formed by the last r columns of V. Also let $\Psi_{1}:=V_{1} \Psi$ and $\Psi_{2}:=V_{2} \Psi$. It is easy to show that $X\left(\Psi_{1}\right)$ and $X\left(\Psi_{2}\right)$ are frames by using dual Gramian characterization of frames given by Corollary 5.7 in [8] by a simple computing of the dual Gramian of $X^{q}\left(\Psi_{1}\right)$ and $X^{q}\left(\Psi_{2}\right)$. Or one can compute each entry of the dual Gramian of $X^{q}\left(\Psi_{1}\right)$ and $X^{q}\left(\Psi_{2}\right)$ similar to what are we doing next.

We show that the wavelet systems generated by Ψ_{1} and Ψ_{2} are a pair of orthogonal frames for $L_{2}\left(\mathbb{R}^{d}\right)$. Since $X(\Psi)$ is assumed to be a frame, the double sums converge absolutely a.e. Now, we apply Theorem 3.1 to $\Psi_{1}:=\left\{\psi_{1}^{1}, \psi_{2}^{1}, \cdots, \psi_{2 r}^{1}\right\}$ and $\Psi_{2}:=$ $\left\{\psi_{1}^{2}, \psi_{2}^{2}, \cdots, \psi_{2 r}^{2}\right\}$. For a fixed $q \in 2 \pi \mathbb{Z}^{d} \backslash 2 \pi s^{*} \mathbb{Z}^{d}$, we then have

$$
\begin{align*}
\sum_{i=1}^{2 r} \sum_{j \geq 0} \widehat{\widehat{\psi_{i}^{1}}}\left(s^{* j} \omega\right) \widehat{\psi_{i}^{2}}\left(s^{* j}(\omega+q)\right) & =\sum_{i=1}^{2 r} \sum_{j \geq 0} \sum_{l=1}^{r} \overline{v_{i, l}} \overline{\widehat{\psi}_{l}}\left(s^{* j} \omega\right) \sum_{l^{\prime}=1}^{r} v_{i, r+l^{\prime}} \widehat{\psi_{l^{\prime}}}\left(s^{* j}(\omega+q)\right) \\
& =\sum_{j \geq 0} \sum_{l=1}^{r} \widehat{\hat{\psi}_{l}}\left(s^{* j} \omega\right) \sum_{l^{\prime}=1}^{r} \widehat{\psi_{l^{\prime}}}\left(s^{* j}(\omega+q)\right) \sum_{i=1}^{2 r} \overline{v_{i, l}} i_{i, r+l^{\prime}} \\
& =\sum_{j \geq 0} \sum_{l=1}^{r} \widehat{\hat{\psi}_{l}}\left(s^{* j} \omega\right) \sum_{l^{\prime}=1}^{r} \widehat{\psi_{l^{\prime}}}\left(s^{* j}(\omega+q)\right) 0=0 \tag{3.4}
\end{align*}
$$

where we used the orthogonality of the columns of V. A similar calculation shows that (3.3) holds also. This completes the proof that Ψ_{1} and Ψ_{2} generate a pair of orthogonal frames by Theorem 3.1.

When the wavelet tight frame system $X(\Psi)$ is constructed from a multiresolution analysis based on the unitary extension principle (UEP) of [8], one can construct a pair of orthogonal tight frames from the same multiresolution analysis as we describe below.

We first give a brief discussion here on the UEP for the one variable case with trigonometric polynomial masks, while the more general version and comprehensive discussions of the UEP can be found in [4] and [8].

Let $\phi \in L_{2}(\mathbb{R})$ be a refinable function, i.e., $\widehat{\phi}(2 \xi)=\widehat{a}_{0}(\xi) \widehat{\phi}(\xi)$, where \widehat{a}_{0} is a trigonometric polynomial called the refinement mask of $\phi \in L_{2}(\mathbb{R})$ satisfying $\widehat{a}_{0}(0)=1$ and let $\widehat{a}_{j}, j=1,2, \ldots, r$, be a set of trigonometric polynomials called the wavelet masks. The column vector $\overrightarrow{\widehat{a}}=\left(\widehat{a}_{0}, \widehat{a}_{1}, \ldots, \widehat{a}_{r}\right)^{T}$ is called the refinement-wavelet mask. Let

$$
A(\omega)=\left(\begin{array}{cc}
\widehat{a}_{0}(\omega) & \widehat{a}_{0}(\omega+\pi) \\
\widehat{a}_{1}(\omega) & \widehat{a}_{1}(\omega+\pi) \\
\vdots & \vdots \\
\left.\widehat{a}_{r} \omega\right) & \widehat{a}_{r}(\omega+\pi)
\end{array}\right)=(\overrightarrow{\vec{a}}(\omega), \overrightarrow{\hat{a}}(\omega+\pi)) .
$$

Assuming

$$
A^{*}(\omega) A(\omega)=I
$$

for a.e. $\omega \in[-\pi, \pi]$. Define $\Psi:=\left\{\psi_{1}, \psi_{2}, \ldots, \psi_{r}\right\} \subset L_{2}(\mathbb{R})$ by

$$
\widehat{\psi}_{l}(2 \xi):=\widehat{a}_{j}(\xi) \widehat{\phi}(\xi), \quad l=1,2, \ldots, r,
$$

then the UEP asserts that $X(\Psi)$ is a tight frame for $L_{2}(\mathbb{R})$.
By using the UEP the construction of compactly supported tight frame becomes painless. For example, it is easy to obtain the compactly supported symmetric spline tight wavelet frames as shown in [8] and [4]

Next, we briefly describe how to obtain a pair of compactly supported orthogonal tight frames from a given compactly supported tight frame system $X(\Psi)$ constructed via the UEP. The main idea of this construction is from a paper by Bhatt, Johnson and Weber [12] where orthogonal tight frames are constructed from orthogonal wavelets.

Let $V(\omega):=\left(V_{1}(\omega) ; V_{2}(\omega)\right)=\left(v_{i, j}(\omega)\right)$ be a $2 r \times 2 r$ unitary matrix with each entry being a π periodic trigonometric polynomial, where V_{1} denotes the submatrix formed by the first r columns of V and V_{2} denotes the submatrix formed by the last r columns of V. Let

$$
U_{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & V_{1}
\end{array}\right) ; \quad U_{2}=\left(\begin{array}{cc}
1 & 0 \\
0 & V_{2}
\end{array}\right)
$$

Define two new sets of the refinement-wavelet mask from $\overrightarrow{\vec{a}}$ by

$$
\overrightarrow{\hat{a}}_{1}=U_{1} \overrightarrow{\vec{a}} ; \quad \overrightarrow{\hat{a}}_{2}=U_{2} \overrightarrow{\vec{a}}
$$

The corresponding wavelets are defined via its Fourier transform as: $\widehat{\Psi}_{1}:=V_{1} \widehat{\Psi}$ and $\widehat{\Psi}_{2}:=V_{2} \widehat{\Psi}$ with their wavelet masks given above. It is easy to check that both entries in the column vectors Ψ_{1} and Ψ_{2} are compactly supported. Let

$$
A_{1}(\omega)=\left(\overrightarrow{\hat{a}}_{1}(\omega) ; \overrightarrow{\vec{a}}_{1}(\omega+\pi)\right) ; \quad A_{2}(\omega)=\left(\overrightarrow{\hat{a}}_{2}(\omega) ; \overrightarrow{\hat{a}}_{2}(\omega+\pi)\right) .
$$

Then, it is easy to see

$$
A_{1}=U_{1} A ; \quad A_{2}=U_{2} A
$$

since each entry of U_{1} and U_{2} are π periodic. This leads to

$$
A_{1}^{*}(\omega) A_{1}(\omega)=I ; \quad A_{2}^{*}(\omega) A_{2}(\omega)=I
$$

for all $\omega \in[-\pi, \pi]$. Hence, both $X\left(\Psi_{1}\right)$ and $X\left(\Psi_{2}\right)$ are tight frames by the UEP.
Let B_{1} and B_{2} be the matrices generated by A_{1} and A_{2} respectively by removing the first rows of them. Then, it is clear that

$$
B_{1}^{*}(\omega) B_{2}(\omega)=0
$$

for all $\omega \in[-\pi, \pi]$. This asserts that $X\left(\Psi_{1}\right)$ and $X\left(\Psi_{2}\right)$ are a pair of orthogonal frames by Theorem 2.1.1 of [12] whose proof was obtained by a computation similar to (3.4). In fact, Theorem 2.1.1 of [12] can also be proved via a method similar to the proof of the mixed unitary extension principle in [9]. Finally, we remark that this construction can be modified to more general cases, e.g., one may start with two different tight frames instead of starting with one tight frame $X(\Psi)$.

References

[1] C. de Boor, R. DeVore, A. Ron, The structure of finitely generated shift-invariant spaces in $L_{2}\left(\mathbb{R}^{d}\right)$, J. Funct. Anal. 119 (1994) 37-78.
[2] M. Bownik, The structure of shift-invariant subspaces of $L^{2}\left(\mathbb{R}^{n}\right)$, J. Funct. Anal. 177 (2000) 283-309.
[3] O. Christensen, Frames and pseudo-inverses, J. Math. Anal. Appl. 195 (1995) 401414.
[4] I. Daubechies, B. Han, A. Ron, and Z. Shen, Framelets: MRA-based constructions of wavelet frames, Appl. Comput. Harmon. Anal. 14 (1) (2003), 1-46.
[5] H. Helson, Lectures on Invariant Subspaces, Academic Press, Nwe York, 1964.
[6] J.R. Holub, Pre-frame operators, Besselian frames and near-Riesz bases in Hilbert spaces, Proc. Amer. Math. Soc. 122 (1994) 779-785.
[7] A. Ron, Z. Shen, Frames and stable bases for shift-invarant subspaces of $L_{2}\left(\mathbb{R}^{d}\right)$, Canad. J. Math. 47 (1995) 1051-1094.
[8] A. Ron, Z. Shen, Affine systems in $L_{2}\left(\mathbb{R}^{d}\right)$: The analysis of the analysis operator, J. Funct. Anal. 148 (1997) 408-447.
[9] A. Ron, Z. Shen, Affine systems in $L_{2}\left(\mathbb{R}^{d}\right)$ II: Dual systems, J. Fourier Anal. Appl. 3 (1997) 617-637.
[10] A, Ron, Z. Shen, Weyl-Heisenberg frames and Riesz bases in $L_{2}\left(\mathbb{R}^{d}\right)$, Duke Mathematical Journal, 89 (1997), 237-282.
[11] E. Weber, Orthogonal frames of translates, Appl. Comput. Harmon. Anal. 17 (2004) 69-90.
[12] C. Bhatt, B. D. Johnson, and E. Weber, Orthoogonal wavelet frames and vector valued wavelet transforms, preprint.

[^0]: *This work was supported by several grants at the National University of Singapore; The firstnamed author was supported by KOSEF (NC36490).

 2000 Mathematics Subject Classification: 42C15; 42C40.
 Key words: Orthogonal frames; Frame; Wavelet System; Affine System; Gabor System;
 ${ }^{\dagger}$ Division of Applied Mathematics, KAIST, 373-1 Guseong-dong, Yuseong-gu Daejeon 305-701, Republic of Korea (hkim@amath.kaist.ac.kr)
 \ddagger Department of Mathematics, Yeungnam University, 214-1 Dae-dong, Gyeongsan-si, Gyeongsangbuk-do 712-749 Republic of Korea (rykim@ynu.ac.kr)
 ${ }^{\S}$ Department of Computational Mathematics and Informatics, Hankyong National University, 67 Seokjeong-dong, Anseong-si Gyeonggi-do 456-749, Republic of Korea (jaekun@hknu.ac.kr)
 ${ }^{\top}$ Department of Mathematics, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Republic of Singapore (matzuows@nus.edu.sg)

