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Abstract

Consider a decision support system based on a Bayesian network (BN) where all the variables

involved are binary, each taking on 0 or 1. The system categorizes the probability that a certain

variable is equal to 1 conditional on a set of variables in an ascending order of the probability values

and predicts for the variable in terms of category levels. We introduce a similarity measure between

BN models and describe how a BN model can be constructed which is similar to a given BN model.

Then under the condition that all the variables are positively associated with each other, a method

of obtaining an agreement level of predictions between two BN models is proposed. The agreement

levels are obtained by a simulation experiment for some BN models.

Keywords: Agreement level; Bayesian network; Model similarity; Conditional probability; Positive associa-

tion.

1 Introduction

Model-based decision support systems (DSSs) are preferred due to, among others, consistency in

decision-making and due to time-efficiency in model evaluation and modification. Shim et al. [16]

point to the importance of model-based DSSs as a powerful tool for decision aid in the web-based

information sharing environment. Constructing a model may take time if a number of random

variables are involved in the model and the model structure is not simple. Suppose that a group of

users want model-based classifications from a web-based DSS soon after the information about the

model structure and a corresponding data set are uploaded. We may not have enough time to go

through the full model-building procedure to serve the users.

Classification is a form of decision making under a certain loss structure [4], and DSSs for these

purposes are in general model-based (see, for example, [11, 17, 18]). Kim [10] proposed a robust

1Tel: +82-42-869-2737; fax: +82-42-869-5710. E-mail address: shkim@amath.kaist.ac.kr. URL:
http://amath.kaist.ac.kr/∼slki.
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classification method as an alternative when exact or satisfactory values are not available. He

considered a model-based DSS where all the variables involved are binary, the probability that a

certain variable is equal to 1 (1 for success and 0 for failure) is categorized, and predictions are made

for the variable in terms of category levels. He showed that the category levels are robust to the

probability values provided that the variables are positively associated among themselves.

In educational testing, test results are used for guessing students’ knowledge states. The need

for better understanding of knowledge states calls for statistical technologies for linking performance

outcomes to knowledge states [13]. Some of the technologies are used in the form of graphical models

[19] whose model structures are represented in graphs, each of which consists of vertices and edges.

The vertices represent random variables and the edges associative or causal relationships among the

variables. The edges are directed if the relationships between the variables can be interpreted as

causal and not directed otherwise. Since the relationship between abilities or knowledge units (KUs)

are causal or hierarchical and the relationship between task performance and knowledge is causal,

we will consider graphical models whose model structures are represented in the form of a Bayesian

network (BN) [15, 7] and call them BN models.

We will call the graphical model of knowledge states and task performance a task performance

model. The outcome of the task performance is classified as success (1) or failure (0) and the

knowledge state good enough (1) or poor (0) for a given set of test items. If a student possesses

a good enough knowledge for a test item, he or she has a high probability of a successful answer;

otherwise, the probability will be low. When we diagnose a student’s knowledge state based on his

or her test result, one of the best ways is to use the conditional probability that a certain KU is in a

good enough state given his or her test result. A statistical technique for computing the conditional

probability is what is called evidence propagation [12] and computer programs such as HUGIN [1]

and ERGO [5] are available to calculate it.

In this paper, we will introduce the notion of similarity between BN models and propose a method

of constructing a BN whose prediction is robust when the prediction is made for a variable in terms

of category levels of probability.

This paper is organized in 6 sections. Section 2 presents theorems showing that positive as-

sociation among a set of binary variables preserves a stochastic ordering among the conditional

probabilities of the binary variables. Section 3 then introduces the notion of similarity between BN

models and proposes a BN model which is most similar to a given BN model under some condition.

In section 4, we propose a method of computing agreement levels of predictions between a pair of

BN models and then results of a simulation experiment are presented. In section 5, we discuss how

the agreement levels are affected in a BN model. Section 6 concludes the paper with some remarks
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on applications.

2 A brief review on positive association

All the variables considered in this paper are binary, taking on the values 0 or 1. We will use U for

unobservable variables and X for observable variables. In educational testing, U may be regarded as

a random indicator of possessing a certain knowledge and X an item-score. Vectors are bold-faced.

For a pair of n-vectors u and v of the same length, we write u ¹ v when ui ≤ vi for i = 1, · · · , n,

and write u ≺ v if u ¹ v and ui < vi for at least one i = 1, · · · , n.

In a BN such as the graph in Fig. 1, if a pair of nodes a and b are connected by an arrow with the

arrow heading towards b from a, we call node a a parent node of node b and call node b a child node

of node a. If a node does not have any parent node, it is called a root node. U1 is the only root

node in the figure. If two nodes are connected by an arrow we say that the two nodes are neighbors

or that they are connected directly to each other.

Theorem 1. Let U and X be binary variables, taking on the values 0 or 1. If

0 < P (U = 1) < 1 and 0 < P (X = 1) < 1 (1)

then the following two inequalities are equivalent:

P (X = 1|U = 0) < P (X = 1|U = 1) (2)

P (U = 1|X = 0) < P (U = 1|X = 1). (3)

Proof. See Theorem 1 in [10]

X1 X2 X3

U1 U2

U3

X4

X5

X6

Figure 1: A BN where U variables are latent and X variables observable.
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Under condition (2), we have

P (X = 1|U = 1)P (X = 0|U = 0)
P (X = 0|U = 1)P (X = 1|U = 0)

> 1,

that is, U and X are positively associated.

We can extend this result to a situation where Xi, i = 1, 2, · · · , I, are influenced by multiple U ’s,

i.e., the conditional probability of Xi is subject to the states of some of Uk, k = 1, 2, · · · ,K.

Theorem 2. Let X = (X1, · · · , XI) and U = (U1, · · · , UK) where all the Xi’s and Uk’s are binary,

taking on 0 or 1. Then the following two statements are equivalent.

(i) For i = 1, 2, · · · , I,

P (Xi = 1|u) < P(Xi = 1|v), when u ≺ v. (4)

(ii) For k = 1, 2, · · · ,K,

P (Uk = 1|x) < P(Uk = 1|y), when x ≺ y. (5)

The strict inequality(<) in both Eqs.(4) and (5) may be replaced by the plain inequality (≤).

Proof. See Theorem 2 in [10]

Inequality (4) is equivalent to that

P (v|Xi = 1)
P (u|Xi = 1)

>
P (v)
P (u)

>
P (v|Xi = 0)
P (u|Xi = 0)

.

This inequality says that U = v is more likely than U = u when Xi = 1 than when Xi = 0.

Furthermore, we can compare the likeliness of Uk = 1 for individual Uk’s as in Theorem 2.

When the < and ≺ in expression (4) are replaced by ≤ and ¹, respectively, we have

P (Xi = 1|u) ≤ P(Xi = 1|v), when u ¹ v. (6)

This expression actually means that the conditional distribution of Xi given U = u is stochastically

larger than that of Xi given U = v. Holland and Rosenbaum[6] discuss properties concerning positive

association among the X variables when the X variables are conditionally stochastically ordered

given U. Junker and Ellis [8] characterize such X variables in more generic terms such as conditional

association and vanishing conditional dependence. We will call expression (6) the condition of

positive association (or PA condition for short) among the variables X1, · · · , XI , U1, · · · , UK .

3 Similarity between BN models

Consider two BN models which are the same in graph but not necessarily in distribution. Let the

graph be denoted by G = (V, E) where V and E are the set of vertices and the set of arrows between
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vertices. If two vertices u and v are connected by an arrow from u to v, the arrow is represented

by (u, v). So, (v, u) cannot be in E if (u, v) ∈ E. Such a graph is called a directed acyclic graph

(DAG). As for a DAG G, we define a set pa(v) for a vertex v, as pa(v) = {u; (u, v) ∈ E}.
For two BN models, BN1 and BN2, of XV , assume that they have the same graph, say G, and

denote their probability distributions by D1 and D2 respectively. In other words, the BN model,

BNi, i = 1, 2, is defined as BNi = (G, Di). The probability function Pm of Dm, m = 1, 2, is

expressed as

Pm(xV ) =
∏

v∈V

Pm
v|pa(v)(xv|xpa(v)).

In other words, Dm is defined in terms of the conditional distributions of Xv conditional on its

parent variables. In this respect, we may say that the two distributions are similar to each other if

the conditional distributions are for each variable between the two models. The similarity measure

between BN1 and BN2 can be defined by

∑

v∈V

∑
xv

∑
xpa(v)

(
P 1

v|pa(v)(xv|xpa(v))− P 2
v|pa(v)(xv|xpa(v))

)2

.

We denote the support of Xv by Xv and let, for A ⊆ V , XA =
∏

v∈A Xv. If all the variables are

binary, the similarity measure can be re-expressed as

∑

v∈V

∑

x∈Xpa(v)

(
P 1

v|pa(v)(1|x)− P 2
v|pa(v)(1|x)

)2

. (7)

We will denote this measure by ψ(BN1, BN2).

We can think of a probability distribution for P 1
v|pa(v)(1|y), y ∈ Xpa(v), regarding P 1

v|pa(v)(1|y)

itself as a random variable, in such a way that the PA condition (6) is satisfied for Xv, v ∈ V . We

will denote the distribution of P 1
v|pa(v)(1|y), y ∈ Xpa(v), by Dv

P and the set {Dv
P , v ∈ V } by DP .

Now suppose that D2 is not known and that we want to find a distribution, say D∗, for which

E(ψ(BN1, BN∗)) is minimized where the expectation is made with respect to the distribution DP .

By the definition of the similarity measure in (7), it follows that E(ψ(BN1, BN∗)) is minimized

when D∗ consists of the conditional probabilities of Xv, v ∈ V conditional on Xpa(v) which are given

by

E(Pv|pa(v)(1|xpa(v)))

where the expectation is made with respect to DP .

For Xv, we denote by δv(x) the number of 1’s in the vector of xpa(v) and by κv(x) the number

of vectors y ∈ Xpa(v) such that δv(y) = δv(x). If we let P ∗v|pa(v) depend on δv(x) rather than on

x ∈ Xpa(v), we have the following result.
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Theorem 3. Let the expression in (7) be modified as

s0 =
∑

v∈V

∑

x∈Xpa(v)

(
P 1

v|pa(v)(1|x)− gv(δv(x))
)2

for some real valued functions gv. If we regard P 1
v|pa(v)(1|x) as random variables with distribution

DP , then s0 is minimized when

gv(δv(x)) =
1

κv(x)

∑

y ∈ Xpa(v) :
δv(y) = δv(x)

E(P 1
v|pa(v)(1|y)). (8)

Proof: Since s0 is quadratic in gv(δ(x)), we have

ds0

dgv(δv(x))
=

d

dgv(δv(x))

∑
v

∑

y∈Xpa(v)

E
(
P 1

v|pa(v)(1|x)− gv(δv(x))
)2

= 2
∑

y ∈ Xpa(v) :
δv(y) = δv(x)

E
(
P 1

v|pa(v)(1|y)− gv(δv(x))
)

= 0.

Thus, s0 is minimized when

gv(δv(x)) =
1

κv(x)

∑

y ∈ Xpa(v) :
δv(y) = δv(x)

E
(
P 1

v|pa(v)(1|y)
)

.

Suppose that |pa(v)| = 3. Then

Xpa(v) = {(0, 0, 0)︸ ︷︷ ︸
0

, (0, 0, 1), (0, 1, 0), (1, 0, 0)︸ ︷︷ ︸
1

, (0, 1, 1), (1, 0, 1), (1, 1, 0)︸ ︷︷ ︸
2

, (1, 1, 1)︸ ︷︷ ︸
3

}, (9)

where the elements (x’s) are grouped according to δ(x). For four vectors, x0,x1,x2,x3, in (9), with

δ(xi) = i, we have that

x0 ≺ xi ≺ x3, i = 1, 2. (10)

But not every pair in Xpa(v) is ordered. For instance, (0, 1, 0) and (1, 0, 1) are not ordered.

Recall that, under the PA condition, Pv|pa(v)(1|x) ≤ Pv|pa(v)(1|y) for x,y ∈ Xpa(v), when x ¹ y.

In constructing a BN model for XV under the PA condition for Pv|pa(v), we can think of assigning

probability values as follows:

For simplicity of argument, we consider the case that |pa(v)| = 3. If we are given 8 values

between 0 and 1 in a random manner from some distribution, we assign these values to

Pv|pa(v)(1|x), x ∈ Xpa(v), in the order of the elements in (9) from small to large allowing

order distortions between some of Pv|pa(v)(1|x) values for which the x’s are not comparable

in the sense of ¹.
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Since the values are assigned in a random manner to Pv|pa(v)(1|x)’s where the x’s are not com-

parable with each other, Theorem 3 says that, if the conditional probability of Xv conditional on

Xpa(v) depends upon δv(X) only in a BN model and minimizes E(s0), then the desired conditional

probability is given by the right-hand side of (8). A BN model for which gv values are used will

be called an s-BN model. We will compare the performance of the s-BN model with the actual BN

model in next section.

4 s-BN models for some distributions of P 1
v|pa(v)(1|x)

In this section, we will compare two BN models which share the same DAG but the conditional

probabilities, Pv|pa(v)(1|x), v ∈ V , may be different between the models. The comparison will be

made in the context of predictions by the models, where the predictions are made in the form of a

class level of probability values which is obtained by classifying the probability values into a finite

number of subgroups in accordance with their magnitudes. A detailed description of this is given in

section 3 of Kim [10].

We will call one of the two BN models for which a DP is used an actual BN model and we use

the gv values corresponding to Dp for the s-BN model of the actual model. The agreement level of

the predictions between the two models is defined as follows:

Suppose we compare predictions for subject j with regard to Xk and denote the predicted

levels from the actual BN model and the s-BN model, respectively, by Y a
jk and Y s

jk. We define

Djk = Y s
jk−Y a

jk. So, if the class levels range from 1 through L, then −L+1 ≤ Djk ≤ L−1.

Suppose that there are N subjects for whom predictions are to be made. Then we can define

the agreement level up to a difference d (d > 0) by

αk
d =

∑

h: |h|≤d

rkh (11)

where

rkh =
the number of cases that Djk = h

N
.

We will use αk
0 and αk

1 as the two main measures of agreement. As for DP , we will consider the

uniform distribution between 0 and 1 (denoted by U(0, 1)), the beta distribution with parameters

a and b (denoted by B(a, b)), and some variations of the latter for P 1
v|pa(v)(1|x), x ∈ Xpa(v). Since

P 1
v|pa(v)(1|x) are ordered according to x under the PA condition, we may use a set of order statistics

for P 1
v|pa(v)(1|x) which are obtained from such a distribution as mentioned above.

Let V be partitioned into {V1, V2} and suppose that we are interested in predicting for XV2 given

an outcome of XV1 . In the following subsections, we obtain the α values for Xv, v ∈ V2, by a
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11. Repeat steps 4 through 10
  as many times as needed.

        

1. Construct the model structure.

After the full repetition

10. Compute the alpha 0 and
    alpha 1 values.

between the s−BN model and 
the actual BN model.

2. Set up the s−BN model. 
3. Inference making for U variables  4. Set up an actual BN model

5. Generate simulated data

6. Inference making for U variables

7. Obtain category levels 
 for each U variable based on

8. Obtain category levels 

from the s−BN model

 from the actual BN model

from the actual BN model

the results from step 3.

 for each U variable based on
the results from step 6.

9. Compare the category levels

12. Get the alpha values.

Figure 2: The process for the α values as in (12). Predictions are made for U variables.

simulation experiment for a given distribution DP .

In the simulation, we obtained the α values as follows:

(i) For a given DP , construct an s-BN model.

(ii) Generate the conditional probabilities, {P 1
v|pa(v)(1|x), v ∈ V } from DP and set up an actual

BN model using the conditional probabilities,

(iii) Generate N vector values of XV from the actual model,

(iv) For each k ∈ V2, obtain rkh, −L + 1 ≤ h ≤ L− 1.

(v) Repeat steps (ii)-(iv) B times and compute the average of the B rkh values for each k.

We denote by r̄kh the average of the rkh values and replace the rkh in (11) by r̄kh as in

αk
d =

∑

h: |h|≤d

r̄kh. (12)

Since B different sets of conditional probabilities, {P 1
v|pa(v)(1|x), v ∈ V }, are used from the distri-

bution, DP , the α values as in (12) can be regarded as a measure of the robustness of the predictions

by the s-BN model when DP is the true distribution for {P 1
v|pa(v)(1|x), v ∈ V }. The process for

the α values is depicted as a flowchart in Figure 2. In the simulation experiment below, we set

N = 10, 000 and B = 100.
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4.1 When the DP is a uniform distribution

The jth order statistic, Rj , of a random sample of size n from U(0, 1) has a B(j, n − j + 1)

distribution[14]. From this it follows that

E(Rj) =
j

n + 1
. (13)

Suppose for Xv that |pa(v)| = 3 and consider the Xpa(v) in expression (9). If we have eight values

randomly selected from the distribution U(0, 1) and order them as R1 < R2 < · · · < R8, we can

assign them to P 1
v|pa(v)(1|x), x ∈ Xpa(v) in such a way that the condition of positive association is

satisfied. By (10), we assign R1 to P 1
v|pa(v)(1|(0, 0, 0)) and R8 to P 1

v|pa(v)(1|(1, 1, 1)). The remaining

six values, R2, · · · , R7, are assigned to P 1
v|pa(v)(1|x1) and P 1

v|pa(v)(1|x2) under the PA condition.

Note that there is no ordering between the vectors, (1, 1, 0) and (0, 0, 1). So it is possible that

P 1
v|pa(v)(1|(1, 1, 0)) < P 1

v|pa(v)(1|(0, 0, 1)) or that P 1
v|pa(v)(1|(1, 1, 0)) > P 1

v|pa(v)(1|(0, 0, 1)). Since

there are two x’s with δ(x) = 1 which are ordered with each x for which δ(x) = 2, it follows that

R2 and R3 are assigned to P 1
v|pa(v)(1|x), δ(x) = 1. And by the same argument, R6 and R7 must

be assigned to P 1
v|pa(v)(1|x), δ(x) = 2. One of R4 and R5 can be assigned to P 1

v|pa(v)(1|(1, 0, 0)) or

P 1
v|pa(v)(1|(0, 1, 1)), to P 1

v|pa(v)(1|(0, 1, 0)) or P 1
v|pa(v)(1|(1, 0, 1)), or to P 1

v|pa(v)(1|(0, 0, 1)) or

P 1
v|pa(v)(1|(1, 1, 0)). We can easily check that R4 can be assigned to one of P 1

v|pa(v)(1|x), δ(x) = 2

one third of the times of its assignment to one of P 1
v|pa(v)(1|x), δ(x) = 1. From this and (13) it

Table 1: The gv values of (8) for |pa(v)| ≤ 3 when DP is U(0, 1)

|pa(v)| = 0 : gv(0) =
1
2

|pa(v)| = 1 : gv(i) =

{
1
3 if i = 0
2
3 if i = 1

|pa(v)| = 2 : gv(i) =





1
5 if i = 0
1
2 if i = 1
4
5 if i = 2

|pa(v)| = 3 : gv(i) =





1
9 if i = 0
37
108 if i = 1
71
108 if i = 2
8
9 if i = 3

Table 2: α and r̄kh values for the model in Figure 1 when the DP is U(0, 1).
Ui r̄k,−4 r̄k,−3 r̄k,−2 r̄k,−1 α0 r̄k1 r̄k2 r̄k3 r̄k4 α1

U1 0.000 0.004 0.038 0.152 0.567 0.195 0.036 0.006 0.001 0.914
U2 0.000 0.001 0.023 0.136 0.635 0.171 0.030 0.004 0.000 0.941
U3 0.000 0.001 0.020 0.138 0.647 0.157 0.033 0.003 0.000 0.942

Average 0.000 0.002 0.027 0.142 0.616 0.174 0.033 0.004 0.001 0.932
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follows that the gv of (8) is given by

gv(0) = 1
9 , gv(1) = 1

3

{
2
9 + 3

9 +
(

4
9 · 3

4 + 5
9 · 1

4

)}
= 37

108 ≈ 1
3 .

gv(2) = 1
3

{(
4
9 · 1

4 + 5
9 · 3

4

)
+ 6

9 + 7
9

}
= 71

108 ≈ 2
3 , gv(3) = 8

9 .
(14)

This is summarized in Table 1.

When |pa(v)| > 3, the computational load for gv increases exponentially and it is found that,

when |pa(v)| = k, gv(i), 0 ≤ i ≤ k, is close to

g0
v(i) =

∑si

j=si−1+1 E(Rj)

si − si−1

where sj =
∑j

l=0

(
k
l

)
. This is illustrated in (14), where |gv(1)− g0

v(1)| = |gv(2)− g0
v(2)| = 1/108.

It is indicated in Table 2 that, on average, the predictions from the two models exactly agree for

about 61.6% of the cases (see the column of α0 in the table) and the average of the three values in

the last column is 0.932, suggesting that about 93% of the predictions are on average different from

the true values by at most 1.

4.2 When the DP is a beta distribution

U(0, 1) is a special form of a beta distribution, given by B(1, 1). In this subsection, we will take

as an example B(0.2, 0.4) for DP . When the conditional probabilities, {P 1
v|pa(v)(1|x), v ∈ V }, are

given as order statistics from U(0, 1), the P 1
v|pa(v) values tend to be evenly dispersed over the interval

between 0 and 1. But the P 1
v|pa(v)(1|x) values are more likely to appear near the end points of the

Table 3: The gv values of (8) for |pa(v)| ≤ 3 when DP is B(0.2, 0.4)

|pa(v)| = 0 : gv(0) = 0.3333 |pa(v)| = 1 : gv(i) =

{
0.1328 if i = 0

0.5338 if i = 1

|pa(v)| = 2 : gv(i) =





0.0299 if i = 0

0.2783 if i = 1

0.7567 if i = 2

|pa(v)| = 3 : gv(i) =





0.0035 if i = 0

0.0801 if i = 1

0.5072 if i = 2

0.9012 if i = 3

Table 4: α and r̄kh values for the model in Figure 1 when the DP is B(0.2, 0.4).
Ui r̄k,−4 r̄k,−3 r̄k,−2 r̄k,−1 α0 r̄k1 r̄k2 r̄k3 r̄k4 α1

U1 0.004 0.025 0.052 0.166 0.540 0.183 0.025 0.004 0.000 0.889
U2 0.002 0.006 0.035 0.153 0.617 0.172 0.014 0.001 0.000 0.942
U3 0.000 0.006 0.034 0.161 0.613 0.154 0.029 0.002 0.000 0.928

Average 0.002 0.013 0.040 0.160 0.590 0.170 0.023 0.002 0.000 0.920
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interval when they are from B(0.2, 0.4). In the case of educational testing, if Xv is an item score (1

for correct answer, 0 otherwise) and Xpa(v) is a vector of the knowledge states (1 for good enough, 0

otherwise) of the knowledge units that are required for the test item, then the P 1
v|pa(v) values tend

to be small when δ(xpa(v)) < |pa(v)| and near 1 otherwise (See, for example, [13]). In this respect,

the beta distribution is a reasonable choice for DP .

The mean of the jth largest among a random sample of size n from a beta distribution is not

available in a closed form, and the gv values are computed by a numeral approach. Table 3 lists the

gv values for |pa(v)| ≤ 3.

It is indicated in Table 4 that on average, the predictions from the two models exactly agree for

about 59% of the cases(see the column of α0 in the table) and the average of the three values in the

last column is 0.920.

It is worthwhile to note in Table 3 that the gv(0) values become very small as |pa(v)| increases. In

educational testing with multiple selection tests, these values are unreasonably small since multiple

selection tests allow guessing for selecting response options. An example of the distribution DP for

this situation is

0.9 · B(a, b) + 0.1, (15)

which means that guessing shrinks the range of the conditional probabilities from B(a, b) to 0.9 ·
B(a, b) + 0.1. The gv values under this transformation are listed in Table 5 for |pa(v)| ≤ 3. In

the table, we can see that the gv values are larger than 0.1 but the differences in gv(i) get smaller

Table 5: The gv values of (8) for |pa(v)| ≤ 3 when DP is 0.9 · B(0.2, 0.4)+0.1

|pa(v)| = 0 : gv(0) = 0.4 |pa(v)| = 1 : gv(i) =

{
0.2195 if i = 0

0.5805 if i = 1

|pa(v)| = 2 : gv(i) =





0.1269 if i = 0

0.3505 if i = 1

0.7720 if i = 2

|pa(v)| = 3 : gv(i) =





0.1031 if i = 0

0.1721 if i = 1

0.5565 if i = 2

0.9110 if i = 3

Table 6: α and r̄kh values for the model in Figure 1 when the P 1
v|pa(v) is from 0.9 · B(0.2, 0.4) + 0.1

Ui r̄k,−4 r̄k,−3 r̄k,−2 r̄k,−1 α0 r̄k1 r̄k2 r̄k3 r̄k4 α1

U1 0.009 0.018 0.065 0.143 0.526 0.207 0.031 0.031 0.002 0.876
U2 0.001 0.009 0.041 0.134 0.606 0.191 0.018 0.018 0.000 0.931
U3 0.004 0.010 0.043 0.141 0.620 0.164 0.018 0.018 0.002 0.924

Average 0.005 0.012 0.050 0.139 0.584 0.187 0.022 0.001 0.000 0.910
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between the two types of DP , B(0.2, 0.4) and 0.9 · B(0.2, 0.4) + 0.1 as i increases. However, the α

values (see Tables 4 and 6) are more or less the same between them.

5 Discussion

In this section we will investigate how α values at a node depend upon the location of the node

in a given BN. For convenience, we denote by U the random variable which is to be predicted for,

and by X the one to be conditioned on, when predictions are made. Our point of interest is how α

values are affected with regard to the X variables in a BN. The effect of X variables on a U variable

may depend on the lengths of the paths from the U variable to the X variables in the BN, on the

number of the X variables in the BN, and the number of adjacent nodes of the U variable. It is

very difficult to analyze theoretically the effect on α since the number of different BN’s increases

exponentially in |V | as well as the model complexity. This is why we did the investigation by a

simulation experiment.

In the simulation, we took U(0, 1) for DP , and N = 10, 000 and B = 1, 000 to obtain α values.

The five BN’s in Figure 3 were considered to see how the number of X variables affect α. In the

graphs in panels (a), (b), and (d), the U variables can be grouped in such a way that those at the

Table 7: The averages of the α0 and α1 values for the U variables in the graphs in Figure 3. The
sets, ga

1 , · · · , ge
3, are labelled such that for each panel the U variables in g·i are located closer to the

X variables by one edge than the U variables in g·i+1 are.

panel grouping∗ averages
α0 α1

a ga
2 = {1} 0.638 0.923

ga
1 = {2, 3} 0.713 0.958

b gb
3 = {1} 0.531 0.903

gb
2 = {2, 3} 0.582 0.913

gb
1 = {4, 5, 6} 0.602 0.926

c gc
2 = {1} 0.515 0.876

gc
1 = {2, 3, 4, 5} 0.579 0.931

d gd
4 = {1} 0.470 0.862

gd
3 = {2, 3} 0.515 0.880

gd
2 = {4, 5, 6} 0.560 0.910

gd
1 = {7, 8, 9, 10} 0.547 0.919

e ge
3 = {1} 0.497 0.875

ge
2 = {2, 3, 4, 5} 0.581 0.932

ge
1 = {6, 7, 8, 9} 0.528 0.921

* {i, j} is a simplified expression of {Ui, Uj}.
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X2 X3X1

U1U1
0.638
0.923

U2 0.688
0.968

0.738
0.948

0.688
0.946

Average
U3

(a)

U4 0.612
0.925

U2 0.590
0.914

0.574
0.911U3

U6 0.647
0.936

U1U1
0.531
0.903

0.547
0.916U5

X1 X2 X3

0.584
0.917

Average

X4

(b)

0.576
0.928 U1U1

U2X4

U5

X3 U4

X1

U3

X2

0.560
0.932

0.515
0.876

0.582
0.925

0.597
0.938

0.566
0.920

Average

(c)

U7

U1U1
0.470
0.862

U2 0.507
0.877

0.523
0.883

U8

U4 0.559
0.905

0.546
0.915U5 U6 0.574

0.910

X1 X5

U9 U100.507
0.911

0.561
0.911

0.511
0.925

0.608
0.928

X2 X3 X4

0.537
0.903

Average

U3

(d)

X2

X4

X1X3 U1U1

U2

U5

U4

U3

0.567
0.925

U9

U8 U7

U6

0.497
0.875

0.593
0.938

0.572
0.930

0.529
0.929

0.591
0.933

0.517
0.922

0.534
0.917

0.532
0.916

0.548
0.921

Average

(e)

Figure 3: α0 and α1 values in five BN’s. Predictions are made for U values conditional on the
outcomes of all the X variables appearing in each of the BN’s. The two values at each of the U
nodes are α0 and α1 from top down.

same distance from the X variables are grouped together. For example, in panel (a), the grouping

yields the sets, {U1} and {U2, U3}. The grouping for the other panels is summarized in the second

column of Table 7. It is apparent in this table that α values decrease on average as the U variables

appear farther away from the X variables. Note that, for panel (d), the U variables in set gd
i are

i edges away from the X variables if we count the number of edges of the shortest paths between

one of the U variables and the X variables. It is interesting to see that the α values decrease in

the order of ga
1 , gb

1, g
d
1 . This is due to the fact that the number of the X variables that affect the U

variable increases in the order of the panels (a), (b), (d).

We consider panels (c) and (e) to compare the α values with those of panel (b), where each of

these three graphs contains four X variables. It is noteworthy that the α values are almost the same

between the sets, gc
2 and ge

3, and between the sets, gc
1 and ge

2 or ge
1. As for the two types of panels,

panel (b) as one type and panels (c) and (e) as another, we can see that the α values depend on the
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U2 U3

U4

X1 X2

U1U1 0.833
0.957

0.833
0.957

0.833
0.957

0.833
0.957

0.833
0.957

Average

(a)

U2 U3

U4

X1 X2

U1U1

0.769
0.952

0.792
0.966

0.791
0.943

0.776
0.949

Average

0.752
0.936

(b)

X1 X2

U1U1

0.821
0.956

0.674
0.951

0.757
0.953

Average

0.686
0.958

0.798
0.938

0.808
0.976

0.758
0.936

U2 U3

U4 U5 U6

(c)

X1 X2

0.882
0.982

0.851
0.977

0.609
0.952

0.793
0.951

0.820
0.972

0.880
0.977

0.787
0.957

0.854
0.963

0.782
0.936

0.658
0.938

0.791
0.959

Average

0.782
0.941

U7 U8

U9

U4 U5 U6

U3U2

U1

U10 U11

(d)

Figure 4: α0 and α1 values when predictions are made conditional on two variables only. Two
patterns of subgraphs are enclosed in two types of lines, one in dotted chain lines and the other in
dotted lines.

model structure also. While the α values of U1 are more or less the same between panels (c) and

(e), the α values in panel (b) (α0 = 0.531, α1 = 0.903) are different from those in either of panels

(c) (α0 = 0.515, α1 = 0.876) and (e) (α0 = 0.497, α1 = 0.875).

The BN models in Figure 4 are considered to check whether the α values are affected by model

structures when a fixed set of X variables is involved in the models. In panel (a), the α values of the

U variables are all the same since the information from X1 and X2 propagates to the U variables

through U4 only. As for the panels, (b), (c), and (d), we see two patterns of subgraphs, one enclosed

in dotted lines and the other in dotted chain lines. For convenience, we will call the former pattern 1

and the latter pattern 2. Pattern 1 includes a root node and consists of four U variables and pattern

2 includes the nodes that are directly connected to the X variable nodes. The figure indicates that

the α values in the same pattern are almost the same across the panels. The result suggests that the

α values of a U variable are affected by the location of the U variables relative to the X variables.

In summary, the results from the simulation experiment suggest that the α values of U variables

get smaller as more X variables are involved in a model and that, for a given BN model, the α values

of a U variable depend on its location relative to the X variables in the network.

6 Concluding remarks

Suppose that the variables that are involved in a model are all binary and positively associated and

that we are interested in predicting for the variables in terms of class levels of probability. Then

we may apply the notion of similarity between models. We have considered BN models for model
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structures and the similarity between models is measured by expression (7).

We have considered a uniform distribution, a beta distribution, and a variation of the beta

distribution for the distributions of the conditional probabilities, Pv|pa(v), v ∈ V . We may use other

distributions in accordance with the characteristics of the random variables that are involved in the

BN model.

When we use a similar BN model such as proposed in this paper, it is desirable to provide the

agreement levels, α0 and α1, because the levels are dependent upon the location of the variables to

be predicted, in a given BN model, relative to the variables based on whose outcomes predictions are

made. We must interpret the prediction result for a certain predicted variable if its agreement level

is relatively low. For example, in the case of medical diagnosis, a low agreement level for a certain

variable may lead to a further consultation or medical examination with regard to the variable.

A similar BN model is an artificial BN model where the conditional distribution for each node

is selected based on the assumption that the data set for the similar BN model is generated from

a distribution, DP . When a BN model involves a lot of random variables, model building is time

consuming and the estimates become more subject to their initial values as more latent variables

are included in the model [9].

Although we have considered BN models only, the classification robustness would be valid for

other forms of graphical models such as Markov networks [15] and a mixture of the two types. One

of the reasons is that these two forms of graphs share the Markov properties that are essentially

transformable with a few exceptions into the same graphical layout [2, 3].

The result of this paper is relevant to all the problems where classifications may be made based

on the relative magnitudes of the conditional probabilities under the assumption that the variables

are binary and are positively associated with each other. Similar BN models will save much of our

time and effort provided that the positive association condition (6) is satisfied, and so enhance the

utility of model-based DSSs.
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