Absolutely Stable Explicit Schemes for Reaction Systems*
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Abstract

We introduce two numerical schemes for solving a system of ordinary differential equa-
tions which characterizes several kinds of linear reactions and diffusion from biochemistry,
physiology, etc. The methods consist of sequential applications of the simple exact solver for
a reversible reaction. We prove absolute stability and convergence of the proposed explicit
methods. One is of first order and the other is of second order. Numerical results are included.
In addition, we apply the second-order method to a computational model for the transport of
the fatty acids from the blood plasma into the myocyte.
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1 Introduction

Many phenomena of interest in physiology and biochemistry are characterized by reactions among
several chemical species and diffusion in various mediums (see [7,9,10,13]). In a closed system,
both reactions and diffusion are governed by a system of ordinary differential equations (ODEs)

y(t) = My(t), (1.1)

which guarantees conservation of the total amount of y(¢) for any ¢ > 0. Since we are concerned
with the steady-state solution as well as the transient in simulations of very large systems of
chemical reactions or molecular dynamics, we need to take the overall computational cost into
consideration. Many physiologists and biochemists prefer explicit methods to implicit methods
since implementation of the explicit methods is easier than the others. The popular methods for
reaction systems are simple explicit schemes such as Euler’s method, Runge-Kutta method, etc.
However, it is well-known that conditional stability, the typical weak point of explicit methods, is
very fatal for stiff problems. In the past few decades, many studies on numerical methods for stiff
ODEs have been done in various aspects (see [3,4,6]).

The aim of this paper is to present two absolutely stable explicit schemes which are applicable
to a general reaction system (1.1). In 1978, Rush and Larsen [12] introduced an iterative procedure
for the Hodgkin-Huxley model for cell membrane behavior, which is composed of a circuit equation

*This work was partially supported by KRF-2006-013-C00082

TDivision of Applied Mathematics, KAIST, Daejeon, 305-701, Korea.

fCorresponding author, e-mail: colee@amath.kaist.ac.kr

§Department of Physiology, College of Medicine, Inje University, Pusan, 614-735, Korea.
9IDepartment of Physiology, College of Medicine, University of Ulsan, Seoul, 138-736, Korea.
I Co-corresponding author, e-mail: leemch@amec.seoul.kr



for currents and a coupled system of nonlinear ODEs for the ionic gates. An integration algorithm
was suggested for a numerical solution to the ODEs for the ionic gates, which was based on
the exact solution of a linearized ionic gate equation. Similarly, the methods in this paper are
motivated by the simple exact solver for a reversible reaction. In spite of their explicitness, we
have unconditional stability, that is, stability without any condition on the step size. Furthermore,
we proved the convergence of the proposed methods; one is of first order and the other is of second
order.

This paper is organized as follows. In Section 2, we introduce the reaction systems of our
interest and propose two numerical methods for a general reaction system. Section 3 provides
theoretical results for convergence and stability of the proposed methods. In Section 4, we provide
numerical experiments for typical reaction systems and apply one of our methods to a physiological
model which illustrates the transport mechanism of the fatty acids.

2 Reaction systems and numerical methods

We consider two typical types of reactions: reversible reactions and circular reactions. A reaction
of the type

A=BRB
ky
is called the reversible reaction, where ky and £y, are the rate constants for the forward and backward
reactions. One interesting biochemical system to which the reversible first order equations apply
is the carbonic acid system:

k
CO, + H,0 k: H,COs %8 HY 4+ HCO; (2.1)
-1 very
fast

Equation (2.1) reduces to
ky
COq = HCO3
b

(see [10]). Then, the rate equations are written down as

dA

i —kyA+ kB

dé (2.2)
= —kA— kB

a P !

where A(t) and B(t) are the concentrations of COy and HCOj5 as functions of time ¢. Another
interesting example of such a type occurs frequently in metabolic studies. The other type is
a circular reaction shown in Figure 1. We may write the differential equations describing this
process as

g [Ao(®) —b1o — b2o Jio J20 Ao(t)
7 A1) | = b1o —f10 — b1 for A(t)| . (2.3)
As(t) ba2o ba1 —fo1 = fao] [A2(t)



Figure 1: A circular reaction system with 3 substances Ay, A7 and As.

From the fact that the total concentration A(t)+ B(t) remains constant for all ¢ > 0 in a closed
system, the exact solution of (2.2) is written in a form

A(0)
B(t) ko (1 — e=(kstho)ty ﬁ(/ﬂb + kfef(kf+kb)t) [B(O):| .

|:A(t):| _ [ﬁ(/ﬂf + kbe_(’ff+kb)t) k?kak?b (1 _ e—(kf-i-kb)t)
ky+ky

Similarly, we can find the exact solution for the circular reaction in Figure 1. In general, a reaction
system is characterized by a coupled system of ODEs. To solve a relevant eigenvalue problem is
the first step in solving such a coupled system exactly (see [17]). But as the number of substances
increases, the exact solver suffers from typical difficulties in large scale eigenvalue problems. There
are some numerical techniques in common use: the Fuler method, which is the simplest one, but
requires a small size of time step At; the Runge-Kutta method, which is more complicated, but
allows much bigger time steps to be taken. Now for the circular reaction case, we propose new
numerical methods motivated by the above process that is used to find the exact solution to a
reversible reaction. For the sake of simplicity, we illustrate these algorithms for a simple circular
reaction (2.3) although they are applicable to general reaction systems.

Algorithm 1: CR?

1. For each k € N, let A, ;, be the approximate solution to A;(¢) at time ¢, = kAt.
2. For k=0,1,2,--- do:

(a) Set (i)c = Ao)k, zic = ALk and zéc = Ag,k.
(b) Find the exact solution AY™ () and A““"(t) of the reversible reaction with the initial
values Ay° and A%
!
Ao = A,
bio
Set At = AF™ (tyy1) and Al = AP ()4 1).
(c) Find the exact solution AY™(t) and AYX™(t) of the reversible reaction with the initial
values A} and A¥:
f
A = A

bao

Set A07k+1 = Aéemp(tk_,_l) and AZQC = A;emP(tk+1).



(d) Find the exact solution A" (t) and AL (t) of the reversible reaction with the initial
values A% and A%

f:
AL = Ay

ba1

Set Al,k+1 = Aieml)(tk_‘_l) and A27k+1 = At;mp(tk_,_l).

Remark 2.1 CR? stands for Consecutive Reversible Reactions.

The key idea of Algorithm 1 is that we approximately regard a circular reaction as a consecutive
reaction which consists of three separated reversible reactions. Although we solve three reversible
reactions in the following order

A= A, Ay = Ay, Ay = Ay,

the algorithm does not depend upon the ordering we adopt to split a circular reaction into a chain
of reversible reactions. By the simple calculation, Algorithm 1 is characterized by the following
linear system:

Ao, k+1 X909 X10 Xo0Yi0 Yo Aok
Al g1 = Xo1Z10+ Ya1Z20 X100  XoaWio + Y21 Z20Y10 Yo Wao | |Ark
Ag kg1 Zo1Zvo + Wa1Z20 X190  ZoaWio + Wa1ZaoYio WaiWao| | Ark
Aok
def ’
= L2 Al,k )
Az i,
where
|:Xij Yij] |ty (fig + bige Guthat) f]jT]bJ(l — e~ (Fuatbij)Aty
- bij —(fij+bij . o= ([fijtbij
Zij Wi Jij+bis (1 — e~ Uutbi)at) m(bw + figem Juthiat)
Note that

Xij +Z1‘j :}/ij +Wij =1.

We interpret the Algorithm 1 for n substances inductively, i.e., at ¢ = t;, we assume that the
general reaction system with j substances Ag, A1,---,A4;_1(1 < j <n—1) is solved, then we solve
the parallel reaction that consists of j reversible reactions:

woy,

bjo

I3
A, = A



Algorithm 2: SCR?

1. For each k € N, let A7, be the approximate solution to A;(t) at time ¢, = kAt.
2. For k=0,1,2,--- do:
(a) Set Aic = Ao)k, All(’ = ALk and A'LQC = Ag,k.

(b) As in Algorithm 1, solve three reversible reactions according to chosen ordering: Ay =

A, Ay = Ay, Ay = As. Define Af,lkﬂ by the obtained approximation A; ;41 for i =
1,2,3.

(¢) Solve three reversible reactions in reverse order: Ay = A, Ay = Ag, A1 = Ag. Define

A7%..1 by the obtained approximation A; 41 for i =1,2,3.
(d) Set
A'?l _|_A52
fppl = % for i = 1,2,3.

Remark 2.2 Algorithm 2 is a symmetrized version of Algorithm 1 and can be applied to n sub-
stances inductively as in the Algorithm 1.

3 Stability and convergence results

Now, we consider a general reaction system with (n + 1) substances:

Ap(t) Ao(t)
d [Ai(t) Ay(t)
2. = Mn . 9 ]‘
dt : (3.1)
An(t) An(t)
where
> 1 bio fio . e Jftn—1)0 fro
b1o _flO - Zi:Q bip - f(nfl)l fnl
bin—1)0 bin—1)1 = Z?:_OQ Jin—1)j = bn(n-1) fn(nfll)
bnO bn1 T bn(n—l) - 27;0 fnj

Note that the general reaction system (3.1) includes a chain of reversible reactions and circular
reactions. We can easily confirm that M,, always has 0 as an eigenvalue and the real parts of all
eigenvalues except 0 are negative, i.e., (3.1) is neutrally stable. Hence the exact solution to the
problem (3.1) does not have a vanishing property:

as t — 00, A;(t) — 0 for all i.

Instead of A-stability, we shall adopt a more appropriate concept of stability for the numerical
methods applied to (3.1). A numerical method for the neutrally stable problem like (3.1) is said
to be stable if it does not blow up as t — oo (see [14,17]).



3.1 Stability and convergence of CR? for general reaction systems

When applying the CR? algorithm to (3.1), we get the approximation (A; 1), such that

Ao k41 Aok
Al 1 Aig
ol =La| T, (3.2)
An7k+1 An,k
where L, is an (n + 1) X (n + 1) matrix with entries {ZE;L) :Lj:ll

Lemma 3.1 Consider a parallel reaction with (n+ 1) substances, that is composed of n reversible
reactions:

fn
A, = A

bn[)
fnl
—
=

bn1

An Al

frm-1)
An - An,1
bn(nfl)

Applying the CR* algorithm to this problem in the following ordering:
AO = AnaAl :Ana 7An71 = An

gives
Ao k41 Ao,k
Al k11 Ak
. — An . 3
An,k+1 An,k
where (Aj k+1)7—o s an approzimation to (A;(t))i—y at t = tgy1, and Ay, is an (n+ 1) X (n+ 1)
matriz with entries {)‘Ey)};lj:l1
Then, we have
n+1
SN =1 Vi=1, n+l. (3.3)
i=1

Proof. The proof is done by induction on n. For n = 2, we have

Ao k41 1 0 0 Xoo 0 Yoo [Aok
Al = |0 Xor Yy 0 1 0 Ak
Ao jt1 0 Zor War| |Zag 0 Wao| |Ask

Aok

= Ay [Ais

Ag



Using the relations X;; + Z;; = 1 and Y;; + W;; = 1 gives

3
STAY =1, forj=1,2,3.
=1

Hence for three substances, the statement holds. Suppose that the statement is true for n sub-

stances. Consider a parallel reaction with (n + 1) substances Ag, A1,---, A,—1 and A,
An - AO
An - A1
A, = A,_1

The approximate solution (A; x+1)7_, given by the CR? algorithm is characterized as follows:

Aok+1| | Xno Yno! |Aok
{Affmp | Zno Whol [Ank|’ (3.4a)
Al k1 A1k
: = At | . (3.4b)
An—l,k+1 An—l,k
Ap k1 Atemp
By the inductive hypothesis, we have
SV =1, vi=1, 0. (3.5)
i=1
Combining (3.4a) and (3.4b) yields
_ Ao -
X0 Y )
Ag k11 [Xno o] |:An,k:|
Al g1 Avk
Ap—1 k41 A Ap_1 g
A, k+1 Ao,k
) Z, W, )
| [ 0 0] An,k
Aok
Avg
= An
An—l,k
An,k



Hence we have

Xno 0 0 Y0
ANV 20 ALY /\Y(Lr:)l) AT W
A, = : : .. . (3'6)
NnZn0 A AN Aoy Wo
B R I U R

It follows from (3.5) and X,,0 + Zn0 = 1, Y0 + Wiyo = 1 that

n+1
i=1
Lemma 3.2 The matriz L, = [ll(;l)}?j:ll in (3.2) satisfies

n+1
S =1 vi=1, 4+l
i=1

Proof. The proof is done by induction on n. From relationships
X”—FZ”:].,Y;]-I-W”:l fOI‘aHZ,_]WIthOS’L,]SQ,

it is obvious that the statement is true for three substances. Suppose that the statement is true for
n substances, that is, applying the CR? algorithm to a general reaction system with n substances

Ag, -+, A,_1 gives the approximate solution (Ai’k+1)?;01 to (Ai(t))zzol at t =tgy1:
Ag k11 Aok
Al k1 Al
. = Lin—1 . B (37)
An—l,k—&-l An—l,k
where Y, lz(;l_l) =1 Vj=1,---,n. As mentioned in Section 2, adding a substance A,, into the
general reaction system with n substances Ag, - - - , A, _1 results in n additional reversible reactions:
f7L
A, =4
bn()
fn
A, = A
bn1
frm-1)
An — An,1
bn(nfl)



By (3.7), we have

Ao,k+1 Ao,k
Al kg Alk
. _ An L’nfl
A1 k1 An—1k
An,k+1 L An,k
[ Aok
Aty
= L, :
An—l,k
L An,k
Hence we have
0
Ly=A, | Lot (3.8)
0
0 0 1

and by Lemma 3.1 and the induction hypothesis, it follows that

n+1
S =1 vj=1,n+1. O

i=1
Let [x[l1 = Y./, |z:| be a norm on R™.
Theorem 3.1 The algorithm CR?* applied to general reaction systems is absolutely stable.

Proof. The CR? algorithm gives an approximate solution to (3.1) such that y**! = L, y* with y* =
(Ao -+ Anx)T. Since all entries of L,, are nonnegative, it follows from Lemma 3.2 that

Iy = 11yl
that is, the approximation does not blow up independently of At. O

Lemma 3.3 Under the same assumptions as in Lemma 3.1, we have

anAt
A, = diag(1 — bnjAt)?;ol :

: +0((At)?).
fn(n—ll)At
bnoAt bon-nAt 11— (Z?:_o fnj) At

Proof. 1t is easy to show that the statement holds for n = 2 by using Taylor’s theorem. Suppose
that the statement is true for a parallel reaction which consists of n substances. Consider a parallel



reaction with (n + 1) substances:

- (3.92)
bro
f’nl
A, = Ay (3.9b)
bnl
Fr(n—1
A, =Y a, (3.9¢)
bn(n—1)
By the inductive hypothesis, the approximate solution (A; x+1)j—, to the solution (A4;(t))7, at
t = tj,1 obtained by applying CR? to (3.9) is written as follows:
Aok+1| | Xno Yno!| |Aok
A%emp N ZnO WnO An,k
L Lo bwA4O(A) frodt OB TTAas] g0
- broAt + O((A)?) 1 — foAt+O((AH)?)| [Ank '
Al k1 Ark
. o .
An—l,k-i—l An—l,k
Ap k1 Alemp
where
fnlAt
. -1 .
Anfl — dlag(l — bnjAt)?zl . + O((At)Q)
by At bon—)At 1 — (Z;‘;l Tnj) At

Hence by (3.6) and (3.10), we have the expansion form of A,,, that is, the statement is true for a
parallel reaction with (n + 1) substances. O

Lemma 3.4 We have

Ly, = Lpo+ LyiAt+ L, o(A)? + O((At)?)
I+ M, At + O((At)?)

where Ly, and M,, are matrices in (3.2) and (3.1), respectively.
Proof. By Taylor’s theorem, we can rewrite L,, as
Ly =Lpo+ L1 At + Ly oA + -+

Moreover, by induction on n, we can confirm that L, o =1 Vn € N with n > 2. For n = 2, it is
easy to show that the statement holds by applying Taylor’s theorem to each entry of Lo. Suppose
that the statement is true for (n — 1). When a substance A, is added to the general reaction

10



system with n substances Ag, -+, A,_1, we need to find out the difference between M,,_1 and M,,.
Because the supplementary substance A,, makes n reversible reactions occur additionally:

an
A, = A
v b 0
A, o4
bnl
Fr(n—1
An (‘:\ : n—1,
br(n-1)
it follows that
an
M, — M1 — diag(bn;)"=) : (3.11)
fn(n—ll)
n—
bnO ce bn(nfl) - Zj:O fnj
Equation (3.8) and Lemma 3.3 yield
anAt
L, — diag(1 — by A0 % L1 +0((At)?).
bnoAt te bn(n—l)At 1- (Z?;O fnJ)At

By the induction hypothesis, we can easily confirm that L, = I + M, At + O((At)?). O
Let [|All1 = maxi<j<n Y .y |aij| be a matrix norm on R™*". We are now ready to prove
convergence of the CR? algorithm.

Theorem 3.2 The algorithm CR* applied to (3.1) has the order of convergence 1.

Proof. We denote the exact solution of (3.1) by y(t) = (Ao(t) - A,(t))T. CR? gives an approxi-
mation to (3.1) such that y*™! = L, y* with y* = (Agx -+ A,x)T. We will show that

Iy (tes1) —y" 1 < CAt,

where C' is a constant independent of At. Using Taylor’s theorem and Lemma 3.4 yield

yitrn) = (7 + a0, + B a2y () + o((an) (3.122)
v = Loy" = (I + M, At + L, 2(At)?)y* + O((At)?) (3.12b)

Let e, = y(tx) — y* denote the numerical error. Subtracting (3.12b) from (3.12a) gives

err1 = (I+AtM, + (At)*L,2)er + (MT’% — Ln,2> (At)?y(tr) + O((At)?)

= Lyep+ O((At)Q)

11



Since ||Ly|l1 = 1 by Lemma 3.2, it follows that
lexs1ll < llexlls + C(At)?
with a constant C' independent of At and k. We can check by induction on k that
lexlly < kC(At)? VEk=0,1,-
If we restrict ¢ to the finite interval [0,¢r], then we have that Vk = 0,1,--- |, [tp/At],

lexlr < [tr/At|C(AL)?
< CtrpAt.

Since C' is independent of At, it follows that

lim llex||1 = 0.
At — 0

0< k< [tr/At)

In other words, the algorithm CR? is convergent and has the order of convergence 1. O

3.2 Convergence of SCR? for general reaction systems

In order to look into the procedure of the SCR? algorithm applied to general reaction systems, we
consider the circular reaction with 3 substances shown in Figure 1. Applying SCR? to the reaction
system gives

S1 S S2 S
Aokt Aj ik A . A5
51 _TS51 s S2 _ T s
Al | = L5 ikl ATk | = Lo 1,k
S1 S S92 S
A 2.k Akt 0,k
Then, we have
s s
Ao,k+1 1 Ao,k
S _ S1 S2 S
Lk+1| = §(L2 +L3?) Al k]
S S
2, k+1 2k
where
0 0 1
s T52
Ly =PLy P, P,=1(0 1 0
1 0 0
. . . —s2 .
Considering Taylor expansions of L3' and L,” yields
s 1 9 1 0 —b2o f10 + b21 f10 — b21 f20 b1of20 — fiof21 + f20f21
L212 - —M2 = — | biob2o — bioba1 + bz2o f21 0 —b1of20 + fiof21 — f20f21
’ 2 —b1ob2o + biob21 — b2of21  b20f1i0 — ba21fio + b21f20 0
and
—ss 1 9 1 0 —b20 f10 + b21f10 — b21f20  biob2o — bioba1 + bao f21
L2 9 — 7P2M2 Py = — | biof20 — frofer + fa0f21 0 —biob2o + biob21 — ba2o f21
’ 2 2 | ~biof20 + frofz1 — faof21 baofio — baifio + b21 f20 0

12



Then, we have
L3y + Ly% — M5 =0 (3.13)

In general, to solve (3.1) with SCR?, we obtain the approximation (A7 g11)io such that

Af k1 Ab i AG
Al k+1 Al 1 Al

o= =g L) (3.14)
A k1 Ak Ak

where B
L2 = P,L.’P,

and P, is the (n 4+ 1) x (n 4 1) permutation matrix such that

(1 ifitj=n+2,
(Pn)ij _{ 0 otherwise.

Lemma 3.5 Under the same assumptions as in Lemma 3.1, we assume that

Ay = Ao+ A1 AL+ Ay, 2 (A + O((A1)?).

Then,
280 (bo + fno) 0 0 0 — 120 (bno + fno)
bnofor Y1 (b 4 ) O : 81 (2o + b1 + fu1)
An,2 — bnofn2 bni fn2 . . : ,
: : 0 :
br0 fr(n—1) bt fr(n—1) b:(n%l)(bn(nq) + fa(n-1)) o)
(11 (1) v =20 D by + fant) (1v) i
where

Fan=1) ) =
0 = =L@ Y fui 4 bage-1) + fata-1)
=0

bnO

n—1
=1

n—2

2 ,
=2

n—1
(V) = 5 3 Fuilbui + Fui) + 3 fuifog:
=0

i<j

13



Proof. By the Taylor expansion of Ag, the statement holds for n = 2. Suppose that the statement
is true for A,,_; 2. As we mentioned in the proof of Lemma 3.1,

Aok 10 ...o0] %m0 O - 0 Yo Aok
Aty 0 o 1 --- 0 O Aty
Aol = SRR z
An—l,k O An—l 0 0 1 0 An—l,k
An,k ZnO 0 0 WnO Ank
By Lemma 3.3, we have
*bnl fnl
Apy =T+ 1 At + Ap_12(A1)2 + O((AD)?).
_bn(nfl) fn(n:ll)
bn1 o bn(n—l) - Z?:l fn1
It follows
0 0 e 0 0 _bnO f’rLO
0 _bnl fnl 0
0 0 . . .
Az = {0 An1,2:| + : : :
0 *bn(n—l) fn(n—ll) 0
0 bn1 T bn(nfl) - Z:lz_l fni bnO _fTLO
bnO(bn() + an) 7fn0(bn0 + an)
0
_l’__
0
_bnO(bnO + an) an(bno + fn())
bﬁo(bno +fn0) 0o - 0 7f7210 (bnO +fn0)
bnOfnl 0O --- 0 _anfnl
— 0 0 + . . . .
10 Aylie : - : ’
bnofan—1y 0 -+ 0 —faofnn-1)
(I 0 --- 0 (I1)
where
bno n—1
@ = —7(5n0 + fo 2 i)
i=1
2 i=1
Hence, by the inductive hypothesis, we conclude that the statement is true for A, o. O

14



Lemma 3.6 The matriz L? in (3.14) has the Taylor expansion
Ly = Lo+ L At + L, 5 (At)* + O((At)?)

1
I+ M,At+ 5M,%(At)2 + O((At)?)

where M, is the matriz in (3.1).

Proof. Since SCR? is a symmetrized version of CR?, each L7 has the same properties as L,,. Thus,
according to Lemma 3.4, it is obvious that

Lyo=1, Lj,= My,
Let Dy = Ly — 1M?2 for i = 1,2. To complete the proof, it suffices to show that
D} + D;? =0.

Because D;? can be associated with D' by the permutation matrix P, we only need to characterize
entries of Dy1.
We first claim that

Dy = > Duju, 0<ijk<n (3.15)
i<j<k
where
D j k)
(i + 1)th (j + 1)th (k + 1)th
i !
= 0 —brifji + ki fii —brjfei bjifwi — fifes + freifug | (i +1)th
3 | bjibri — bjibkj + brifrj 0 —bjifri + fiifej — frifu;| (G + 1)th
—bjibri + bjibrj — brifr;  brifji — brjfii + brjfri 0 —(k + 1)th

and other entries are zeros. The claim is verified by induction on n. By the previous argument,
we already know that
D;l = D(0,1,2)'

We assume that the claim is true for a general reaction system with n substances Ag, A1, -+, 4,1,
ie.,
Di | = Z Dk, 0<i,jk<n-—1.
i<j<k
Let us see how L' and M, change when adding A, into the general reaction system with n
substances. Since

A, [Lffl 0}

s1
Ly 0 1

I+ M, 1At + Ly o(At)? +O((At)*) 0
0 1]’

(I + Ans At + Apa( A2 + O((A1) [

it follows that

L 0 M, _
szl,Z = |: n61’2 0:| +An,1 |: 0 ! 8:| +An72.

15



Also, Lemma 3.3 and (3.11) give

2
M,_1 O
= ([ o)
o [ME2, 00 M, 1 O M,1 O 9
o |: 0 0:|+|: 0 0 An,1+An,1 0 0 +An71.
Then, we have that
s s 1 2
D:nl = Ln1,2_§Mn
_ [, —gMy 0] 1 M,y 0 1M, 0 1o
_ { . N S B I ] P S S AT

Looking at M,,_1, A, 1 and A, 5 carefully, all (i, j) entries contain subindex n, (i —1) or (j —1). It
implies that we can write

L pma [Mn_l 0} 1[Mn_1 0

ol o 0] 2] 0 0

1
5 } A+ An2=5ARy =D B 0<ij<n,

i<j

where Bjj, is a matrix whose entries consist of products of bys, fni, bnj, frnj, bji and fj;. Now let
us compute B, in details. For a matrix M, we define (M);;,, by a matrix whose entries consist
of products of by, fni,bnj, fnj. bji and f;; among entries of M. We detail B;j, for all i,j with
0 <i,j <n as follows:

M, 1 O
- (a5 9)
wjn
(¢ + 1)th ( + 1)th (n+1)th
) ! ! !
= bjibm _bnifji 0 — (Z + 1)th
—bjibn; bnj fi 0 —(j+1)th
10ji(bnj — bni)  fji(bni — bnj) 0 —(n+1)th
(M,_, 0
5o ([ Ta)
L 0 0 ijn
(i+1)th (4 + 1)th (n+1)th
) ! ! |
= bjib"i - fﬂb”j - jifni + fjifnj — (Z + 1)th
— bjibni Jjibnj bjifni — fjifng | (G + 1)th
L 0 0 0 —(n+1)th
Es = (An,2)ijn
(i+ 1)th €] +¢1)th (n 4 1)th
= mbni(bni*’fni) 0 *mfni(bni+fwli) — (i + 1)th
bnifnj W”nj(bnj + fnj) _Wl_l)fnj(bn]‘ + fng) = fnifnj| — (@G + 1)th
7ﬁbni(bni+fni) *bnifnj 7mbn,j(bnj+fnj) (1) —(n+1th

(D) = g3y fri(Oni + i) + 550y Fug (bng + fag) + faif
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Note that (n — 1) appears in the denominators. In the (i + 1,i + 1) entry, 2bu;(bni + fni) is
independent of j. Therefore, we distribute it equally to all (A, 2)ijn of which (¢ + 1)th column is
nonzero. In other entries, (n — 1) appears with the same reason.

By = <(A"’1)2>¢jn

(i 4+ 1)th (j + 1)th (n 4 1)th
1 1 1
1 . . o Cf _ 1 . . ) . .
— =1 Pni(bni + fni) . bnjfni (nl_l)fnl(bnl+fn1) Tnifng — (i 4 Dth
brifnj =1 bni (Pnj + fnj) “ =Dy fni(nj T fnj) = fnifnj| <G+ 1)th
— Gy tni i + i) — bnifng Gy by (bng + fng) = bnjfni an —(n+1th
_ 1 1
(H) - (n_l)fni(bni + fm) + (n_l)fnj(bnj + fny) + anifnj
where, for each Ej, Ej(mi,me) =0 Vmq,ms ¢ {i+ 1,5+ 1,n+ 1}. Then, we have
1 1 1
Bijn = §E1 - §E2 + E3 — §E4
(i +1)th (j + 1)th (n + 1)th
1 1
= 0 —bnifji +bnjfiji — bnjfni  bjifni = fjifng + frifnj | < (@i +1)th
3| bjibni —bjibnj + bnifng 0 —bjifni + fjifni — fnifni| <G+ 1)th
—bjibni + bjibn; — bnifnj bnifji — bnjfii + bnjfni 0 —(n+ 1)th

Di,jom)-
The inductive hypothesis yields

Dy = > Dujm+ Y Dijm

i<j<k<n i<j<n
= . Dy
i<j<k
Similarly, we obtain the relationship

—s 1
Ly = 5PaM2Py = > Dinimjin—i-

2 i<j<k
Note that
D jgy + PaDin—kn—jn—iyPn = 0.
Consequently, we find that

, 1
Dy = Ly oM
29
— 1
= Pn(Lnfz—anMﬁPn)Pn

= Pn( Z D(nfk,nfjmfi))Pn
i<j<k

— > Dy

i<j<k

that is,
D'+ D2 =0.

The proof is complete. O
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Figure 2: (a) A circular reaction. (b) A general reaction system.

By using the same arguments as in Theorem 3.2 based on Lemma 3.6, we can easily get the
following theorem.

Theorem 3.3 The algorithm SCR* applied to (3.1) has the order of convergence 2.

4 Numerical experiments

In this section, we present numerical results which verify the theoretical results in the previous
sections. In addition, we introduce a model of interest in the fatty acid physiology and apply
our numerical method to the transport model of fatty acids from the blood plasma into the heart
muscle cell.

4.1 Simple reaction systems

Figure 2-(a) describes a circular reaction with 3 substances A, B and C' with initial values A(0) =
1,B(0) =2 and C'(0) = 3. The system of ODEs is as follows:

4 [A® —1001 10 17 [A@®) A(t)
SAB@)| = | 1000 -15 10| |B()| =M |B@)]|. (4.1)
a1 o) 1 5 11| [ o)

Many explicit numerical methods such as Euler’s method and a fourth order Runge-Kutta method
(RK4 method) in common use have their pros and cons. The structure of explicit methods is so
simple that they are popular and may diminish computing cost at each time step. But, due to its
conditional stability, the restriction on the choice of the size of time step is troublesome. For a stiff
problem such as (4.1), the drawback of explicit methods is more severe. Note that Euler’s method
for (4.1) is stable only if

51

At < ~ 1.9782 x 1073 with S = —2

and RK4 method for (4.1) is stable only if
S

min

At < A~ 2.7531 x 1072 with Sy ~ —2.7853,
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Figure 3: Stability of the CR? algorithm.

y(tr) — ¥V Y lly(t:) - y'lh At
At CR? SCR® | BDF2 CR® | SCR* | BDF2

10~T [ 3.4182¢-01 | 1.6979¢-01 [ 3.0723¢-12 | 1.0295 [ 5.2196e-01 [ 6.4610e-02
102 || 3.2857e-02 | 1.4643e-02 | 1.5698¢-13 | 9.9615e-02 | 4.4658e-02 | 3.5786e-03
10~ [[ 2.1366¢-03 | 3.0403e-04 | 2.3378¢-12 | 6.5804e-03 | 9.3141e-04 | 4.9409¢-04
10~7 [ 1.8653e-04 | 3.0979e-06 | 2.4701e-11 | 5.7888e-04 | 9.5901e-06 | 8.9323¢-06
1075 || 1.8376e-05 | 3.1126-08 | 4.2676e-11 | 5.7083¢-05 | 9.6640e-08 | 9.6306¢-08
105 |[ 1.8348¢-06 | 3.7633e-10 | 7.4494e-10 | 5.7002e-06 | 1.0620e-09 | 2.5923e-09

Table 1: Convergence behaviors of CR?, SCR? and BDF2 by means of ||y(tr) — yV||; and
Zivzl lly(t:) — y[l1At with At varying from 107! to 107% where N =tz /At with tz = 3.

where A, is the minimum eigenvalue of M and

S;= min Re(z) i=1,2
ze0D,;CC

with the linear stability domain D; of Euler’s method and RK4 method, respectively. Figure 3
shows that the CR? algorithm gives a stable approximation even if a large At is used. For a stiff
problem, Gear’s method is widely used in order to avoid the problems of instability due to the
stiffness. We investigate the difference between two proposed methods and one of Gear’s method, a
two-step backward differentiation formula (BDF2) which is an A-stable method of order 2. BDF2
takes a long time to solve a linear system. Moreover, we should pay special attention during
the process of solving the relevant linear system because it may be ill-conditioned for a large At.
Hence, two explicit algorithms CR? and SCR? are superior to BDF2 in terms of efficiency and
simplicity of implementation. To observe the convergence speed of three methods, two different
errors ||y(tr) — y™V||; and Zfil lly(t:) — y*||1At are shown in Table 1, where ||y (tr) — yV|1 is
computed at the terminal point tp = 3 and vazl lly(t:) — y'[1At is calculated over all discrete
time steps t = ¢; with N = ¢tz /At. Note that the performance of SCR? is comparable to that of
BDF2.

Next, we consider a somewhat complicated general reaction system in Figure 2-(b) with initial

values
A(0)=1, B(0)=0, C(0)=0, D(0)=0, FE0)=0 and F(0)=0,



CR? SCR?

At || [ly(tr) —y"I1 | order | [ly(tr) —y™ |1 | order
1/2 5.7923e-02 1.0089¢-02

1/4 2.7704e-02 | 1.0640 | 3.4552e-03 | 1.5460
1/8 1.34540-02 | 1.0421 | 1.2101e-03 | 1.5137

1/16 6.6209¢-03 1.0229 3.6181e-04 1.7418
1/32 3.2836e-03 1.0118 9.9202e-05 1.8668
1/64 1.6350e-03 1.0059 2.5992e-05 1.9323
1/128 8.1584e-04 1.0030 6.6537e-06 1.9659
1/256 4.0750e-04 1.0015 1.6833e-06 1.9829

Table 2: Convergence behaviors of the algorithms CR? and SCR? by means of ||ly(tz) —y||; with
At varying from 1/2 to 1/256 where N = tp /At with tF = 10.

CR? SCR?
At o lly(t) =yl At [ order | 7 |ly(t:) — y'[1At | order
1/2 1.4005 2.6305e-01
1/4 6.6803¢-01 1.0680 7.0304¢-02 1.9036
1/8 3.2096e-01 1.0575 1.8225e-02 1.9477
1/16 1.5670e-01 1.0344 4.7130e-03 1.9512
1/32 7.7354e-02 1.0185 1.2067¢-03 1.9656
1/64 3.8422¢-02 1.0095 3.0594e-04 1.9797
1/128 1.9147¢-02 1.0048 7.7070e-05 1.9890
1/256 9.5573e-03 1.0024 1.9344e-05 1.9943

Table 3: Convergence behaviors of the algorithms CR? and SCR? by means of S~ | ||y (t;) —y'|l1 At
with At varying from 1/2 to 1/256 where N = tp/At with tp = 10.

where

f1 =05, f=001, f3=50fi=01, f5=01, Ff5=1.0,
by = 0.05, by =0.001, bs=0.5, by=001, b;s=0.01, bsg=1.0.

In order to illustrate convergence properties of two algorithms CR* and SCR?, two kinds of errors
measured in the [;-norm and estimates of the order of convergence are summarized in Table 2 and 3.
Table 2 gives errors ||y(tr) — y™V||1 for varing At and estimates of the convergence order corre-
sponding to |ly(tr) — yV |1 where N = tr/At with the terminal point tz = 10. The numbers
presented in Table 2 imply that when the time step At is halved, the errors ||y (tr) — y™|1 of
CR? and SCR? decay linearly and quadratically, respectively. On the other hand, Table 3 displays
the errors vazl ly(t:) — y@ |1 At and estimates of the convergence order. According to Table 3,
we confirm that the algorithms CR? and SCR? converge of order 1 and 2, respectively over the
whole interval (0, 10].
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4.2 Computational model for transport of fatty acids

The heart plays important roles in the human body; it pumps the blood through the body and
supplies sufficient nutrients and oxygen to all organs. About 60-70% of the energy is derived from
mitochondrial oxidation of fatty acids (FAs): a long chained carbohydrate with an acid group at
the end. Moreover, irregular changes in the FA uptake may severely damage to the heart. A
number of relevant studies for FA transport have been done (see [1,5,8,9]). FAs are transported
from the blood plasma to the myocardial cell through the endothelial cell and the interstitial tissue
(see Figure 4). Although there exist many controversial aspects of FA transport mechanism, we
adopt the following simple transport model solely focusing on transport of FAs in order to deal
with the whole procedure from the plasma to the myocyte simultaneously (see Figure 5):

e First, FAs are transported through the luminal endothelial membrane to the cytoplasm of
endothelial cells.

e Next, FAs move in the endothelium to the abluminal endothelial membrane.

e Finally, FAs diffuse freely in the interstitium and cross the sarcolemma which is the barrier
before the myocyte.

Note that we exclude the introduction of proteins like albumin bound to FA, that is, we use a
simple diffusion by concentration differences of chemical species, not facilitated diffusion in order
to define transport of FA in the endothelium and the interstitial tissue. Many physiologists and
bioengineers commonly use the diffusion equation in the form of ODEs to keep the mathematical
model simple. The two-compartment diffusion is modelled as follows:

DA

d
Jay = V1£01 = T(Cz - )

J DA (4.2)
Jimo = V2£C2 = 7(01 — ()

where V; is the volume of the ith compartment, C; is the chemical concentration in ith compart-
ment, D is the diffusion constant, and A and L are the cross sectional area and the distance
between compartments. We also need to take the transmembrane diffusion into account. Chemical

Figure 4: Electron micrograph of the orientation of a capillary which is surrounded by the myocyte.
The photograph shows 1)a myocyte, 2)a mitochondria inside the myocyte, 3)the nucleus of an
endothelial cell, 4)the intravascular compartment, 5)the interstitial compartment. The picture
and description are taken from [2] and [9], respectively.
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Figure 5: Schematic diagram of the FA diffusion region.

Parameter Description Reference
D =5.0x10"% cm?/sec  Diffusivity for FA [1]

P =83x10"2 cm/sec  Permeability for a cell membrane to FA [1]

Wer = 0.4 pm Glycocalyx width on the endothelial luminal side  [15,16]
Wg = 0.5 ym Endothelium width [1]

Wear = 0.6 um Glycocalyx width in the interstitium [15,16]
Cp=>5.1n0M FA concentration in the blood plasma [11]
Cr=19nM FA concentration in the interstitium [11]

Table 4: Parameters used in the computational model of FA transport.

diffusion through the biological membranes such as the endothelial membrane and the sarcolemma
is governed by an analog of (4.2) when D/L is replaced by the membrane permeability P. We
assume that the whole system of FA transport is closed, that is, there is no exterior influence on the
FA concentration change. Considering the four diffusion regions: the blood plasma, endothelium,
the interstitium, and the threshold of the myocyte, as a serial of small N compartments gives a
system of ODEs for the mean concentration C;, which describes the transport mechanism of FA:

V1%01 (t)y = K;ight(CQ(t) — C4(t)), (4.3a)
Vi%ci(t) = KO (t) — Ci(t)) + KT (Cipr (t) — Ci(t)) 1<i< N, (4.3b)
VN%CN(t) = Kﬁft(CNfl(t) _CN(t)); (430)

where K; is a constant dependent on A, D, L, and P chosen properly in the ith compartment

(cf. [9]). Since N

d
E i Cill) = L )
[/dtC() 0 vVt>0

i=1

we can apply our methods to (4.3). We adopt the second-order SCR? algorithm to solve (4.3)
numerically. In the computation of (4.3), we use the parameters derived from the physiological
experiments and list them in Table 4 in details. Figure 6 shows how the approximate solution
reaches an equilibrium state of FA concentration at the 16 compartments when the three diffusion
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(a) Ty = 6.3 X 1075 sec
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(e) Ts = 2.65 x 1072 sec (f) Ts = 7.54 x 1072 sec

Figure 6: FA concentration at the 16 compartments: each left one in (a)-(f) shows the sequential
change of solution for T,y < t < T; with ¢ = 1,2,3,4,5,8 and the right one is a single shot of
solution at t = Tj.
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Compl Comp?2 Comp3 Comp4

Ty || 1.2719e-03  4.4648e-06 3.1444e-04  3.5328e-06
Ty || 1.2203e-03  5.8132e-05 2.9641e-04 4.9536e-05
Ts5 || 9.8231e-04 2.7189e-04 2.5338e-04 1.9102e-04
Ty || 5.4648e-04 4.6056e-04 3.6132e-04 3.4335e-04
Ts || 4.4822e-04 4.4028e-04 4.2967e-04 4.2767e-04
Tg || 4.3750e-04  4.3750e-04  4.3750e-04  4.3750e-04

Table 5: Average concentration in nmol/cm?® in 4 compartments at t = T;: the vascular compart-
ment (Compl), the endothelium (Comp2), the interstitium (Comp3), the myocyte (Comp4).

domains are divided into 4, 5, and 6 compartments, respectively in proportion to Wayr : Wg : War
in Table 4. We measure the relative error
1
2> 2

N
Erel = (Z
i=1
and T; which indicates when E,.; < 107" with i = 1,2, 3,4, 5,8. Each left figure in Figure 6 (a)-(f)
informs the sequential change of solution for T;_; < ¢t < T; with T, = 0 while the right one is
a single shot of solution at ¢ = T;. Three dotted lines in each right figure display the positions
of the luminal membrane, the abluminal membrane, and the sarcolemma in order. The drastic
concentration difference across the dotted lines is due to the permeability of the membranes. In
Table 5, we present the average concentration in each compartment computed at ¢t = 7T; in order
to describe the solution property quantitatively.

Ci(tng1) — Ci(tn)
Ci(tns1)

5 Conclusions

We proposed two numerical schemes CR? and SCR? applicable to general reaction systems. Since
the CR? algorithm is motivated by the exact solver for a reversible reaction with 2 substances, it
is very easy to implement. On the other hand, the SCR? algorithm, a symmetrized version of the
CR? algorithm, is enhanced in view of the convergence speed. Unlike most of explicit methods,
CR? and SCR? are absolutely stable in spite of their explicitness. We analyzed stability and
convergence properties of CR? and SCR? and confirmed the theoretical results by the numerical
experiments. Even if the algorithms CR? and SCR? were aimed for the numerical solver to reaction
systems, the application of our methods could be extended further. As an applicable example, we
introduced the myocardial fatty acid uptake phenomenon and adopted our method for solving the
computational model obtained by focusing on a serial of diffusion which is a main route of FA
transport in a closed system.
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