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Abstract

We introduce two numerical schemes for solving a system of ordinary differential equa-

tions which characterizes several kinds of linear reactions and diffusion from biochemistry,

physiology, etc. The methods consist of sequential applications of the simple exact solver for

a reversible reaction. We prove absolute stability and convergence of the proposed explicit

methods. One is of first order and the other is of second order. Numerical results are included.

In addition, we apply the second-order method to a computational model for the transport of

the fatty acids from the blood plasma into the myocyte.
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1 Introduction

Many phenomena of interest in physiology and biochemistry are characterized by reactions among
several chemical species and diffusion in various mediums (see [7, 9, 10, 13]). In a closed system,
both reactions and diffusion are governed by a system of ordinary differential equations (ODEs)

ẏ(t) = My(t), (1.1)

which guarantees conservation of the total amount of y(t) for any t ≥ 0. Since we are concerned
with the steady-state solution as well as the transient in simulations of very large systems of
chemical reactions or molecular dynamics, we need to take the overall computational cost into
consideration. Many physiologists and biochemists prefer explicit methods to implicit methods
since implementation of the explicit methods is easier than the others. The popular methods for
reaction systems are simple explicit schemes such as Euler’s method, Runge-Kutta method, etc.
However, it is well-known that conditional stability, the typical weak point of explicit methods, is
very fatal for stiff problems. In the past few decades, many studies on numerical methods for stiff
ODEs have been done in various aspects (see [3, 4, 6]).

The aim of this paper is to present two absolutely stable explicit schemes which are applicable
to a general reaction system (1.1). In 1978, Rush and Larsen [12] introduced an iterative procedure
for the Hodgkin-Huxley model for cell membrane behavior, which is composed of a circuit equation
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for currents and a coupled system of nonlinear ODEs for the ionic gates. An integration algorithm
was suggested for a numerical solution to the ODEs for the ionic gates, which was based on
the exact solution of a linearized ionic gate equation. Similarly, the methods in this paper are
motivated by the simple exact solver for a reversible reaction. In spite of their explicitness, we
have unconditional stability, that is, stability without any condition on the step size. Furthermore,
we proved the convergence of the proposed methods; one is of first order and the other is of second
order.

This paper is organized as follows. In Section 2, we introduce the reaction systems of our
interest and propose two numerical methods for a general reaction system. Section 3 provides
theoretical results for convergence and stability of the proposed methods. In Section 4, we provide
numerical experiments for typical reaction systems and apply one of our methods to a physiological
model which illustrates the transport mechanism of the fatty acids.

2 Reaction systems and numerical methods

We consider two typical types of reactions: reversible reactions and circular reactions. A reaction
of the type

A
kf

⇌
kb

B

is called the reversible reaction, where kf and kb are the rate constants for the forward and backward
reactions. One interesting biochemical system to which the reversible first order equations apply
is the carbonic acid system:

CO2 + H2O
k1

⇋
k−1

H2CO3
Ka→

very
fast

H+ + HCO−
3 (2.1)

Equation (2.1) reduces to

CO2

kf

⇌
kb

HCO−
3

(see [10]). Then, the rate equations are written down as

dA

dt
= −kbA + kfB

dB

dt
= kbA − kfB

(2.2)

where A(t) and B(t) are the concentrations of CO2 and HCO−
3 as functions of time t. Another

interesting example of such a type occurs frequently in metabolic studies. The other type is
a circular reaction shown in Figure 1. We may write the differential equations describing this
process as

d

dt





A0(t)
A1(t)
A2(t)



 =





−b10 − b20 f10 f20

b10 −f10 − b21 f21

b20 b21 −f21 − f20









A0(t)
A1(t)
A2(t)



 . (2.3)
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Figure 1: A circular reaction system with 3 substances A0, A1 and A2.

From the fact that the total concentration A(t)+B(t) remains constant for all t ≥ 0 in a closed
system, the exact solution of (2.2) is written in a form

[

A(t)
B(t)

]

=

[

1
kf+kb

(kf + kbe
−(kf+kb)t)

kf

kf+kb
(1 − e−(kf+kb)t)

kb

kf+kb
(1 − e−(kf+kb)t) 1

kf+kb
(kb + kfe−(kf+kb)t)

]

[

A(0)
B(0)

]

.

Similarly, we can find the exact solution for the circular reaction in Figure 1. In general, a reaction
system is characterized by a coupled system of ODEs. To solve a relevant eigenvalue problem is
the first step in solving such a coupled system exactly (see [17]). But as the number of substances
increases, the exact solver suffers from typical difficulties in large scale eigenvalue problems. There
are some numerical techniques in common use: the Euler method, which is the simplest one, but
requires a small size of time step ∆t; the Runge-Kutta method, which is more complicated, but
allows much bigger time steps to be taken. Now for the circular reaction case, we propose new
numerical methods motivated by the above process that is used to find the exact solution to a
reversible reaction. For the sake of simplicity, we illustrate these algorithms for a simple circular
reaction (2.3) although they are applicable to general reaction systems.

Algorithm 1: CR2

1. For each k ∈ N, let Ai,k be the approximate solution to Ai(t) at time tk = k∆t.

2. For k = 0, 1, 2, · · · do:

(a) Set Aic
0 = A0,k, Aic

1 = A1,k and Aic
2 = A2,k.

(b) Find the exact solution Atemp
0 (t) and Atemp

1 (t) of the reversible reaction with the initial
values Aic

0 and Aic
1 :

A0

f10

⇌
b10

A1

Set Aic
0 = Atemp

0 (tk+1) and Aic
1 = Atemp

1 (tk+1).

(c) Find the exact solution Atemp
0 (t) and Atemp

2 (t) of the reversible reaction with the initial
values Aic

0 and Aic
2 :

A0

f20

⇌
b20

A2

Set A0,k+1 = Atemp
0 (tk+1) and Aic

2 = Atemp
2 (tk+1).
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(d) Find the exact solution Atemp
1 (t) and Atemp

2 (t) of the reversible reaction with the initial
values Aic

1 and Aic
2 :

A1

f21

⇌
b21

A2

Set A1,k+1 = Atemp
1 (tk+1) and A2,k+1 = Atemp

2 (tk+1).

Remark 2.1 CR2 stands for Consecutive Reversible Reactions.

The key idea of Algorithm 1 is that we approximately regard a circular reaction as a consecutive
reaction which consists of three separated reversible reactions. Although we solve three reversible
reactions in the following order

A0 ⇌ A1, A0 ⇌ A2, A1 ⇌ A2,

the algorithm does not depend upon the ordering we adopt to split a circular reaction into a chain
of reversible reactions. By the simple calculation, Algorithm 1 is characterized by the following
linear system:





A0,k+1

A1,k+1

A2,k+1



 =





X20X10 X20Y10 Y20

X21Z10 + Y21Z20X10 X21W10 + Y21Z20Y10 Y21W20

Z21Z10 + W21Z20X10 Z21W10 + W21Z20Y10 W21W20









A0,k

A1,k

A1,k





def
= L2





A0,k

A1,k

A2,k



 ,

where

[

Xij Yij

Zij Wij

]

=

[

1
fij+bij

(fij + bije
−(fij+bij)∆t)

fij

fij+bij
(1 − e−(fij+bij)∆t)

bij

fij+bij
(1 − e−(fij+bij)∆t) 1

fij+bij
(bij + fije

−(fij+bij)∆t)

]

.

Note that
Xij + Zij = Yij + Wij = 1.

We interpret the Algorithm 1 for n substances inductively, i.e., at t = tk, we assume that the
general reaction system with j substances A0, A1, · · · , Aj−1(1 ≤ j ≤ n−1) is solved, then we solve
the parallel reaction that consists of j reversible reactions:

Aj

fj0

⇋
bj0

A0

Aj

fj1

⇋
bj1

A1

...

Aj

fj(j−1)

⇋
bj(j−1)

Aj−1
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Algorithm 2: SCR2

1. For each k ∈ N, let As
i,k be the approximate solution to Ai(t) at time tk = k∆t.

2. For k = 0, 1, 2, · · · do:

(a) Set Aic
0 = A0,k, Aic

1 = A1,k and Aic
2 = A2,k.

(b) As in Algorithm 1, solve three reversible reactions according to chosen ordering: A0 ⇌

A1, A0 ⇌ A2, A1 ⇌ A2. Define As1

i,k+1 by the obtained approximation Ai,k+1 for i =
1, 2, 3.

(c) Solve three reversible reactions in reverse order: A2 ⇌ A1, A2 ⇌ A0, A1 ⇌ A0. Define
As2

i,k+1 by the obtained approximation Ai,k+1 for i = 1, 2, 3.

(d) Set

As
i,k+1 =

As1

i,k+1 + As2

i,k+1

2
for i = 1, 2, 3.

Remark 2.2 Algorithm 2 is a symmetrized version of Algorithm 1 and can be applied to n sub-

stances inductively as in the Algorithm 1.

3 Stability and convergence results

Now, we consider a general reaction system with (n + 1) substances:

d

dt











A0(t)
A1(t)

...
An(t)











= Mn











A0(t)
A1(t)

...
An(t)











, (3.1)

where

Mn =















−
∑n

i=1 bi0 f10 · · · f(n−1)0 fn0

b10 −f10 −
∑n

i=2 bi1 · · · f(n−1)1 fn1

...
...

. . .
...

...

b(n−1)0 b(n−1)1 · · · −
∑n−2

j=0 f(n−1)j − bn(n−1) fn(n−1)

bn0 bn1 · · · bn(n−1) −
∑n−1

j=0 fnj















.

Note that the general reaction system (3.1) includes a chain of reversible reactions and circular
reactions. We can easily confirm that Mn always has 0 as an eigenvalue and the real parts of all
eigenvalues except 0 are negative, i.e., (3.1) is neutrally stable. Hence the exact solution to the
problem (3.1) does not have a vanishing property:

as t → ∞, Ai(t) → 0 for all i.

Instead of A-stability, we shall adopt a more appropriate concept of stability for the numerical
methods applied to (3.1). A numerical method for the neutrally stable problem like (3.1) is said
to be stable if it does not blow up as t → ∞ (see [14,17]).
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3.1 Stability and convergence of CR2 for general reaction systems

When applying the CR2 algorithm to (3.1), we get the approximation (Ai,k+1)
n
i=0 such that











A0,k+1

A1,k+1

...
An,k+1











= Ln











A0,k

A1,k

...
An,k











, (3.2)

where Ln is an (n + 1) × (n + 1) matrix with entries {l
(n)
ij }n+1

i,j=1.

Lemma 3.1 Consider a parallel reaction with (n + 1) substances, that is composed of n reversible

reactions:

An

fn0

⇋
bn0

A0

An

fn1

⇋
bn1

A1

...

An

fn(n−1)

⇋
bn(n−1)

An−1

Applying the CR2 algorithm to this problem in the following ordering:

A0 ⇌ An, A1 ⇌ An, · · · , An−1 ⇌ An

gives










A0,k+1

A1,k+1

...

An,k+1











= Λn











A0,k

A1,k

...

An,k











,

where (Ai,k+1)
n
i=0 is an approximation to (Ai(t))

n
i=0 at t = tk+1, and Λn is an (n + 1) × (n + 1)

matrix with entries {λ
(n)
ij }n+1

i,j=1.

Then, we have

n+1
∑

i=1

λ
(n)
ij = 1 ∀j = 1, · · · , n + 1. (3.3)

Proof. The proof is done by induction on n. For n = 2, we have




A0,k+1

A1,k+1

A2,k+1



 =





1 0 0
0 X21 Y21

0 Z21 W21









X20 0 Y20

0 1 0
Z20 0 W20









A0,k

A1,k

A2,k





= Λ2





A0,k

A1,k

A2,k



 .
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Using the relations Xij + Zij = 1 and Yij + Wij = 1 gives

3
∑

i=1

λ
(2)
ij = 1, for j = 1, 2, 3.

Hence for three substances, the statement holds. Suppose that the statement is true for n sub-
stances. Consider a parallel reaction with (n + 1) substances A0, A1, · · · , An−1 and An:

An ⇋ A0

An ⇋ A1

...

An ⇋ An−1

The approximate solution (Ai,k+1)
n
i=0 given by the CR2 algorithm is characterized as follows:

[

A0,k+1

Atemp
n

]

=

[

Xn0 Yn0

Zn0 Wn0

] [

A0,k

An,k

]

, (3.4a)











A1,k+1

...
An−1,k+1

An,k+1











= Λn−1











A1,k

...
An−1,k

Atemp
n











. (3.4b)

By the inductive hypothesis, we have

n
∑

i=1

λ
(n−1)
ij = 1, ∀j = 1, · · · , n. (3.5)

Combining (3.4a) and (3.4b) yields















A0,k+1

A1,k+1

...
An−1,k+1

An,k+1















=























[

Xn0 Yn0

]

[

A0,k

An,k

]

Λn−1















A1,k

...
An−1,k

[

Zn0 Wn0

]

[

A0,k

An,k

]





































= Λn















A0,k

A1,k

...
An−1,k

An,k















.
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Hence we have

Λn =



















Xn0 0 · · · 0 Yn0

λ
(n−1)
1n Zn0 λ

(n−1)
11 · · · λ

(n−1)
1(n−1) λ

(n−1)
1n Wn0

...
...

. . .
...

...

λ
(n−1)
(n−1)nZn0 λ

(n−1)
(n−1)1 · · · λ

(n−1)
(n−1)(n−1) λ

(n−1)
(n−1)nWn0

λ
(n−1)
nn Zn0 λ

(n−1)
n1 · · · λ

(n−1)
n(n−1) λ

(n−1)
nn Wn0



















. (3.6)

It follows from (3.5) and Xn0 + Zn0 = 1, Yn0 + Wn0 = 1 that

n+1
∑

i=1

λ
(n)
ij = 1, ∀j = 1, · · · , n + 1. ¤

Lemma 3.2 The matrix Ln = [l
(n)
ij ]n+1

i,j=1 in (3.2) satisfies

n+1
∑

i=1

l
(n)
ij = 1 ∀j = 1, · · · , n + 1.

Proof. The proof is done by induction on n. From relationships

Xij + Zij = 1, Yij + Wij = 1 for all i, j with 0 ≤ i, j ≤ 2,

it is obvious that the statement is true for three substances. Suppose that the statement is true for
n substances, that is, applying the CR2 algorithm to a general reaction system with n substances
A0, · · · , An−1 gives the approximate solution (Ai,k+1)

n−1
i=0 to (Ai(t))

n−1
i=0 at t = tk+1:











A0,k+1

A1,k+1

...
An−1,k+1











= Ln−1











A0,k

A1,k

...
An−1,k











, (3.7)

where
∑n

i=1 l
(n−1)
ij = 1 ∀j = 1, · · · , n. As mentioned in Section 2, adding a substance An into the

general reaction system with n substances A0, · · · , An−1 results in n additional reversible reactions:

An

fn0

⇋
bn0

A0

An

fn1

⇋
bn1

A1

...

An

fn(n−1)

⇋
bn(n−1)

An−1
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By (3.7), we have















A0,k+1

A1,k+1

...
An−1,k+1

An,k+1















= Λn















Ln−1











A0,k

A1,k

...
An−1,k











An,k















= Ln















A0,k

A1,k

...
An−1,k

An,k















.

Hence we have

Ln = Λn











0

Ln−1

...
0

0 · · · 0 1











(3.8)

and by Lemma 3.1 and the induction hypothesis, it follows that

n+1
∑

i=1

l
(n)
ij = 1 ∀j = 1, · · · , n + 1. ¤

Let ‖x‖1 =
∑n

i=1 |xi| be a norm on R
n.

Theorem 3.1 The algorithm CR2 applied to general reaction systems is absolutely stable.

Proof. The CR2 algorithm gives an approximate solution to (3.1) such that yk+1 = Lnyk with yk =
(A0,k · · · An,k)T . Since all entries of Ln are nonnegative, it follows from Lemma 3.2 that

‖yk+1‖1 = ‖yk‖1,

that is, the approximation does not blow up independently of ∆t. ¤

Lemma 3.3 Under the same assumptions as in Lemma 3.1, we have

Λn =











fn0∆t

diag(1 − bnj∆t)n−1
j=0

...

fn(n−1)∆t

bn0∆t · · · bn(n−1)∆t 1 − (
∑n−1

j=0 fnj)∆t











+ O((∆t)2).

Proof. It is easy to show that the statement holds for n = 2 by using Taylor’s theorem. Suppose
that the statement is true for a parallel reaction which consists of n substances. Consider a parallel
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reaction with (n + 1) substances:

An

fn0

⇋
bn0

A0 (3.9a)

An

fn1

⇋
bn1

A1 (3.9b)

...

An

fn(n−1)

⇋
bn(n−1)

An−1 (3.9c)

By the inductive hypothesis, the approximate solution (Ai,k+1)
n
i=0 to the solution (Ai(t))

n
i=0 at

t = tk+1 obtained by applying CR2 to (3.9) is written as follows:

[

A0,k+1

Atemp
n

]

=

[

Xn0 Yn0

Zn0 Wn0

] [

A0,k

An,k

]

=

[

1 − bn0∆t + O((∆t)2) fn0∆t + O((∆t)2)
bn0∆t + O((∆t)2) 1 − fn0∆t + O((∆t)2)

] [

A0,k

An,k

]

(3.10)











A1,k+1

...
An−1,k+1

An,k+1











= Λn−1











A1,k

...
An−1,k

Atemp
n











where

Λn−1 =











fn1∆t

diag(1 − bnj∆t)n−1
j=1

...

fn(n−1)∆t

bn1∆t · · · bn(n−1)∆t 1 − (
∑n−1

j=1 fnj)∆t











+ O((∆t)2).

Hence by (3.6) and (3.10), we have the expansion form of Λn, that is, the statement is true for a
parallel reaction with (n + 1) substances. ¤

Lemma 3.4 We have

Ln = Ln,0 + Ln,1∆t + Ln,2(∆t)2 + O((∆t)3)

= I + Mn∆t + O((∆t)2)

where Ln and Mn are matrices in (3.2) and (3.1), respectively.

Proof. By Taylor’s theorem, we can rewrite Ln as

Ln = Ln,0 + Ln,1∆t + Ln,2(∆t)2 + · · · .

Moreover, by induction on n, we can confirm that Ln,0 = I ∀n ∈ N with n ≥ 2. For n = 2, it is
easy to show that the statement holds by applying Taylor’s theorem to each entry of L2. Suppose
that the statement is true for (n − 1). When a substance An is added to the general reaction

10



system with n substances A0, · · · , An−1, we need to find out the difference between Mn−1 and Mn.
Because the supplementary substance An makes n reversible reactions occur additionally:

An

fn0

⇋
bn0

A0

An

fn1

⇋
bn1

A1

...

An

fn(n−1)

⇋
bn(n−1)

An−1,

it follows that

Mn =











fn0

Mn−1 − diag(bnj)
n−1
j=0

...

fn(n−1)

bn0 · · · bn(n−1) −
∑n−1

j=0 fnj











. (3.11)

Equation (3.8) and Lemma 3.3 yield

Ln =











fn0∆t

diag(1 − bnj∆t)n−1
j=0 ∗ Ln−1

...

fn(n−1)∆t

bn0∆t · · · bn(n−1)∆t 1 − (
∑n−1

j=0 fnj)∆t











+ O((∆t)2).

By the induction hypothesis, we can easily confirm that Ln = I + Mn∆t + O((∆t)2). ¤

Let ‖A‖1 = max1≤j≤n

∑n
i=1 |aij | be a matrix norm on R

n×n. We are now ready to prove
convergence of the CR2 algorithm.

Theorem 3.2 The algorithm CR2 applied to (3.1) has the order of convergence 1.

Proof. We denote the exact solution of (3.1) by y(t) = (A0(t) · · · An(t))T . CR2 gives an approxi-
mation to (3.1) such that yk+1 = Lnyk with yk = (A0,k · · · An,k)T . We will show that

‖y(tk+1) − yk+1‖1 ≤ C∆t,

where C is a constant independent of ∆t. Using Taylor’s theorem and Lemma 3.4 yield

y(tk+1) = (I + ∆tMn +
(∆t)2

2
M2

n)y(tk) + O((∆t)3) (3.12a)

yk+1 = Lnyk = (I + Mn∆t + Ln,2(∆t)2)yk + O((∆t)3) (3.12b)

Let ek = y(tk) − yk denote the numerical error. Subtracting (3.12b) from (3.12a) gives

ek+1 = (I + ∆tMn + (∆t)2Ln,2)ek +

(

M2
n

2
− Ln,2

)

(∆t)2y(tk) + O((∆t)3)

= Lnek + O((∆t)2).

11



Since ‖Ln‖1 = 1 by Lemma 3.2, it follows that

‖ek+1‖1 ≤ ‖ek‖1 + C(∆t)2

with a constant C independent of ∆t and k. We can check by induction on k that

‖ek‖1 ≤ kC(∆t)2 ∀k = 0, 1, · · · .

If we restrict t to the finite interval [0, tF ], then we have that ∀k = 0, 1, · · · , ⌊tF /∆t⌋,

‖ek‖1 ≤ ⌊tF /∆t⌋C(∆t)2

≤ CtF ∆t.

Since C is independent of ∆t, it follows that

lim
∆t → 0

0 ≤ k ≤ ⌊tF /∆t⌋

‖ek‖1 = 0.

In other words, the algorithm CR2 is convergent and has the order of convergence 1. ¤

3.2 Convergence of SCR2 for general reaction systems

In order to look into the procedure of the SCR2 algorithm applied to general reaction systems, we
consider the circular reaction with 3 substances shown in Figure 1. Applying SCR2 to the reaction
system gives





As1

0,k+1

As1

1,k+1

As1

2,k+1



 = Ls1
2





As
0,k

As
1,k

As
2,k



 ,





As2

2,k+1

As2

1,k+1

As2

0,k+1



 = L
s2

2





As
2,k

As
1,k

As
0,k



 .

Then, we have





As
0,k+1

As
1,k+1

As
2,k+1



 =
1

2
(Ls1

2 + Ls2
2 )





As
0,k

As
1,k

As
2,k



 ,

where

Ls2
2 = P2L

s2

2 P2, P2 =





0 0 1
0 1 0
1 0 0



 .

Considering Taylor expansions of Ls1
2 and L

s2

2 yields

Ls1
2,2 −

1

2
M2

2 =
1

2

[

0 −b20f10 + b21f10 − b21f20 b10f20 − f10f21 + f20f21

b10b20 − b10b21 + b20f21 0 −b10f20 + f10f21 − f20f21

−b10b20 + b10b21 − b20f21 b20f10 − b21f10 + b21f20 0

]

and

L
s2

2,2 −
1

2
P2M

2
2 P2 =

1

2

[

0 −b20f10 + b21f10 − b21f20 b10b20 − b10b21 + b20f21

b10f20 − f10f21 + f20f21 0 −b10b20 + b10b21 − b20f21

−b10f20 + f10f21 − f20f21 b20f10 − b21f10 + b21f20 0

]

.

12



Then, we have

Ls1
2,2 + Ls2

2,2 − M2
2 = 0 (3.13)

In general, to solve (3.1) with SCR2, we obtain the approximation (As
i,k+1)

n
i=0 such that











As
0,k+1

As
1,k+1
...

As
n,k+1











= Ls
n











As
0,k

As
1,k
...

As
n,k











=
1

2
(Ls1

n + Ls2
n )











As
0,k

As
1,k
...

As
n,k











(3.14)

where
Ls2

n = PnL
s2

n Pn

and Pn is the (n + 1) × (n + 1) permutation matrix such that

(Pn)ij =

{

1 if i + j = n + 2,
0 otherwise.

Lemma 3.5 Under the same assumptions as in Lemma 3.1, we assume that

Λn = Λn,0 + Λn,1∆t + Λn,2(∆t)2 + O((∆t)3).

Then,

Λn,2 =





















bn0
2 (bn0 + fn0) 0 0 · · · 0 −

fn0
2 (bn0 + fn0)

bn0fn1
bn1
2 (bn1 + fn1) 0

.

.

.

.

.

. −
fn1
2 (2fn0 + bn1 + fn1)

bn0fn2 bn1fn2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 0
.

.

.

bn0fn(n−1) bn1fn(n−1) · · · · · ·
bn(n−1)

2 (bn(n−1) + fn(n−1)) (I)

(II) (III) · · · · · · −
bn(n−1)

2 (bn(n−1) + fn(n−1)) (IV)





















,

where

(I) = −
fn(n−1)

2
(2

n−2
∑

i=0

fni + bn(n−1) + fn(n−1))

(II) = −
bn0

2
(bn0 + fn0 + 2

n−1
∑

i=1

fni)

(III) = −
bn1

2
(bn1 + fn1 + 2

n−2
∑

i=2

fni)

(IV) =
1

2

n−1
∑

i=0

fni(bni + fni) +
∑

i<j

fnifnj .
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Proof. By the Taylor expansion of Λ2, the statement holds for n = 2. Suppose that the statement
is true for Λn−1,2. As we mentioned in the proof of Lemma 3.1,

Λn















A0,k

A1,k

...
An−1,k

An,k















=











1 0 · · · 0
0
... Λn−1

0

























Xn0 0 · · · 0 Yn0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
Zn0 0 · · · 0 Wn0





























A0,k

A1,k

...
An−1,k

An,k















.

By Lemma 3.3, we have

Λn−1 = I +











−bn1 fn1

. . .
...

−bn(n−1) fn(n−1)

bn1 · · · bn(n−1) −
∑n−1

i=1 fni











∆t + Λn−1,2(∆t)2 + O((∆t)3).

It follows

Λn,2 =

[

0 0
0 Λn−1,2

]

+















0 0 · · · 0 0
0 −bn1 fn1

...
. . .

...
0 −bn(n−1) fn(n−1)

0 bn1 · · · bn(n−1) −
∑n−1

i=1 fni





























−bn0 fn0

0
. . .

0
bn0 −fn0















+
1

2















bn0(bn0 + fn0) −fn0(bn0 + fn0)
0

. . .

0
−bn0(bn0 + fn0) fn0(bn0 + fn0)















=

[

0 0
0 Λn−1,2

]

+















bn0

2 (bn0 + fn0) 0 · · · 0 − fn0

2 (bn0 + fn0)
bn0fn1 0 · · · 0 −fn0fn1

...
...

. . .
...

...
bn0fn(n−1) 0 · · · 0 −fn0fn(n−1)

(I) 0 · · · 0 (II)















,

where

(I) = −
bn0

2
(bn0 + fn0 + 2

n−1
∑

i=1

fni)

(II) =
fn0

2
(bn0 + fn0 + 2

n−1
∑

i=1

fni)).

Hence, by the inductive hypothesis, we conclude that the statement is true for Λn,2. ¤
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Lemma 3.6 The matrix Ls
n in (3.14) has the Taylor expansion

Ls
n = Ls

n,0 + Ls
n,1∆t + Ls

n,2(∆t)2 + O((∆t)3)

= I + Mn∆t +
1

2
M2

n(∆t)2 + O((∆t)3)

where Mn is the matrix in (3.1).

Proof. Since SCR2 is a symmetrized version of CR2, each Lsi
n has the same properties as Ln. Thus,

according to Lemma 3.4, it is obvious that

Ls
n,0 = I, Ls

n,1 = Mn.

Let Dsi
n = Lsi

n,2 −
1
2M2

n for i = 1, 2. To complete the proof, it suffices to show that

Ds1
n + Ds2

n = 0.

Because Ds2
n can be associated with Ds1

n by the permutation matrix Pn, we only need to characterize
entries of Ds1

n .
We first claim that

Ds1
n =

∑

i<j<k

D(i,j,k), 0 ≤ i, j, k ≤ n (3.15)

where

D(i,j,k)

=

(i + 1)th (j + 1)th (k + 1)th
↓ ↓ ↓

1
2





0 −bkifji + bkjfji − bkjfki bjifki − fjifkj + fkifkj

bjibki − bjibkj + bkifkj 0 −bjifki + fjifkj − fkifkj

−bjibki + bjibkj − bkifkj bkifji − bkjfji + bkjfki 0





←
←
←

(i + 1)th
(j + 1)th
(k + 1)th

and other entries are zeros. The claim is verified by induction on n. By the previous argument,
we already know that

Ds1
2 = D(0,1,2).

We assume that the claim is true for a general reaction system with n substances A0, A1, · · · , An−1,
i.e.,

Ds1
n−1 =

∑

i<j<k

D(i,j,k), 0 ≤ i, j, k ≤ n − 1.

Let us see how Ls1
n and Mn change when adding An into the general reaction system with n

substances. Since

Ls1
n = Λn

[

Ls1
n−1 0
0 1

]

= (I + Λn,1∆t + Λn,2(∆t)2 + O((∆t)3)

[

I + Mn−1∆t + Ls1
n−1,2(∆t)2 + O((∆t)3) 0

0 1

]

,

it follows that

Ls1
n,2 =

[

Ls1
n−1,2 0
0 0

]

+ Λn,1

[

Mn−1 0
0 0

]

+ Λn,2.
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Also, Lemma 3.3 and (3.11) give

M2
n =

([

Mn−1 0
0 0

]

+ Λn,1

)2

=

[

M2
n−1 0
0 0

]

+

[

Mn−1 0
0 0

]

Λn,1 + Λn,1

[

Mn−1 0
0 0

]

+ Λ2
n,1.

Then, we have that

Ds1
n = Ls1

n,2 −
1

2
M2

n

=

[

Ls1
n−1,2 −

1
2M2

n−1 0
0 0

]

+
1

2
Λn,1

[

Mn−1 0
0 0

]

−
1

2

[

Mn−1 0
0 0

]

Λn,1 + Λn,2 −
1

2
Λ2

n,1.

Looking at Mn−1,Λn,1 and Λn,2 carefully, all (i, j) entries contain subindex n, (i− 1) or (j − 1). It
implies that we can write

1

2
Λn,1

[

Mn−1 0
0 0

]

−
1

2

[

Mn−1 0
0 0

]

Λn,1 + Λn,2 −
1

2
Λ2

n,1 =
∑

i<j

Bijn 0 ≤ i, j < n,

where Bijn is a matrix whose entries consist of products of bni, fni, bnj , fnj , bji and fji. Now let
us compute Bijn in details. For a matrix M , we define (M)ijn by a matrix whose entries consist
of products of bni, fni, bnj , fnj , bji and fji among entries of M . We detail Bijn for all i, j with
0 ≤ i, j < n as follows:

E1 =

(

Λn,1

[

Mn−1 0
0 0

])

ijn

=

(i + 1)th (j + 1)th (n + 1)th
↓ ↓ ↓





bjibni −bnifji 0
−bjibnj bnjfji 0

bji(bnj − bni) fji(bni − bnj) 0





←
←
←

(i + 1)th
(j + 1)th
(n + 1)th

E2 =

([

Mn−1 0
0 0

]

Λn,1

)

ijn

=

(i + 1)th (j + 1)th (n + 1)th
↓ ↓ ↓





bjibni − fjibnj −bjifni + fjifnj

− bjibni fjibnj bjifni − fjifnj

0 0 0





←
←
←

(i + 1)th
(j + 1)th
(n + 1)th

E3 = (Λn,2)ijn

=

(i + 1)th (j + 1)th (n + 1)th
↓ ↓ ↓











1
2(n−1)

bni(bni + fni) 0 − 1
2(n−1)

fni(bni + fni)

bnifnj
1

2(n−1)
bnj(bnj + fnj) − 1

2(n−1)
fnj(bnj + fnj) − fnifnj

− 1
2(n−1)

bni(bni + fni) − bnifnj − 1
2(n−1)

bnj(bnj + fnj) (I)











←

←

←

(i + 1)th
(j + 1)th
(n + 1)th

(I) = 1
2(n−1)fni(bni + fni) + 1

2(n−1)fnj(bnj + fnj) + fnifnj
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Note that (n − 1) appears in the denominators. In the (i + 1, i + 1) entry, 1
2bni(bni + fni) is

independent of j. Therefore, we distribute it equally to all (Λn,2)ijn of which (i + 1)th column is
nonzero. In other entries, (n − 1) appears with the same reason.

E4 =
(

(Λn,1)
2
)

ijn

=

(i + 1)th (j + 1)th (n + 1)th
↓ ↓ ↓











1
(n−1)

bni(bni + fni) bnjfni − 1
(n−1)

fni(bni + fni) − fnifnj

bnifnj
1

(n−1)
bnj(bnj + fnj) − 1

(n−1)
fnj(bnj + fnj) − fnifnj

− 1
(n−1)

bni(bni + fni) − bnifnj − 1
(n−1)

bnj(bnj + fnj) − bnjfni (II)











←

←

←

(i + 1)th
(j + 1)th
(n + 1)th

(II) = 1
(n−1)fni(bni + fni) + 1

(n−1)fnj(bnj + fnj) + 2fnifnj

where, for each El, El(m1,m2) = 0 ∀m1,m2 /∈ {i + 1, j + 1, n + 1}. Then, we have

Bijn =
1

2
E1 −

1

2
E2 + E3 −

1

2
E4

=

(i + 1)th (j + 1)th (n + 1)th
↓ ↓ ↓

1
2





0 −bnifji + bnjfji − bnjfni bjifni − fjifnj + fnifnj

bjibni − bjibnj + bnifnj 0 −bjifni + fjifnj − fnifnj

−bjibni + bjibnj − bnifnj bnifji − bnjfji + bnjfni 0





←
←
←

(i + 1)th
(j + 1)th
(n + 1)th

= D(i,j,n).

The inductive hypothesis yields

Ds1
n =

∑

i<j<k<n

D(i,j,k) +
∑

i<j<n

D(i,j,n)

=
∑

i<j<k

D(i,j,k).

Similarly, we obtain the relationship

L
s2

n,2 −
1

2
PnM2

nPn =
∑

i<j<k

D(n−k,n−j,n−i).

Note that
D(i,j,k) + PnD(n−k,n−j,n−i)Pn = 0.

Consequently, we find that

Ds2
n = Ls2

n,2 −
1

2
M2

n

= Pn(L
s2

n,2 −
1

2
PnM2

nPn)Pn

= Pn(
∑

i<j<k

D(n−k,n−j,n−i))Pn

= −
∑

i<j<k

D(i,j,k),

that is,
Ds1

n + Ds2
n = 0.

The proof is complete. ¤
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Figure 2: (a) A circular reaction. (b) A general reaction system.

By using the same arguments as in Theorem 3.2 based on Lemma 3.6, we can easily get the
following theorem.

Theorem 3.3 The algorithm SCR2 applied to (3.1) has the order of convergence 2.

4 Numerical experiments

In this section, we present numerical results which verify the theoretical results in the previous
sections. In addition, we introduce a model of interest in the fatty acid physiology and apply
our numerical method to the transport model of fatty acids from the blood plasma into the heart
muscle cell.

4.1 Simple reaction systems

Figure 2-(a) describes a circular reaction with 3 substances A,B and C with initial values A(0) =
1, B(0) = 2 and C(0) = 3. The system of ODEs is as follows:

d

dt





A(t)
B(t)
C(t)



 =





−1001 10 1
1000 −15 10

1 5 −11









A(t)
B(t)
C(t)



 = M





A(t)
B(t)
C(t)



 . (4.1)

Many explicit numerical methods such as Euler’s method and a fourth order Runge-Kutta method
(RK4 method) in common use have their pros and cons. The structure of explicit methods is so
simple that they are popular and may diminish computing cost at each time step. But, due to its
conditional stability, the restriction on the choice of the size of time step is troublesome. For a stiff
problem such as (4.1), the drawback of explicit methods is more severe. Note that Euler’s method
for (4.1) is stable only if

∆t ≤
S1

λmin
≈ 1.9782 × 10−3 with S1 = −2

and RK4 method for (4.1) is stable only if

∆t ≤
S2

λmin
≈ 2.7531 × 10−3 with S2 ≈ −2.7853,
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Figure 3: Stability of the CR2 algorithm.

‖y(tF ) − yN‖1

∑N
i=1 ‖y(ti) − yi‖1∆t

∆t CR2 SCR2 BDF2 CR2 SCR2 BDF2

10−1 3.4182e-01 1.6979e-01 3.0723e-12 1.0295 5.2196e-01 6.4610e-02
10−2 3.2857e-02 1.4643e-02 1.5698e-13 9.9615e-02 4.4658e-02 3.5786e-03
10−3 2.1366e-03 3.0403e-04 2.3378e-12 6.5804e-03 9.3141e-04 4.9409e-04
10−4 1.8653e-04 3.0979e-06 2.4701e-11 5.7888e-04 9.5901e-06 8.9323e-06
10−5 1.8376e-05 3.1126e-08 4.2676e-11 5.7083e-05 9.6640e-08 9.6306e-08
10−6 1.8348e-06 3.7633e-10 7.4494e-10 5.7002e-06 1.0620e-09 2.5923e-09

Table 1: Convergence behaviors of CR2, SCR2 and BDF2 by means of ‖y(tF ) − yN‖1 and
∑N

i=1 ‖y(ti) − yi‖1∆t with ∆t varying from 10−1 to 10−6 where N = tF /∆t with tF = 3.

where λmin is the minimum eigenvalue of M and

Si = min
z∈∂Di⊂C

Re(z) i = 1, 2

with the linear stability domain Di of Euler’s method and RK4 method, respectively. Figure 3
shows that the CR2 algorithm gives a stable approximation even if a large ∆t is used. For a stiff
problem, Gear’s method is widely used in order to avoid the problems of instability due to the
stiffness. We investigate the difference between two proposed methods and one of Gear’s method, a
two-step backward differentiation formula (BDF2) which is an A-stable method of order 2. BDF2
takes a long time to solve a linear system. Moreover, we should pay special attention during
the process of solving the relevant linear system because it may be ill-conditioned for a large ∆t.
Hence, two explicit algorithms CR2 and SCR2 are superior to BDF2 in terms of efficiency and
simplicity of implementation. To observe the convergence speed of three methods, two different
errors ‖y(tF ) − yN‖1 and

∑N
i=1 ‖y(ti) − yi‖1∆t are shown in Table 1, where ‖y(tF ) − yN‖1 is

computed at the terminal point tF = 3 and
∑N

i=1 ‖y(ti) − yi‖1∆t is calculated over all discrete
time steps t = ti with N = tF /∆t. Note that the performance of SCR2 is comparable to that of
BDF2.

Next, we consider a somewhat complicated general reaction system in Figure 2-(b) with initial
values

A(0) = 1, B(0) = 0, C(0) = 0, D(0) = 0, E(0) = 0 and F (0) = 0,
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CR2 SCR2

∆t ‖y(tF ) − yN‖1 order ‖y(tF ) − yN‖1 order

1/2 5.7923e-02 1.0089e-02
1/4 2.7704e-02 1.0640 3.4552e-03 1.5460
1/8 1.3454e-02 1.0421 1.2101e-03 1.5137
1/16 6.6209e-03 1.0229 3.6181e-04 1.7418
1/32 3.2836e-03 1.0118 9.9202e-05 1.8668
1/64 1.6350e-03 1.0059 2.5992e-05 1.9323
1/128 8.1584e-04 1.0030 6.6537e-06 1.9659
1/256 4.0750e-04 1.0015 1.6833e-06 1.9829

Table 2: Convergence behaviors of the algorithms CR2 and SCR2 by means of ‖y(tF )−yN‖1 with
∆t varying from 1/2 to 1/256 where N = tF /∆t with tF = 10.

CR2 SCR2

∆t
∑N

i=1 ‖y(ti) − yi‖1∆t order
∑N

i=1 ‖y(ti) − yi‖1∆t order

1/2 1.4005 2.6305e-01
1/4 6.6803e-01 1.0680 7.0304e-02 1.9036
1/8 3.2096e-01 1.0575 1.8225e-02 1.9477
1/16 1.5670e-01 1.0344 4.7130e-03 1.9512
1/32 7.7354e-02 1.0185 1.2067e-03 1.9656
1/64 3.8422e-02 1.0095 3.0594e-04 1.9797
1/128 1.9147e-02 1.0048 7.7070e-05 1.9890
1/256 9.5573e-03 1.0024 1.9344e-05 1.9943

Table 3: Convergence behaviors of the algorithms CR2 and SCR2 by means of
∑N

i=1 ‖y(ti)−yi‖1∆t
with ∆t varying from 1/2 to 1/256 where N = tF /∆t with tF = 10.

where

f1 = 0.5, f2 = 0.01, f3 = 5.0, f4 = 0.1, f5 = 0.1, f6 = 1.0,

b1 = 0.05, b2 = 0.001, b3 = 0.5, b4 = 0.01, b5 = 0.01, b6 = 1.0.

In order to illustrate convergence properties of two algorithms CR2 and SCR2, two kinds of errors
measured in the l1-norm and estimates of the order of convergence are summarized in Table 2 and 3.
Table 2 gives errors ‖y(tF ) − yN‖1 for varing ∆t and estimates of the convergence order corre-
sponding to ‖y(tF ) − yN‖1 where N = tF /∆t with the terminal point tF = 10. The numbers
presented in Table 2 imply that when the time step ∆t is halved, the errors ‖y(tF ) − yN‖1 of
CR2 and SCR2 decay linearly and quadratically, respectively. On the other hand, Table 3 displays
the errors

∑N
i=1 ‖y(ti) − y(i)‖1∆t and estimates of the convergence order. According to Table 3,

we confirm that the algorithms CR2 and SCR2 converge of order 1 and 2, respectively over the
whole interval (0, 10].
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4.2 Computational model for transport of fatty acids

The heart plays important roles in the human body; it pumps the blood through the body and
supplies sufficient nutrients and oxygen to all organs. About 60-70% of the energy is derived from
mitochondrial oxidation of fatty acids (FAs): a long chained carbohydrate with an acid group at
the end. Moreover, irregular changes in the FA uptake may severely damage to the heart. A
number of relevant studies for FA transport have been done (see [1, 5, 8, 9]). FAs are transported
from the blood plasma to the myocardial cell through the endothelial cell and the interstitial tissue
(see Figure 4). Although there exist many controversial aspects of FA transport mechanism, we
adopt the following simple transport model solely focusing on transport of FAs in order to deal
with the whole procedure from the plasma to the myocyte simultaneously (see Figure 5):

• First, FAs are transported through the luminal endothelial membrane to the cytoplasm of
endothelial cells.

• Next, FAs move in the endothelium to the abluminal endothelial membrane.

• Finally, FAs diffuse freely in the interstitium and cross the sarcolemma which is the barrier
before the myocyte.

Note that we exclude the introduction of proteins like albumin bound to FA, that is, we use a
simple diffusion by concentration differences of chemical species, not facilitated diffusion in order
to define transport of FA in the endothelium and the interstitial tissue. Many physiologists and
bioengineers commonly use the diffusion equation in the form of ODEs to keep the mathematical
model simple. The two-compartment diffusion is modelled as follows:

J2→1 = V1
d

dt
C1 =

DA

L
(C2 − C1)

J1→2 = V2
d

dt
C2 =

DA

L
(C1 − C2)

(4.2)

where Vi is the volume of the ith compartment, Ci is the chemical concentration in ith compart-
ment, D is the diffusion constant, and A and L are the cross sectional area and the distance
between compartments. We also need to take the transmembrane diffusion into account. Chemical

Figure 4: Electron micrograph of the orientation of a capillary which is surrounded by the myocyte.
The photograph shows 1)a myocyte, 2)a mitochondria inside the myocyte, 3)the nucleus of an
endothelial cell, 4)the intravascular compartment, 5)the interstitial compartment. The picture
and description are taken from [2] and [9], respectively.
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Endothelium Interstitium

Luminal endothelial membrane Abluminal endothelial membrane Sarcolemma

Myocyte

Vascular compartment

Figure 5: Schematic diagram of the FA diffusion region.

Parameter Description Reference
D = 5.0 × 10−6 cm2/sec Diffusivity for FA [1]
P = 8.3 × 10−3 cm/sec Permeability for a cell membrane to FA [1]
WGL = 0.4 µm Glycocalyx width on the endothelial luminal side [15,16]
WE = 0.5 µm Endothelium width [1]
WGI = 0.6 µm Glycocalyx width in the interstitium [15,16]
Cp = 5.1 nM FA concentration in the blood plasma [11]
CI = 1.9 nM FA concentration in the interstitium [11]

Table 4: Parameters used in the computational model of FA transport.

diffusion through the biological membranes such as the endothelial membrane and the sarcolemma
is governed by an analog of (4.2) when D/L is replaced by the membrane permeability P . We
assume that the whole system of FA transport is closed, that is, there is no exterior influence on the
FA concentration change. Considering the four diffusion regions: the blood plasma, endothelium,
the interstitium, and the threshold of the myocyte, as a serial of small N compartments gives a
system of ODEs for the mean concentration Ci, which describes the transport mechanism of FA:

V1
d

dt
C1(t) = Kright

1 (C2(t) − C1(t)), (4.3a)

Vi
d

dt
Ci(t) = Kleft

i (Ci−1(t) − Ci(t)) + Kright
i (Ci+1(t) − Ci(t)) 1 < i < N, (4.3b)

VN
d

dt
CN (t) = Kleft

N (CN−1(t) − CN (t)), (4.3c)

where Ki is a constant dependent on A,D,L, and P chosen properly in the ith compartment
(cf. [9]). Since

N
∑

i=1

Vi
d

dt
Ci(t) = 0 ∀t > 0,

we can apply our methods to (4.3). We adopt the second-order SCR2 algorithm to solve (4.3)
numerically. In the computation of (4.3), we use the parameters derived from the physiological
experiments and list them in Table 4 in details. Figure 6 shows how the approximate solution
reaches an equilibrium state of FA concentration at the 16 compartments when the three diffusion
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Figure 6: FA concentration at the 16 compartments: each left one in (a)-(f) shows the sequential
change of solution for Ti−1 < t < Ti with i = 1, 2, 3, 4, 5, 8 and the right one is a single shot of
solution at t = Ti.
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Comp1 Comp2 Comp3 Comp4
T1 1.2719e-03 4.4648e-06 3.1444e-04 3.5328e-06
T2 1.2203e-03 5.8132e-05 2.9641e-04 4.9536e-05
T3 9.8231e-04 2.7189e-04 2.5338e-04 1.9102e-04
T4 5.4648e-04 4.6056e-04 3.6132e-04 3.4335e-04
T5 4.4822e-04 4.4028e-04 4.2967e-04 4.2767e-04
T8 4.3750e-04 4.3750e-04 4.3750e-04 4.3750e-04

Table 5: Average concentration in nmol/cm3 in 4 compartments at t = Ti: the vascular compart-
ment (Comp1), the endothelium (Comp2), the interstitium (Comp3), the myocyte (Comp4).

domains are divided into 4, 5, and 6 compartments, respectively in proportion to WGL : WE : WGI

in Table 4. We measure the relative error

Erel =

(

N
∑

i=1

∣

∣

∣

∣

Ci(tn+1) − Ci(tn)

Ci(tn+1)

∣

∣

∣

∣

2
)

1
2

and Ti which indicates when Erel < 10−i with i = 1, 2, 3, 4, 5, 8. Each left figure in Figure 6 (a)-(f)
informs the sequential change of solution for Ti−1 < t < Ti with T0 = 0 while the right one is
a single shot of solution at t = Ti. Three dotted lines in each right figure display the positions
of the luminal membrane, the abluminal membrane, and the sarcolemma in order. The drastic
concentration difference across the dotted lines is due to the permeability of the membranes. In
Table 5, we present the average concentration in each compartment computed at t = Ti in order
to describe the solution property quantitatively.

5 Conclusions

We proposed two numerical schemes CR2 and SCR2 applicable to general reaction systems. Since
the CR2 algorithm is motivated by the exact solver for a reversible reaction with 2 substances, it
is very easy to implement. On the other hand, the SCR2 algorithm, a symmetrized version of the
CR2 algorithm, is enhanced in view of the convergence speed. Unlike most of explicit methods,
CR2 and SCR2 are absolutely stable in spite of their explicitness. We analyzed stability and
convergence properties of CR2 and SCR2 and confirmed the theoretical results by the numerical
experiments. Even if the algorithms CR2 and SCR2 were aimed for the numerical solver to reaction
systems, the application of our methods could be extended further. As an applicable example, we
introduced the myocardial fatty acid uptake phenomenon and adopted our method for solving the
computational model obtained by focusing on a serial of diffusion which is a main route of FA
transport in a closed system.
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