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Abstract. Let H be a separable Hilbert space and k(t) an H-valued function
on a subset Ω of the real line R such that {k(t) | t ∈ Ω} is total in H. Then

{fx(t) := 〈x, k(t)〉H |x ∈ H}
becomes a reproducing kernel Hilbert space (RKHS) in a natural way. Here,
we develop a sampling formula for functions in this RKHS, which generalizes
the well-known celebrated Whittaker-Shannon-Kotel’nikov sampling formula
in the Paley-Wiener space of band-limited signals. To be more precise, we
develop a multi-channel sampling formula in which each channel is given rather
arbitrary sampling rate. We also discuss the stability and oversampling.

1. Introduction

Let f(t) be a band-limited signal with band region [−π, π], that is, a square-
integrable function on R of which the Fourier transform f̂ vanishes outside [−π, π].
Then f can be recovered by its uniformly spaced discrete values as

f(t) =
∞∑

n=−∞
f (n)

sin π(t− n)
π(t− n)

,

which converges absolutely and uniformly over R. This series is called the cardinal
series or the Whittaker-Shannon-Kotel’nikov (WSK) sampling series. This formula
tells us that once we know the values of a band-limited signal f at certain discrete
points, we can recover f completely. In 1941, Hardy [4] recognized that this cardinal
series is actually an orthogonal expansion.

WSK sampling series was generalized by Kramer [8] in 1957 as follows: Let
k(ξ, t) be a kernel on I × Ω, where I is a bounded interval and Ω is a subset of R.
Assume that k(·, t) ∈ L2(I) for each t in Ω and there are points {tn}n∈Z in Ω such
that {k(ξ, tn)} is an orthonormal basis of L2(I). Then any f(t) =

∫
I
F (ξ)k(ξ, t)dξ

with F (ξ) ∈ L2(I) can be expressed as a sampling series

f(t) =
∑

n

f(tn)
∫

I

k(ξ, t) k(ξ, tn) dξ,

which converges absolutely and uniformly over the subset D on which ‖k(·, t)‖L2(I)

is bounded. While WSK sampling series treats sample values taken at uniformly
spaced points, Kramer’s series may take sample values at nonuniformly spaced
points.
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Recently, A. G. Garcia and A. Portal [3] extended the WSK and Kramer sam-
pling formulas further to a more general setting using a suitable abstract Hilbert
space valued kernel.

On the other hand, Papoulis [10] (see also [7]) introduced a multi-channel sam-
pling formula for band-limited signals, in which a signal is recovered from discrete
sample values of several transformed versions of the signal.

In this work, following the setting introduced by Garcia and Portal [3], we first
extends and modify Theorem 1 in [3] into a single channel sampling formula (see
Theorem 3.2 below), which is more transparent. It is then easy to extend it to a
multi-channel sampling formula, in which each channel can be given rather arbitrary
sampling rate. Comparing two-channel sampling formula, Theorem 3 in [3] and our
multi-channel sampling formula, Theorem 3.3, reveals the advantage of modification
made in Theorem 3.2. Finally, we also discuss the oversampling and recovery of
missing samples in the single-channel sampling formula.

2. Preliminaries

For f(t) ∈ L2(R), we let

F(f)(ξ) = f̂(ξ) :=
1√
2π

∫ ∞

−∞
f(t) e−iξt dt

be the Fourier transform of f(t) and

f(t) = F−1(f̂)(t) :=
1√
2π

∫ ∞

−∞
f̂(ξ) eiξt dξ

the inverse Fourier transform f̂(ξ).

Definition 2.1. For any w > 0, the Paley-Wiener space PWπw is defined to be

PWπw := {f | f ∈ L2(R), supp f̂ ∈ [−πw, πw]}.
Note that PWπw is isometrically isomorphic onto L2[−πw, πw] under the Fourier

transform.
We call a basis {ϕn} of a separable Hilbert space H to be an unconditional basis

of H if for every f ∈ H, the expansion f =
∑

cn(f)ϕn still converges to f after
any permutation of its terms. We also call a basis {ϕn} to be a Riesz basis of H if
there is a linear isomorphism T from H onto H such that T (en) = ϕn where {en}
is an orthonormal basis for H. Then any Riesz basis of H is an unconditional basis
of H but not conversely in general.

Definition 2.2. [12] A Hilbert space H consisting of complex-valued functions
defined on a set D(6= ∅) is called a reproducing kernel Hilbert space (RKHS in
short) if there exists a function k(s, t) on D ×D satisfying

(1) k(·, t) ∈ H for each t ∈ D;
(2) 〈f(s), k(s, t)〉H = f(t) for all f ∈ H and all t ∈ D.

Such a function k(s, t) is called a reproducing kernel of H.

We need some properties of RKHS’s.

Proposition 2.3. [5] Let H be a Hilbert space as in Definition 2.2. Then we have:
(a) H is an RKHS if and only if the point evaluation map lt(f) := f(t) is a

bounded linear functional on H for each t ∈ D;
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(b) an RKHS H has a unique reproducing kernel;
(c) the convergence of a sequence in an RKHS H implies its uniform conver-

gence over any subset of D on which k(t, t) is bounded.

For example, the Paley-Wiener space PWπw is an RKHS with the reproducing

kernel k(s, t) = w
sin πw(s− t)

πw(s− t)
.

3. Multi-channel sampling

Let H be a separable Hilbert space and k : Ω −→ H be an H-valued function
on a subset Ω of the real line R. Define a linear operator T on H by

T (x)(t) = fx(t) := 〈x, k(t)〉H , t ∈ Ω.

We call k(t) the kernel of the linear operator T .

Lemma 3.1. ([3])
(a) T is one-to-one if and only if {k(t) | t ∈ Ω} is total in H.

Assume {k(t) | t ∈ Ω} is total in H so that T : H −→ T (H) is a bijection. Then
(b) 〈T (x), T (y)〉T (H) := 〈x, y〉H defines an inner product on T (H), with which

T (H) is a Hilbert space and T : H −→ T (H) is unitary. Moreover, T (H)
becomes an RKHS with the reproducing kernel k(s, t) := 〈k(t), k(s)〉H .

Proof. (a) T is one-to-one if and only if {k(t) | t ∈ Ω}⊥ = {0} if and only if
span{k(t) | t ∈ Ω} = H, that is, {k(t) | t ∈ Ω} is total in H.

(b) It is trivial that 〈T (x), T (y)〉T (H) := 〈x, y〉H defines an inner product on
T (H) with which T : H −→ T (H) is unitary. Now for any f(·) = 〈x, k(·)〉H in
T (H) and t ∈ Ω,

|f(t)| = |〈x, k(t)〉H | ≤ ‖x‖H‖k(t)‖H = ‖f‖T (H)‖k(t)‖H

so that lt(f) = f(t) is a bounded linear functional on T (H). Hence T (H) is an
RKHS by Proposition 2.3. Since

f(t) = 〈x, k(t)〉H = 〈T (x)(s), T (k(t))(s)〉T (H) = 〈f(s), 〈k(t), k(s)〉H〉T (H),

the reproducing kernel k(s, t) of T (H) is 〈k(t), k(s)〉H . ¤

First, we develop a single-channel sampling formula. Let k̃ : Ω −→ H be another
H-valued function on Ω and T̃ the linear operator on H defined by

T̃ (x)(t) = f̃x(t) = 〈x, k̃(t)〉H .

Theorem 3.2. If KerT ⊆ KerT̃ and there exists a sequence {tn} in Ω such that
{k̃(tn)}n is a basis of H, then T is one-to-one so that T (H) becomes an RKHS
under the inner product 〈T (x), T (y)〉T (H) := 〈x, y〉H . Moreover, there is a basis
{Sn(t)}n of T (H) with which we have the sampling expansion:

fx(t) =
∑

n

f̃x(tn)Sn(t), fx(t) ∈ T (H) (3.1)

which converges not only in T (H) but also uniformly over any subset on which
‖k(t)‖H is bounded.
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Proof. Assume T̃ (x)(t) = 〈x, k̃(t)〉 = 0 on Ω. Then 〈x, k̃(tn)〉 = 0 for any n so
that x = 0 since {k̃(tn)}n is a basis of H. Hence KerT = KerT̃ = {0} and T (H)
becomes an RKHS as in Lemma3.1 (b).

Let {xn}n = {k̃(tn)}n and {x∗n}n be its dual. Then {T (xn)(t)} and {T (x∗n)(t)}
are bases of T (H), which are dual each other since T is unitary.

Expanding any fx(t) = T (x)(t) in T (H) via the basis {Sn(t)}n = {T (x∗n)(t)}
gives

fx(t) =
∑

n

〈T (x), T (xn)〉T (H)Sn(t) =
∑

n

〈x, xn〉H Sn(t)

=
∑

n

〈x, k̃(tn)〉H Sn(t) =
∑

n

f̃x(tn)Sn(t).

Uniform convergence of the series (3.1) follows from Proposition 2.3 (c). ¤

The single channel sampling expansion (3.1) may not converge absolutely unless
{xn}n is an unconditional basis and may not be stable. However, if {xn}n is an
unconditional basis and supn ‖x∗n‖ < ∞, then (3.1) is a stable sampling expansion,
which converges absolutely on Ω. In fact, if then, {Sn(t)}n becomes an uncondi-

tional basis of T (H) and supn ‖Sn(t)‖ = supn ‖x∗n‖ < ∞. Since { 1
‖Sn(t)‖Sn(t)}n

is a Riesz basis of T (H) by the Köthe-Toeplitz Theorem [9], there is a constant
B > 0 such that

‖fx(t)‖2T (H) ≤ B
∑

n

|f̃x(tn)|2‖Sn(t)‖2 ≤ (sup
n
‖Sn(t)‖)2B

∑
n

|f̃x(tn)|2, fx(t) ∈ T (H).

Furthermore, the sampling series expansion (3.1) remains valid when {k̃(tn)}n is
not a basis but a frame of H. When k̃(t) = k(t) on Ω so that T = T̃ , Theorem 3.2
is essentially Theorem 1 in [3]. However, Theorem 3.2 might have some advantage
over Theorem 1 in [3]. While Theorem 1 in [3] requires first the expansion of the
kernel k(t) in terms of a given basis of H and then the interpolatory condition for
the expansion coefficients at some points in Ω, Theorem 3.2 simply requires points
in Ω, of which values under k(·) form a basis of H.

Now, we can extend Theorem 3.2 naturally to a multi-channel setting. Let
{ki}N

i=1 be N H-valued functions on Ω and {Ti}N
i=1 linear operators on H defined

by

Ti(x)(t) = f i
x(t) := 〈x, ki(t)〉H , x ∈ H.

Theorem 3.3. (Asymmetric nonuniform multi-channel sampling formula) If KerT ⊆
∩N

i=1KerTi and there exist points {ti,n | 1 ≤ i ≤ N, n ∈ Z} ⊂ Ω and constants
{αj

i,n | 1 ≤ i ≤ N, 1 ≤ j ≤ M and n ∈ Z} for some integer M ≥ 1 such
that {∑N

i=1 αj
i,nki(ti,n) | 1 ≤ j ≤ M and n ∈ Z} is an unconditional basis of H,

then there is a basis {Sj,n(t) | 1 ≤ j ≤ Mand n ∈ Z} of T (H) such that for any
fx(t) = T (x)(t) ∈ T (H),

fx(t) =
∑

n∈Z

M∑

j=1

{αj
1,n f1

x(t1,n) + αj
2,n f2

x(t2,n) + · · ·+ αj
N,n fN

x (tN,n)}Sj,n(t) (3.2)

which converges in T (H). Moreover, the series (3.2) converges absolutely and uni-
formly on any subset of Ω over which ‖k(t)‖H is bounded.
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Proof. First, we prove that T is one-to-one. Suppose T (x)(t) = 〈x, k(t)〉 = 0 for
all t ∈ Ω. Then, 〈x, ki(t)〉 = 0, 1 ≤ i ≤ N on Ω since KerT ⊆ ∩N

i=1KerTi.
In particular, 〈x,

∑N
i=1 αj

i,nki(ti,n)〉 = 0 for all 1 ≤ j ≤ M and n ∈ Z so that
x = 0 since {∑N

i=1 αj
i,nki(ti,n) | 1 ≤ j ≤ M andn ∈ Z} is a basis of H. Therefore,

T : H −→ T (H) is a bijection and T (H) becomes an RKHS under the inner product
〈T (x), T (y)〉T (H) := 〈x, y〉H by Lemma 3.1.

Let xj
n :=

∑N
i=1 αj

i,nki(ti,n) for 1 ≤ j ≤ M and n ∈ Z and {xj∗
n }M

j=1,n∈Z be the
dual of {xj

n}. Then, {T (xj
n)}M

j=1,n∈Z becomes an unconditional basis of T (H) with
the dual basis {T (xj∗

n )}M
j=1,n∈Z := {Sj,n(t)}M

j=1,n∈Z, which is also unconditional.
Expanding fx(t) = T (x)(t) in T (H) with respect to {Sj,n(t)}M

j=1,n∈Z, we have

f(t) =
∑

n∈Z

M∑

j=1

〈T (x), T (xj
n)〉T (H)Sj,n(t)

=
∑

n∈Z

M∑

j=1

〈x, xj
n〉HSj,n(t)

=
∑

n∈Z

M∑

j=1

{αj
1,n f1

x(t1,n) + · · ·+ αj
N,n fN

x (tN,n)}Sj,n(t).

Uniform convergence of the series (3.2) follows from Proposition 2.3 (c). Finally, the
series (3.2) converges also absolutely since it is an unconditional basis expansion.

¤

If either KerT = {0} or ki(t) = Ai(k(t)), 1 ≤ i ≤ N , where Ai’s are automor-
phisms of H, then the first assumption KerT ⊆ ∩N

i=1KerTi of Theorem 3.3 is triv-

ially satisfied. For example, it is so when H = L2[−π, π], Ω = R and k(t) =
e−itξ

√
2π

so that T = F−1 is the inverse Fourier transform. In particular, if N = M = 2,
k1(t) = k(t), t1,n = t2,n = tn, and {α1

1,nk(tn)+α1
2,nk2(tn)}∪{α2

1,nk(tn)+α2
2,nk2(tn)}

is a Riesz basis of H, then Theorem 3.3 is essentially the same as Theorem 3 in [3].
When H = L2[−πw, πw](w > 0), Ω = R and

k(t) =
1√
2π

e−itξ, ki(t) =
1√
2π

Ai(ξ) e−itξ (1 ≤ i ≤ N)

for suitable bounded measurable functions Ai(ξ)(1 ≤ i ≤ N) on [−πw, πw], we
have

T (φ)(t) =
1√
2π

∫ πw

−πw

φ(ξ) eitξ dξ = F−1(φ)(t)

Ti(φ)(t) =
1√
2π

∫ πw

−πw

Ai(ξ)φ(ξ) eitξ dξ = F−1(Aiφ)(t) (1 ≤ i ≤ N).

Hence, T (H) becomes the Paley-Wiener space PWπw and then Theorem 3.3 reduces
to an asymmetric multi-channel sampling handled in [7].

If {∑N
i=1 αj

i,nki(ti,n)| 1 ≤ j ≤ M and n ∈ Z} is a frame of H in Theorem 3.3,
then the sampling series expansion (3.2) still holds.

As in the single channel case, if sup
i,j,n

‖αj
i,nxj∗

n ‖ < ∞, then the multi-channel

sampling expansion (3.2) is also stable in the following sense.
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Definition 3.4. (cf. Rawn [11] and Yao and Thomas [13] ) We say that {ti,n | 1 ≤
i ≤ N and n ∈ Z} is a set of stable sampling for T (H) if there exists A > 0 which
is independent of f ∈ T (H) such that

‖f(t)‖2T (H) ≤ A

∞∑
n=−∞

N∑

i=1

|f i
x(ti.n)|2 f ∈ T (H).

Let B > 0 be the upper Riesz bound for the Riesz basis { 1
‖Sj,n‖Sj,n(t)} of T (H).

Then

‖fx‖2T (H) ≤ B
∑

n

M∑

j=1

N∑

i=1

|αj
i,nf i

x(ti,n)|2‖Sj,n‖2 ≤ (sup
i,j,n

‖αj
i,nSj,n‖)2BM

∑
n

N∑

i=1

|f i
x(ti,n)|2

so that (3.2) is a stable sampling expansion with respect to {ti,n} when sup
i,j,n

‖αj
i,nxj∗

n ‖ <

∞.
We now discuss several examples in which we always take H = L2[−π, π], Ω =

R and k(t) =
1√
2π

e−itξ so that T = F−1 is the inverse Fourier transform and

T (H) = PWπ.

Example 3.5 (Sampling with Hilbert transform).
Take k̃(t) = i sgn(ξ) k(t) so that T̃ (f)(t) = f̃(t) is the Hilbert transform of

f(t) in PWπ. Choosing {tn}n∈Z = {n}n∈Z, {xn}n∈Z = {i sgnξ
e−inξ

√
2π

}n∈Z is an

orthonormal basis of L2[−π, π] so that {x∗n}n∈Z = {xn}n∈Z. We then have

Sn(t) =
1√
2π

∫ π

−π

i sgn(ξ)
e−inξ

√
2π

eitξ dξ = −sinc
1
2

(t− n) sin
π

2
(t− n)

where sinct :=
sin πt

πt
. Hence, we have

f(t) = −
∑

n∈Z
f̃ (n) sinc

1
2

(t− n) sin
π

2
(t− n) , f(t) ∈ PWπ.

Using the operational relation ˜̃
f = −f([5, Appendix B]) and the fact that if f ∈

PWπ, then so does f̃ , we also have

f̃(t) =
∑

n∈Z
f (n) sinc

1
2

(t− n) sin
π

2
(t− n) , f(t) ∈ PWπ.

Example 3.6. Here, we derive asymmetric derivative sampling formula on PWπ,
in which we take samples from f(t) and f ′(t) with ratio 2:1.

Take k1(t) = k(t) =
1√
2π

e−itξ and k2(t) = −iξ k(t) = k′(t) so that f1(t) =

f(t) and f2(t) = f ′(t) for f(t) ∈ PWπ. Now, take the set of sampling points

{t1,n =
3n

2
}n∈Z for f1

x(t) and {t2,n = 3n}n∈Z for f2
x(t). With α1

1,n =
√

3
2

, α1
2,n =

α2
1,n = 0 and α2

2,n = −√3, {α1
1,n k1(t1,n) + α1

2,n k2(t2,n)}n∈Z ∪ {α2
1,n k1(t1,n) +

α2
2,n k2(t2,n)}n∈Z = {

√
3
4π

e−i3nξ/2}n∈Z ∪ {
√

3
2π

iξ e−i3nξ}n∈Z is a Riesz basis of
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L2[−π, π], of which the dual (cf. [6]) is
{√

3
4π

µ1,n(ξ) e−i3nξ/2

}
∪

{√
3
2π

µ2(ξ) e−i3nξ

}
, n ∈ Z (3.3)

where

µ1,n(ξ) =





3 (ξ + π)/2π, ξ ∈ [−π,−π/3);
1, ξ ∈ [−π/3, π/3);
−3 (ξ − π)/2π, ξ ∈ [π/3, π]

if n is even,

µ1,n(ξ) =





1/2, ξ ∈ [−π,−π/3);
1, ξ ∈ [−π/3, π/3);
1/2, ξ ∈ [π/3, π]

if n is odd, and

µ2(ξ) =




−3i/4π, ξ ∈ [−π,−π/3);
0, ξ ∈ [−π/3, π/3);
3i/4π, ξ ∈ [π/3, π].

Taking inverse Fourier transform on (3.3), we have a Riesz basis of PWπ:

S1,n(t) =





√
2
3

sinc
1
3

(
t− 3n

2

)
sinc

2
3

(
t− 3n

2

)
if n is even,

√
3
8

{
1
3

sinc
1
3

(
t− 3n

2

)
+ sinc

(
t− 3n

2

)}
if n is odd,

S2,n(t) = −
√

3
2π

sinc
1
3

(t− 3n) sin
2π

3
(t− 3n) .

With these setting we have the nonsymmetric derivative sampling formula:

f(t) =
∑

n∈Z

√
3
2
f(

3n

2
)S1,n(t)−

√
3f ′(3n)S2,n(t), f(t) ∈ PWπ.

Example 3.7. We now take k1(t) = k(t) =
1√
2π

e−itξ and k2(t) = eiξ k(t) so

that f1(t) = f(t) and f2(t) = f(t − 1). We want to express f ∈ PWπ via sam-

ples from f(t) and f(t − 1) with ratio 3 : 2. Note that {
√

5
6π

e−i5nξ/3}n∈Z ∪

{
√

5
4π

eiξ e−i5nξ/2}n∈Z forms a Riesz basis of L2[−π, π] with the dual
{√

5
6π

1
e−i4π/5 − e−i2π/5

µ1,n(ξ) e−i5nξ/3

}

n∈Z

∪
{√

5
4π

1
e−i4π/5 − e−i2π/5

µ2,n(ξ) eiξ e−i5nξ/2

}

n∈Z
(3.4)

where

µ1,n(ξ) =





e−i 4
5 π + e−i2nπ/3 + e−i 6

5 π ei2nπ/3, −π ≤ ξ < −π/5;
e−i 4

5 π − e−i 2
5 π, −π/5 ≤ ξ < π/5;

−e−i 2
5 π − e−i2nπ/3 − e−i 6

5 π ei2nπ/3, π/5 ≤ ξ ≤ π
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and

µ2,n(ξ) =




−(−1)ne−i 8

5 π − e−i 2
5 π, −π ≤ ξ < −π/5;

0, −π/5 ≤ ξ < π/5;
e−i 4

5 π + (−1)ne−i 8
5 π, π/5 ≤ ξ ≤ π.

Then, we can obtain the sampling series

f(t) =
∑

n

√
5
3
f(

5n

3
)S1,n(t) +

√
5
2
f(

5n

2
− 1)S2,n(t), f(t) ∈ PWπ,

where {S1,n(t)} ∪ {S2,n(t)} are the inverse Fourier transforms of functions in (3.4).

4. Oversampling and reconstruction of missing samples

We now develop the oversampling expansion, which extends the one in Kramer
[2]. We extend an oversampling expansion in Kramer’s setting [2] to a more general
case. Again, let k and k̃ : Ω −→ H be H-valued functions. Assume that there
exists {tn} ⊂ Ω such that {xn := k̃(tn)}n is a basis of H with the dual basis
{x∗n}n. Define linear operators T and T̃ on H by T (x)(t) = 〈x, k(t)〉H := fx(t) and
T̃ (x)(t) = 〈x, k̃(t)〉H := f̃x(t), respectively and assume KerT ⊆ KerT̃ . Then, both
T and T̃ are one-to-one and so T (H) and T̃ (H) become RKHS’s.

Now, let G be a proper closed subspace of H and P : H −→ G the orthogonal
projection onto G. Then, for any x ∈ G we have

x =
∑

n

〈x, k̃(tn)〉Hx∗n

so that
x = P (x) =

∑
n

〈x, k̃(tn)〉HP (x∗n) =
∑

n

f̃x(tn)P (x∗n). (4.1)

Theorem 4.1. Under the above setting, there is a sequence of sampling functions
{Tn(t)} in T (G) such that for any x ∈ G

fx(t) =
∑

n

f̃x(tn)Tn(t) (4.2)

which converges in T (H) and uniformly on any subset of Ω over which ‖k(t)‖H is
bounded. Moreover, if {xn} is a Riesz basis of H, then {Tn(t)} is a frame of T (G).

Proof. Applying T on both sides of (4.1) gives

fx(t) = T (x)(t) =
∑

n

f̃x(tn)T (P (x∗n))(t)

=
∑

n

f̃x(tn)Tn(t),

where Tn(t) = T (P (x∗n))(t). Since

|fx(t)−
∑

|n|≤N

f̃x(tn)Tn(t)| = |T (x)−
∑

|n|≤N

f̃x(tn)T (P (x∗n))|

= |〈x−
∑

|n|≤N

f̃x(tn)P (x∗n), k(t)〉H |

≤ ‖x−
∑

|n|≤N

f̃x(tn)P (x∗n)‖H‖k(t)‖H ,
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the series (4.2) converges uniformly on any subset over which ‖k(t)‖H is bounded.
Finally, if {xn} is a Riesz basis of H, then {x∗n} is also a Riesz basis of H so that
{P (x∗n)} is a frame of G since G is a closed subspace of H [1, Proposition 5.3.5].
Hence {Tn(t) = T (P (x∗n))(t)} is a frame of T (G). ¤

We may call (4.2) an oversampling expansion of fx(t) for x ∈ G.
Now assume that finitely many sample values {f̃x(tn) |n ∈ X = {n1, n2, · · · , nN}}

are missing. Applying T̃ on both sides of (4.1) gives

f̃x(t) = T̃ (x)(t) =
∑

n

f̃x(tn)T̃ (P (x∗n))(t) (4.3)

which converges not only in T̃ (H) but also pointwisely in Ω since T̃ (H) is an RKHS.
Setting t = tnj in (4.3), we have

f̃x(tnj ) =
∑

n

f̃x(tn)T̃ (P (x∗n))(tnj ) for 1 ≤ j ≤ N

=
N∑

k=1

f̃x(tnk
)T̃ (P (x∗nk

))(tnj ) +
∑

n/∈X

f̃x(tn)T̃ (P (x∗n))(tnj ), 1 ≤ j ≤ N,

which can be rewritten in the matrix form as

(I−T) f = h

where f = (f̃x(tn1), · · · , f̃x(tnN
))T is the column vector consisting of missing sam-

ples, h = (h1, · · · , hn)T , where

hj =
∑

n/∈X

f̃(tn)T̃ (P (x∗n))(tnj )

and T is the N ×N matrix with entries

Tij = T̃ (P (x∗nj
))(tni) = 〈P (x∗nj

), xni〉H = 〈P (x∗nj
), P (xni)〉H .

Note that if I−T is invertible, the missing samples f can be recovered uniquely.
In particular, if 〈Tv,v〉 6= ‖v‖2 for any v ∈ CN \ {0}, then I−T is invertible. We
have:

Theorem 4.2. Under the same hypotheses as in Theorem 4.1, we assume further
that {xn}n is a Riesz basis of H such that xn = U(en) where {en}n is an orthonor-
mal basis of H and U is an automorphism of H. Then any finitely many missing
samples {f̃x(tni) | 1 ≤ i ≤ N} in the oversampling expansion (4.2) can be uniquely
recovered if PU = UP and

span{eni | 1 ≤ i ≤ N} ∩G = {0}. (4.4)
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Proof. Note first that x∗n = (U∗)−1(en) where {x∗n}n is the dual of {xn}n. Hence
we have for any v = (v1, · · · , vN )T ∈ CN \ {0},

〈Tv,v〉 =
N∑

i,j=1

〈P (x∗nj
), P (xni)〉Hvjvi

= 〈P (U∗)−1(
N∑

j=1

vjenj
), PU(

N∑

i=1

vieni
)〉H

= 〈
N∑

j=1

vjenj
, U−1PU(

N∑

i=1

vieni
)〉H

= 〈
N∑

j=1

vjenj
, P (

N∑

i=1

vieni
)〉H

= ‖P (
N∑

j=1

vjenj
)‖2H

< ‖
N∑

j=1

vjenj‖2H =
N∑

j=1

|vj |2 = ‖v‖2

since
∑N

j=1 vjenj /∈ G and {en}n is an orthonormal basis of H. Hence I−T is
invertible. ¤

If moreover, {xn}n is an orthonormal basis of H in Theorem 4.2, then any finitely
many missing samples {f̃x(tni) | 1 ≤ i ≤ N} can be uniquely recovered when the
condition (4.4) holds.
Acknowledgement This work is partially supported by BK-21 project and KRF(2002-
070-C00004).
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