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Abstract. In this paper, we propose a new method to allocate band-
width adaptively according to the amount of input traffic volume for a
long range dependent traffic requiring Quality of Service (QoS). In the
proposed method, we divide the input process, which is modelled by an
M/G/∞ input process, into two sub-processes, called a long time scale
process and a short time scale process. For the long time scale process
we estimate the required bandwidth using the linear prediction. Since
the long time scale process varies (relatively) slowly, the required band-
width doesn’t need to be estimated frequently. On the other hand, for
the short time scale process, we use the large deviation theory to esti-
mate the effective bandwidth of the short time scale process based on the
required QoS of the input traffic. By doing this we can capture the short
time scale fluctuation by a buffer and the long time scale fluctuation by
increasing or decreasing the bandwidth adaptively. Through simulations
we verify that our proposed method performs well to satisfy the required
QoS.

1 Introduction

Several traffic measurement studies in recent years have shown the existence of
long-range dependence(LRD) and self-similarity in network traffic such as Eth-
ernet LANs[6,11], variable bit rate(VBR) video traffic[2,7], Web traffic[5], and
WAN traffic[15]. In addition, many analytical studies have shown that LRD net-
work traffic can have a detrimental impact on network performance and pointed
out the need of revisiting various issues of performance analysis and network
design. One of the practical impacts of LRD is that buffers at switches and
multiplexers should be significantly larger than those predicted by traditional
queueing analysis and simulations to meet the required quality of service (QoS).
This requirement for large buffers can be explained by the Noah effect and the
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Joseph effect. However, such a significantly large buffer requirement causes the
inefficient use of the network resources.

To solve this problem, many studies recommend that the buffer be kept small
while the link bandwidth is to be increased, and most studies, e.g. [3,9,16,17]
in the open literature have been focusing on the estimation of the required
bandwidth for LRD traffic based on the buffer overflow probability. However,
a deterministic bandwidth allocation strategy seems not to be quite effective
for LRD traffic. For example, if the traffic volume in a certain (relatively long)
period of time is less than the estimated bandwidth, which can happen for LRD
traffic with nonnegligible probability, then the network wastes the bandwidth for
as much period of time. Therefore, it would be more effective if we can adaptively
change the bandwidth allocated for LRD traffic, which is the motivation of this
study.

In this paper, we propose a new method to allocate bandwidth adaptively
according to the amount of input traffic volume for a long range dependent
traffic requiring quality of service (QoS). We consider a discrete time queueing
system with an M/G/∞ input process[10,12,13,14] to model the system with
LRD traffic. The M/G/∞ input process is the busy server process of a discrete
time infinite server system fed by Poisson arrivals of rate λ (customers/slot) with
general service times. To mimic LRD traffic the discretized Pareto distribution
is considered as the service time distribution.

In the proposed method, We divide the input process into two sub-processes:
a long time scale process and a short time scale process. For the long time scale
process we estimate the required bandwidth using the minimum mean square er-
ror(MMSE) linear prediction. Since the long time scale process varies (relatively)
slowly, the required bandwidth doesn’t need to be estimated frequently. On the
other hand, for the short time scale process, since the required bandwidth for
the long time scale process is fully captured by the linear prediction, we use the
large deviation theory [4] to estimate the effective bandwidth of the short time
scale process based on the required QoS of the input traffic. By doing this we
can capture the short time scale fluctuation by a buffer and the long time scale
fluctuation by increasing or decreasing the bandwidth adaptively. Hence, the to-
tal bandwidth allocated for the M/G/∞ input process is obtained by adding the
effective bandwidth of the short time scale process to the estimated bandwidth
of the long time scale process.

To check the performance of our proposed method, we simulate a queueing
system with the M/G/∞ input process under various conditions and our simu-
lation results show that the proposed method performs well. Further discussion
on the proposed method will be given later.

The organization of this paper is as follows: In section 2, we introduce a
stationary M/G/∞ input process and investigate how to model LRD traffic
with the stationaryM/G/∞ input process. In section 3, we propose our adaptive
bandwidth allocation method for LRD traffic. In section 4, we present numerical
results to validate our method and further discussions are also provided. Finally,
we have conclusions in section 5.
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2 The Stationary M/G/∞ Input Process

An M/G/∞ input process is the busy server process of a discrete-time infinite
server system fed by Poisson arrivals with general service time. This process
has been known to be useful to model LRD traffic because it is stable under
multiplexing and flexible in capturing positive dependencies over a wide range
of time scales[10,12,13,14]. To describe the M/G/∞ input process, we assume
that the time axis is divided into slots of equal size and consider a discrete time
M/G/∞ queueing system as follows: The customer arrival process is according
to a Poisson process with rate λ, and βt+1 new customers arrive into the system
during time slot [t, t+ 1) for t = 0, 1, · · · . Since the number of servers is infinite,
customer j, j = 1, ..., βt+1, immediately occupies a new server in the system
after its arrival and begins its service from slot [t + 1, t + 2), with service time
σt+1,j (slots). We assume that {σt,j , t = 1, 2, · · · ; j = 1, 2, · · · βt} are i.i.d. and
σ denotes a generic r.v. for σt,j .

Let X(t), t ≥ 0 denote the number of busy servers during time slot [t, t+ 1),
in other words, the number of customers still present in the M/G/∞ system
during time slot [t, t + 1). We assume that the system starts with X(0) initial
customers at time 0. Then, the M/G/∞ input process is the busy server process
{X(t), t = 0, 1, · · · } of the M/G/∞ system described above. When X(t) is used
for traffic modelling, X(t) is considered as the number of packets arriving during
slot [t, t+ 1).

When we assume that the initial number X(0) of customers is a Poisson r.v.
with parameter λE [σ], and that {σ0,j , j = 1, 2, · · · , X(0)} are i.i.d. N-valued
r.v.s distributed according to the forward recurrence time σ̂ associated with σ,
i.e., the p.m.f. of σ̂ is given by p [σ̂ = r] � P [σ≥r]

E[σ] , r = 1, 2, · · · , it can be shown
that the resulting M/G/∞ input process is stationary[10,13]. In addition, we
can show that the covariance structure of {X(t), n = 0, 1, · · · } is given by [13]

Γ (k) � cov [X(t), X(t+ k)] = λE
[
(σ − k)+

]
, t, k = 0, 1, · · · , (1)

which is further reduced as [10,13,18]

Γ (k) = λ
∞∑

i=0

P
[
(σ − k)+ > i

]
= λ

∞∑
i=k+1

P [σ � i] = λE[σ]P [σ̂ > k]. (2)

In addition, the ACF (autocorrelation function) ρ(k) of the stationary M/G/∞
input process is obtained from (1) and (2) as follows:

ρ(k) � Γ (k)
Γ (0)

= P [σ̂ > k], k = 0, 1, · · · .

Next, we use the stationary M/G/∞ input process to model LRD traffic. To
do this, we consider a discretized Pareto distribution as the service time σ of a
customer in the correspondingM/G/∞ queueing system. The discretized Pareto
distribution is defined by

P [σ = i] � P [i ≤ Y < i+ 1] (3)
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where the random variable Y has the Pareto distribution with the shape param-
eter 1 < γ < 2 and the location parameter δ(> 0), given by

P [Y ≤ x] =

{
1 − ( δ

x)γ if x > δ,
0 otherwise.

Then, it can be easily checked that the stationary M/G/∞ input process with
discretized Pareto service times given above exhibits a long range dependence
by using (1),(2) and (3). We omit the detailed proof in this paper due to the
limitation of space. Hence, we use the the stationaryM/G/∞ input process with
discretized Pareto service times to mathematically model LRD traffic.

3 Adaptive Bandwidth Allocation Method

In this section, we propose a new adaptive bandwidth allocation (ABA) method
for LRD traffic requiring quality of service (QoS). In our ABA method, we
assume that the LRD traffic is modelled by a stationary M/G/∞ input process
with discretized Pareto service times. To compute the bandwidth allocated for
LRD traffic, we decompose the M/G/∞ input traffic X(t) into two components
called a short time scale process, denoted by Xs(t), and a long time scale process,
denoted by Xl(t) as follows: To decompose the input LRD traffic, a threshold
value T is given a priori. Then, Xs(t) is the number of busy servers at slot
[t − 1, t] which became active by arrivals whose service times are less than or
equal to a given threshold T , and Xl(t) is the number of busy servers at slot
[t− 1, t] which became active by arrivals whose service time is greater than T .

Due to the independence decomposition property of a Poisson process with
respect to a random selection, we see that the Poisson arrivals with service times
less than or equal to T generateXs(t) and accordingly,Xs(t) is anM/G/∞ input
process with arrival rate λP [σ ≤ T ] and service time with p.m.f P [σ=k]

P [σ≤T ] , 1 ≤ k ≤
T . Similarly, Xl(t) is also an M/G/∞ input process with arrival rate λP [σ ≥
T + 1] and service time with p.m.f P [σ=k]

P [σ≥T+1] , k ≥ T + 1. In addition, we see
that both processes Xl(t) and Xs(t) are independent. Then, by adjusting the
initial numbers and service times of customers for both processes, we make both
processes stationary. From the definitions of Xs(t) and Xl(t), we see that Xs(t)
captures the short time fluctuation in the input LRD traffic and Xl(t) captures
the long time fluctuation in the input LRD traffic.

Our next step is to compute the effective bandwidths for Xs(t) and Xl(t)
based on the given QoS requirement of the input LRD traffic. Since the service
times of customers generating the short time scale process Xs(t) are bounded by
T , we can easily show that Xs(t) is a short range dependence process. Hence, we
use the large deviation theory [4] to compute the effective bandwidth of Xs(t)
based on the QoS requirement of the input LRD traffic. We will give the details
in subsection 3.1. For the long time scale process Xl(t), since the tail behavior
of the service times of customers generating Xl(t) is the same as the discretized
Pareto service times, we see that Xl(t) is a LRD traffic. However, since the
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service times of customers generating Xl(t) are relatively long, the process Xl(t)
is changing relatively slowly, so that we may think that Xl(t) is almost constant
during each time period of fixed length, called the basic allocation period. In
addition, since the required QoS is already considered in the computation of
the effective bandwidth of Xs(t), we predict the amount of Xl(t) based on the
previous history of Xl(t) at the first slot of each basic allocation period and
allocate the same amount of bandwidth as the prediction for Xl(t) during the
basic allocation period. We will use the minimum mean square error (MMSE)
linear predictor to predict the amount of Xl(t), which will be given in detail in
subsection 3.2. Finally, we will describe how to allocate the bandwidth for the
LRD input traffic adaptively based on the effective bandwidth of Xs(t) and the
estimated bandwidth of Xl(t) in subsection 3.3.

3.1 The Effective Bandwidth for Xs(t)

In this subsection, we estimate the effective bandwidth for the short time scale
process Xs(t). To do this, we assume that the system has a buffer of size b and
should guarantee the overflowprobability less than e−ξb for the input LRDprocess.
As mentioned above, since the effective bandwidth function ofXl(t) is predicted by
a MMSE linear predictor which can not consider the QoS requirement, we consider
the QoS requirement of the input LRD process in the computation of the effective
bandwidth of Xs(t), which is given in the following theorem:

Theorem 1. When b is the buffer size of the system, the effective bandwidth Cs

for the required overflow probability e−ξb is given by

Cs =
T∑

n=1

λP [σ = n]
eξn − 1

ξ
.

Proof: First, note that the arrival process of customers generating Xs(t) can
be decomposed into T independent Poisson processes with rate λn = λP [σ = n].
For convenience, the Poisson process with rate λn is called the λn-Poisson pro-
cess. Let Bn,i be the number of customers arriving in [i− 1, i) and An(t) be the
total amount of traffic arrived in [0, t) for the λn-Poisson process. Then, observ-
ing that each customer of the λn-Poisson process eventually generates n packets
(since the service time of the customer is always n), for sufficiently large t we get

A(l)
n (t) Δ= B̃0 +

t−n∑
i=1

Bn,i · n ≤ An(t) ≤ B̃0 +
t∑

i=1

Bn,i · n Δ= A(u)
n (t), (4)

where B̃0 denotes the amount of traffic due to the initial customers of the λn-
Poisson process. Note that Bn,i are i.i.d poisson random variables with parameter
λn. From the first inequality of (4) we get

E[eθAn(t)] ≥ E[eθ
∑ t−n

i=1 Bn,i·n] = E[Πt−n
i=1 e

θBn,i·n] = Πt−n
i=1 E[eθBn,i·n].
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By taking the logarithm we obtain,

logE[eθAn(t)] ≥
t−n∑
i=1

logE[eθ·nBn,i] = (t− n)λn(eθ·n − 1)

since Bn is the poisson r.v. with parameter λn. Then it follows that

lim
t→∞

1
t

logE[eθAn(t)] ≥ λn(eθ·n − 1).

Similarly, from the second inequality of (4) we can show that limt→∞ 1
t log

E[eθAn(t)] ≤ λn(eθ·n − 1). Hence, the Gärtner-Ellis limit [4] of the λn-Poisson
process is given by

lim
t→∞

1
t

logE[eθAn(t)] = λn(eθ·n − 1).

Now, since Xs(t) is the superposition of the λn-Poisson processes for 1 ≤ n ≤ T ,
the Gärtner-Ellis limit of Xs(t) is given by Λ(θ) =

∑T
n=1 λn(eθ·n − 1).

Therefore, when b is buffer size, the effective bandwidth Cs for Xs(t) with the
overflow probability e−ξb can be calculated as follows [4]:

Cs =
Λ(ξ)
ξ

=
T∑

n=1

λP [σ = n]
eξn − 1

ξ
,

3.2 The Effective Bandwidth for Xl(t)

In this subsection, we estimate the effective bandwidth for the long time scale
process Xl(t). Even though we can’t extract Xl(t) from X(t) directly, we can
achieve our purpose by introducing a new process Z(t) defined by

Z(t) � X(t) − E [Xs(t)] = Xl(t) +Xs(t) − E [Xs(t)]
= Xl(t) + η(t),

where η(t) = Xs(t) − E[Xs(t)]. The process η(t) is viewed as a noise process
which is not i.i.d., but E [η(t)] = 0. Note that Xl(t) and η(t) are independent
because Xl(t) and Xs(t) are independent. In addition, if we know the threshold
value T and the input traffic parameters λ, γ and δ, we can get Z(t) from X(t).

Next, we consider the pth order linear predictor which can estimate X̂l(t + 1)
ofXl(t+1) using a linear combination of the current and previous values ofXl(t)
as follows:

X̂l(t+ 1) �
p−1∑
i=0

ω(i)Z(t− i),
∑

i

ω(i) = 1, (5)

where the coefficients ω(i) can be obtained by an induced linear system given
below. The optimal linear predictor in the mean square sense is such that mini-

mizes the mean square error ψ = E

[(
Xl(t+ 1) − X̂l(t+ 1)

)2
]
. Note that ψ is
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represented by a function of the vector ω = (ω (0) , ω (1) , · · · , ω (p− 1)). So, the
vector ω that minimizes ψ is found by taking the gradient, setting it equal to
zero and then solving it for ω. This results in

E [Xl(t+ 1)Z(t− j)] = E
[
X̂l(t+ 1)Z(t− j)

]
. (6)

From the facts that Xl(t) and η(t) are independent and E [η (t)] = 0 for all t,
the left hand side of (6) is computed as follows:

E [Xl (t+ 1)Z (t− j)] = E [Xl (t+ 1) (Xl (t− j) + η (t− j))]
= r(j + 1), j = 0, 1, · · · , p− 1, (7)

where r(k) = E [Xl(t)Xl(t+ k)] . Similarly, the right hand side of (6) is computed
as follows:

E
[
X̂l(t+ 1)Z(t− j)

]
= E

[ p−1∑
i=0

ω(i)Z(t− i)Z(t− j)
]

=
p−1∑
i=0

ω(i)E
[
Xl(t−i)Xl(t−j)

]
+

p−1∑
i=0

ω(i)E
[
η(t−i)η(t−j)]

=
p−1∑
i=0

ω(i)
[
r(j − i) + s(j − i)

]
, 0 ≤ j ≤ p− 1, (8)

where s(k) = E [η(t)η(t + k)] . Combining (6),(7) and (8) yields

r(j + 1) =
p−1∑
i=0

ω(i) [r(j − i) + s(j − i)] , j = 0, 1, · · · , p− 1.

In matrix form, this leads to the following linear system, so called Weiner-
Hopf linear equation [1,8] whose solution gives the optimum filter coefficients
ω(0), · · · , ω(p− 1):

⎡
⎢⎢⎢⎢⎢⎣

r(1)
r(2)
r(3)

.

.

.
r(p)

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

r(0) + s(0) r(1) + s(1) · · · r(p − 1) + s(p − 1)
r(1) + s(1) r(0) + s(0) · · · r(p − 2) + s(p − 2)
r(2) + s(2) r(1) + s(1) · · · r(p − 3) + s(p − 3)

.

.

.
.
.
.

. . . · · ·
r(p − 1) + s(p − 1) r(p − 2) + s(p − 2) · · · r(0) + s(0)

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

ω(0)
ω(1)
ω(2)

.

.

.
ω(p − 1)

⎤
⎥⎥⎥⎥⎥⎦

. (9)

It remains to compute r(k) and r(k) + s(k) to get ω(i), 0 ≤ i ≤ p− 1, which
result in the optimal linear predictor. We need the following theorem:

Theorem 2. r(k) and r(k) + s(k) are given by

r(k) = Γ ∗(k) + E2 [Xl(t)] ,
r(k) + s(k) = Γ (k) + E2 [Xl(t)] ,
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where Γ ∗(k) is autocovariance of lag k for Xl(t) and given by

Γ ∗(k)=

⎧
⎨
⎩

λ
[
E [σ] − k +

∑k
t=1(k − t)P [σ = t]

]
, if k ≥ T ,

λ
[
P [σ≥T + 1] (T − k) + E [σ]− T +

∑T
t=1(T − t)P [σ = t]

]
, if k ≤ T − 1.

(10)

and Γ (k) is autocovariance of lag k for X(t), given in (2).

Proof: To compute r(k) we only need to compute Γ ∗(k). Since a long time
scale process Xl(t) is an M/G/∞ input process with arrival rate λP [σ ≥ T + 1]
and service time σ∗ with p.m.f P [σ=k]

P [σ≥T+1] , k ≥ T +1, with the help of (2) Γ ∗(k)
can be expressed as follows:

Γ ∗(k) = λP [σ ≥ T + 1]E[σ∗]P [σ̂∗ > k], (11)

where E[σ∗] is the mean of service times in a long time scale process Xl(t) and
σ̂∗ is the forward recurrence time associated with σ∗. Observe that P [σ̂∗ > k]
can be calculated as follows:

P [σ̂∗ > k] =
∞∑

i=k+1

P [σ̂∗ = i] =
∞∑

i=k+1

P [σ∗ ≥ i]

E[σ∗]

=

⎧
⎨
⎩

1
E[σ∗]

1
P [σ≥T+1]

[
E [σ] − k +

∑k
t=1(k − t)P [σ = t]

]
, if k ≥ T ,

1
E[σ∗]

{
(T − k) + 1

P [σ≥T+1]

[
E [σ] − T +

∑T
t=1(T − t)P [σ = t]

]}
, if k ≤ T − 1.

(12)

Then combining (11) and (12) we show that Γ ∗(k) is given by (10).
Next, r(k) + s(k) can be computed as follows:

r(k) + s(k) = E [Xl(t)Xl(t+ k)] +E [η(t)η(t + k)]
= E [{Xl(t) + η(t)}{Xl(t+ k) + η(t+ k)}]

since E[η(t)] = 0 for all t, and η(t) and Xl(t) are independent
= E [{X(t)− E [Xs(t)]}{X(t+ k) − E [Xs(t+ k)]}]

by the definition of η(t)

= E [X(t)X(t+ k)] − 2E[X(t)]E[Xs(t)] +E2 [Xs(t)]
by the staionarity of X(t) and Xs(t)

= Γ (k) + E2 [X(t)] − 2E[X(t)]E[Xs(t)] +E2 [Xs(t)]

= Γ (k) + (E[X(t)] − E[Xs(t)])
2

= Γ (k) + E2[Xl(t)],

where Γ (k) is autocovariance of lag k for X(t), given in (2).

Consequently if we have the parameters λ, γ and δ of the M/G/∞ input traffic,
which can be obtained from the previously measured data or experience, the
coefficients {ω(i)}p−1

i=0 can be determined with the help of Theorem 2 and (3.2).
Then, by substituting ω(i) values into equation (5), we can obtain X̂l(t) as an
estimate of the long time scale process Xl(t).
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3.3 Adaptive Bandwidth Allocation Strategy

In this subsection, we describe how to allocate the bandwidth for a system with
a buffer of size b and the M/G/∞ input traffic requiring overflow probability
less than e−ξb. To allocate the bandwidth for the M/G/∞ input process, we
first compute the effective bandwidth Cs of Xs(t) by using Theorem 1. Next,
we divide the time axis into basic allocation periods of equal size p (slots). At
the beginning epoch, say time t, of each basic allocation period we compute
the effective bandwidth X̂l(t) of Xl(t) by using Theorem 2 and (5). Then since
the M/G/∞ input traffic X(t) satisfies X(t) = Xs(t) + Xl(t), the bandwidth
allocated for the M/G/∞ input traffic is Cs + X̂l(t) during the current basic
allocation period. This procedure is performed continuously for each basic al-
location period. By doing this we can capture the short time scale fluctuation
by a buffer and the long time scale fluctuation by increasing or decreasing the
bandwidth. Furthermore, we only need to estimate the required bandwidth for
every period of length p, which reduces the implementation complexity.

4 Numerical Studies

To evaluate the performance of our proposed method, we simulate a number
of queueing systems with different parameter values. In simulations since the
allocated bandwidth for the M/G/∞ input traffic in our ABA method is Cs +
X̂l(t) for each basic allocation period, the evolution equation of the buffer content
process q(t) is given as

q(t+ 1) = min
(
max

(
q(t) +X(t) − Cs − X̂l(t) , 0

)
, b

)

where X̂l(t) is updated for each basic allocation period.
To check if the proposed ABA method works well, we consider an M/G/∞

input process with parameters λ = 0.4, γ = 1.18 and δ = 0.9153, and the
target overflow probability is given by 10−3. We simulate the queueing process
as given above and check the overflow probability of the system. The results for
T = p = 70 with various values of b are given in Table 1. In the table, we give
the mean values and confidence intervals for five sample paths. As seen in the
table, the resulting overflow probabilities are very close to our target overflow
probability 10−3.

Next, we change the values of T and p to see the effect of T and p on perfor-
mance. We first fix the value of T and change the value of p, and our experiment
show that when p is equal to T , our ABA method performs well. We omit the
experiment results due to the limitation of space. So, we propose to use the
same value for T and p in our ABA method for simplicity. Now to investigate
the effect of T we change the value of T from 10 to 120 and the results are
given in Table 2. In this experiment, we use λ = 0.4, γ = 1.18, δ = 0.9153 for
the M/G/∞ input process and the buffer size b = 150. As seen in the table,
our ABA method performs well when the value of T (= p) is neither small nor
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Table 1. Overflow Probability (O.P.) with buffer size b : λ = 0.4, γ = 1.18, δ = 0.9153

T value T = 70

p value p = 70

b value b = 110 b = 130 b = 150 b = 170 b = 190

O.P. 4.039e−4 1.144e−3 1.161e−3 1.134e−3 9.985e−4

Confidence (2.429e−4, (8.999e−4, (7.896e−4, (8.369e−4, (5.765e−4,
Interval(C.I.) 5.649e−4) 1.388e−3) 1.533e−3) 1.431e−3) 1.420e−3)

Table 2. Overflow Probability (O.P.) : λ = 0.4, γ = 1.18, δ = 0.9153, b = 150

T value T = 10 T = 30 T = 50 T = 70 T = 100 T = 120

p value p = 10 p = 30 p = 50 p = 70 p = 100 p = 120

O.P. 0.000 2.823e−5 8.627e−4 1.161e−3 8.711e−4 5.381e−5

Confidence (0.000, (1.036e−5, (6.829e−4, (7.896e−4, (6.119e−4, (1.815e−5,
Interval(C.I.) 0.000) 4.610e−5) 1.096e−3) 1.533e−3) 1.130e−3) 8.947e−5)

Table 3. Overflow Probability (O.P.) : λ = 0.4, γ = 1.5, δ = 0.9153, b = 150

T value T = 30 T = 50 T = 70 T = 100 T = 120 T = 140

p value p = 30 p = 50 p = 70 p = 100 p = 120 p = 140

O.P. 0.000 3.755e−5 2.834e−4 9.939e−4 8.002e−4 6.167e−5

Confidence (0.000, (9.728e−6, (8.732e−5, (5.853e−4, (5.643e−4, (6.415e−6,
Interval(C.I.) 0.000) 6.537e−5) 4.794e−4) 1.403e−3) 1.036e−3) 1.169e−4)

Table 4. Overflow Probability (O.P.) : λ = 0.4, γ = 1.9, δ = 0.9153, b = 150

T value T = 70 T = 100 T = 120 T = 140 T = 160 T = 180

p value p = 70 p = 100 p = 120 p = 140 p = 160 p = 180

O.P. 6.541e−6 2.707e−4 9.360e−4 9.722e−4 9.999e−4 5.698e−4

Confidence (3.064e−6, (1.035e−4, (6.927e−4, (6.587e−4, (3.174e−4, (9.767e−5,
Interval(C.I.) 1.002e−5) 4.379e−4) 1.179e−3) 1.286e−3) 1.682e−3) 1.042e−3)

large. For instance, when T is in the range [50, 100] in our experiment, our ABA
method performs well in this case.

Finally, we investigate the effect of the input traffic parameters on perfor-
mance. To do this, we use λ = 0.4, δ = 0.9153, b = 150, but the scale parameter
γ is changed from γ = 1.5 to γ = 1.9. Note that the long range dependence
largely depends on the scale parameter γ, and as the value of γ is getting close
to 1, the autocorrelation of the input traffic is getting stronger. The results are
given in Tables 3 and 4. As seen in Tables 3 and 4, our ABA method performs
well except for very small or large values of T . In addition, we see that when γ is
close to 1, our ABA method performs well even under moderately small values of
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T . Noting that the effective bandwidth Cs of Xs(t) in Theorem 1 overestimates
the required effective bandwidth of Xs(t), when we use large values of T , the
use of moderately small values of T is important to implement our ABA method
in practice. Hence, we conclude that our ABA method is suitable for the real
traffic which exhibits strong correlation.

5 Conclusions

In this paper, we considered a long range dependence traffic which is modelled
by an M/G/∞ input process and proposed a new adaptive bandwidth allocation
(ABA) method for the long range dependence traffic. In the proposed method,
we divide the input process into two sub-processes, a long time scale process
and a short time scale process. For the long time scale process we estimate the
required bandwidth using the MMSE linear prediction method. On the other
hand, for the short time scale process we estimate the effective bandwidth based
on the required QoS of the input process. We verified the effectiveness of our
proposed method through simulations. Our simulation studies showed that our
ABA method is suitable for the real traffic which exhibits strong correlation.
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