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Abstract. We present a general asymmetric(multi-rate) multi-channel sampling formula
in the Paley-Wiener space. It is well-known that a function in Paley-Wiener space, i.e., a
band-limited signal can be recovered by its equidistant samples. Its frequency bound deter-
mines the minimum rate, called Nyquist rate at which the reconstruction process is stable.
In the multi-channel sampling it is not necessary to distribute the sampling rates equally
among the channels. In this paper, we modify the sampling series so that the sampling
densities are weighed in favor of some channels at the expense of other channels. We give
a general sampling formula with asymmetric sampling rate by the Riesz basis method. In
case of 2-channel derivative sampling, we find condition on the ratio of sampling rates, under
which the sampling formula is possible. We also give the aliasing error bound for asymmetric
multi-channel sampling formula, when it is applied to non-band limited signals.
Key words : Asymmetric multi-channel sampling, aliasing error, sam-
pling theory

1. Introduction

The sampling theory is one of most important mathematical tools used in communication
engineering since it enables us to reconstruct signals from their discrete sampled data. The
most fundamental result in sampling theory is the Shannon-Whittaker-Kotel’nikov(WSK)
sampling theorem, which states that any band-limited signal f(t) with bandwidth πω, i.e.,

f(t) =
1√
2π

∫ πω

−πω
F (ξ)eitξdξ,

for some F (ξ) ∈ L2(−πω, πω), can be reconstructed from its sampled data at uniformly
distributed points tk = k

ω , k ∈ Z.
Reconstructing a band-limited function f from samples which are taken from several trans-

formed versions of f is called the multi-channel sampling. The multi-channel sampling
method goes back to the work of Shannon[8], where the reconstruction of a band-limited
signal from samples of the signal and of its derivatives was suggested. General method for
multi-channel sampling was carried by Papoulis[7]. In ordinary WSK sampling formula, we
need to take samples at a rate ω samples per second, which is called the Nyquist sampling
rate. However, in the multi-channel sampling by Papoulis, we distribute sampling densities
equally among N channels, so that we take ω

N samples per second from each channel.
In Papoulis’ result, the sampling densities assigned in each channel are equal. But it is not

necessary to distribute the sampling densities equally to each channel. In section 3, we will
modify the sampling series of Papoulis so that the sampling densities are weighed in favor of
some channels at the expense of others. Higgins[5] presented the derivative sampling formula
which has densities 2

3 and 1
3 for the signal itself and its derivative respectively. We will give a

general asymmetric multi-channel sampling formula which has different sampling rate in each
1
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channel using the Riesz basis method. The sampling expansion by the Riesz basis guarantees
the stability of the sampling expansion.

In general sampling series of a bandlimited function converges to the original function
uniformly. However, the series of the sampling functions with coefficients obtained from
sampled values of the non-bandlimited function may not converge to the original function.
This discrepancy between the original function and the series is called the aliasing error.
A classical result on the aliasing error bound was presented originally by P.Weiss[9] and
later proved by Brown[1]. Later, extensive researches were done and Higgins[4] presented
the result for single channel sampling in his monograph and Splettstösser has obtained some
related results for multidimensional non-bandlimited functions. We can also get a similar
result on the asymmetric multi-channel sampling. In Section 4, we will give an upper bound
for aliasing error in asymmetric sampling formula.

2. Asymmetric multi-channel sampling

For ω > 0, we denote by PWπω the Paley-Wiener space of band-limited signals, which
consists of functions of the form

f(t) =
1√
2π

∫ πω

−πω
F (ξ)eitξdξ, t ∈ R

for some F (ξ) ∈ L2[−πω, πω] so that F (ξ) = F(f)(xi) := 1√
2π

∫∞
−∞ f(t)e−itξdt is the Fourier

transform of f . Let Aj(ξ), 1 ≤ j ≤ N be N channels which are bounded and measurable on
[−πω, πω].

For f(t) ∈ PWπω, let

cj(f)(t) =
1√
2π

∫ πω

−πω
Aj(ξ)f̂(ξ)eitξdξ, 1 ≤ j ≤ N

be channeled signals of f(t).
In this section, we give a multi-channel sampling formula of recovering the signal f(t) via

discrete samples taken from channeled signals cj(f)(t), 1 ≤ j ≤ N with arbitrary sampling
rate on each channeled signal. We take samples from each channeled signal cj(f)(t) with
ratio m1 : m2 : · · · : mN where mj ’s are positive integers with gcd(m1,m2, · · · ,mN ) = 1.
In other words, we take mjω

M samples per second from each channeled signal cj(f)(t) for
j = 1, 2, · · · , N where M =

∑N
j=1 mj , i.e, we take samples

cj(f)
( nM

mjω

)
, n ∈ Z and 1 ≤ j ≤ N

or equivalently

cj(f)
( M

mjω
(mjn + k)

)
, n ∈ Z, 0 ≤ k ≤ mj − 1 and 1 ≤ j ≤ N.

Then, in total, we take m1ω
M + m2ω

M + · · · + mNω
M = ω samples per second, which is the

Nyquist rate for signals in PWπω.
We divide the interval [−πω, πω] into M subintervals of length d = 2πω

M as

I1 = [−πω,−πω + d], I2 = [−πω + d,−πω + 2d], · · · , IM = [−πω + (M − 1)d,−πω + Md]
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and set I = I1. Then

(2.1) f(t) =
1√
2π

∫ πω

−πω
f̂(ξ)eitξdξ =

1√
2π

M∑

l=1

∫

I
f̂(ξ + (l − 1)d)eit(ξ+(l−1)d)dξ,

where f̂(ξ) = F(f)(ξ).
Define an operator D from L2[−πω, πω] into L2(I)M by D(φ)(ξ) = (φ1(ξ), · · · , φM (ξ))T

for φ ∈ L2[−πω, πω], where φl(ξ) = φ(ξ + (l − 1)d), l = 1, 2, · · · , M . Then D is a unitary
operator from L2[−πω, πω] onto L2(I)M with the inverse D−1((φj(ξ))M

j=1) = φ(ξ), where
φ(ξ) = φl(ξ − (l − 1)d) on Il, 1 ≤ l ≤ M . The we can rewrite (2.1) as

(2.2) f(t) =
1√
2π

< D(f̂)(ξ), D(e−itξ) >L2(I)M .

Similarly, we have

cj(f)(t) =
1√
2π

M∑

l=1

∫

I
Aj(ξ + (l − 1)d)f̂(ξ + (l − 1)d)eit(ξ+(l−1)d)dξ

so that

cj(f)
( M

mjω
(mjn + k)

)
=

1√
2π

M∑

l=1

∫

I
Aj(ξ + (l − 1)d)f̂(ξ + (l − 1)d)e

i M
mjω

(mjn+k)(ξ+(l−1)d)
dξ

=
1√
2π

M∑

l=1

∫

I
Aj(ξ + (l − 1)d)f̂(ξ + (l − 1)d)e

i Mk
mjω

[ξ+(l−1)d]
ei nM

ω
ξdξ

=
1√
2π

∫

I
Gj,k(ξ)ei nM

ω
ξdξ

where

Gj,k(ξ) =
M∑

l=1

Aj(ξ + (l − 1)d)f̂(ξ + (l − 1)d)e
i Mk

mjω
(ξ+(l−1)d)

for 1 ≤ j ≤ N , 0 ≤ k ≤ mj − 1, and ξ ∈ I.
Let G(ξ) = (G1,0(ξ), G1,1(ξ), · · · , G1,m1−1(ξ), · · · , GN,0(ξ), GN,1(ξ), · · · , GN,mN−1(ξ))T . Then

(2.3) G(ξ) = A(ξ)D(f̂)(ξ),

where A(ξ) := [B1(ξ), · · · , BN (ξ)]T is an M ×M matrix where

Bj(ξ) := [Aj(ξ + (l − 1)d)e
i Mk

mjω
(ξ+(l−1)d)

]mj−1 M
k=0, l=1

is an mj×M matrix. We call A(ξ) the transfer matrix. We are now ready to state and prove
our main result.

Theorem 2.1. With the notations as above, assume that there is a constant α > 0 such that

(2.4) | detA(ξ)| ≥ α, ξ ∈ I.

Then for any band-limited signal f(t) in PWπω, we have the following multi-channel sampling
expansion formula

(2.5) f(t) =
M√
2πω

N∑

j=1

mj−1∑

k=0

∑
n

cj(f)
(

M

mjω
(mjn + k)

)
yj,k

(
t− nM

ω

)
, t ∈ R
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where yj,k(t) = 1√
2π

∫
I Yj,k(ξ, t)eitξdξ and Yj,k(ξ, t) is the λ(j, k)-th component of the vector

Y (ξ, t) = [A(ξ)−1]T E(t).

Here, λ(j,k) := m1 + m2 + · · · + mj−1 + k + 1 (m0 = 0) and E(t) := (1, eidt, · · · , ei(M−1)dt)T

is the carrier vector.

Proof. By (2.3), we can rewrite (2.2) as

f(t) =
1√
2π
〈D(f̂)(ξ), D(e−itξ)〉L2(I)M =

1√
2π
〈A(ξ)−1G(ξ), D(e−itξ)〉L2(I)M

=
1√
2π
〈G(ξ), [A(ξ)−1]∗D(e−itξ)〉L2(I)M

=
1√
2π
〈G(ξ), [A(ξ)−1]T D(eitξ)〉L2(I)M

=
1√
2π
〈G(ξ), Y (ξ, t)eitξ〉L2(I)M

since D(eitξ) = (eitξ, eit(ξ+d), · · · , eit(ξ+(M−1)d))T = E(t)eitξ.
By setting

Y (ξ, t) = (Y1,0(ξ, t), · · · , Y1,m1−1(ξ, t), · · · , YN,0(ξ, t), · · · , YN,mN−1(ξ, t))T ,

we obtain

(2.6) f(t) =
1√
2π

N∑

j=1

mj−1∑

k=0

〈Gj,k(ξ), Yj,k(ξ, t)eitξ〉L2(I), t ∈ R.

Now, by expanding Gj,k(ξ) and Yj,k(ξ, t)eitξ via an orthonormal basis {φn(ξ)}n = { 1√
d
e−i nM

ω
ξ}n

of L2(I), we obtain

Gj,k(ξ) =
∑

n

〈Gj,k(ξ),
1√
d
e−i nM

ω
ξ〉L2(I)φn(ξ)

=
1√
d

∑
n

(∫

I
Gi,k(ξ)ei nM

ω
ξdξ

)
φn(ξ)(2.7)

=

√
M

ω

∑
n

cj(f)
( M

mjω
(mjn + k)

)
φn(ξ),
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and

Yj,k(ξ, t)eitξ =
∑

n

〈
Yj,k(ξ, t)eitξ,

1√
d
e−i nM

ω
ξ
〉

L2(I)
φn(ξ)

=
1√
d

∑
n

(∫

I
Yj,k(ξ, t)eitξei nM

ω
ξdξ

)
φn(ξ)

=

√
M

ω

∑
n

1√
2π

(∫

I
Yj,k(ξ, t)ei(t−nM

ω
)ξ

)
φn(ξ)(2.8)

=

√
M

ω

∑
n

1√
2π

(∫

I
Yj,k

(
ξ, t− nM

ω

)
ei(t−nM

ω
)ξ

)
φn(ξ)

=

√
M

ω

∑
n

yj,k

(
t− nM

ω

)
φn(ξ)

since

Y(ξ, t− nM
ω ) = [A(ξ)−1]T E(t− nM

ω ) = [A(ξ)−1]T E(t) = Y(ξ, t).

Hence, by Parseval’s identity, we have (2.5) from (2.6), (2.7), and (2.8). ¤

The pointwise convergence of the sampling series (2.5) in Theorem 2.1 can be strengthened
as:

Theorem 2.2. The set of functions {yj,k(t − nM
ω )|n ∈ Z, 1 ≤ j ≤ N, 0 ≤ k ≤ mj − 1}

constitutes a Riesz basis of PWπω. Hence, the sampling series (2.5) converges absolutely and
uniformly on R. Moreover, the dual {y∗j,k,n(t)} of {yj,k(t− nM

ω )} is

(2.9) y∗j,k,n(t) =
1
d
y∗j

(
t− Mk

mjω
− nM

ω

)
,

where

y∗j (t) = F−1(Aj(ξ)) =
1√
2π

∫ πω

−πω
Aj(ξ)eitξdξ.

Proof. We first show that {yj,k(t − nM
ω )|n ∈ Z, 1 ≤ j ≤ N, 0 ≤ k ≤ mj − 1} is a Riesz

basis of PWπω. With the notations as in Theorem 2.1 and A(ξ)−1 = [ql,λ(ξ)]Ml,λ=1, we have

Yj,k(ξ, t) =
M∑

l=1

ql,λ(j,k)(ξ)e
i(l−1)dt
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where λ(j, k) = m1 + m2 + · · ·+ mj−1 + k + 1 (m0 = 1). Hence

yj,k(t) =
1√
2π

∫

I
Yj,k(ξ, t)eitξdξ

=
1√
2π

∫

I

M∑

l=1

ql,λ(j,k)(ξ)e
i(l−1)tdeitξdξ =

1√
2π
〈Qλ(j,k)(ξ), E(t)eitξ〉L2(I)M

=
1√
2π
〈D−1(Qλ(j,k)),D−1(E(t)eitξ)〉L2[−πω,πω]

=
1√
2π
〈D−1(Qλ(j,k)), eitξ〉L2[−πω,πω]

=
1√
2π

∫ πω

−πω
D−1(Qλ(j,k))e

itξdξ = F−1(D−1(Qλ(j,k)))(t),

where Qλ(j,k)(ξ) is the λ(j, k)-th column of A(ξ)−1. Therefore,

F
(
yj,k

(
t− nM

ω

))
(ξ) = e−i nM

ω
ξF(yj,k(t))(ξ)

=
√

dφn(ξ)D−1(Qλ(j,k))(ξ), ξ ∈ [−πω, πω].

Hence

D
[
F

(
yj,k

(
t− nM

ω

))]
(ξ) =

√
dD(φnD−1(Qλ(j,k)))(ξ))

=
√

dφn(ξ)Qλ(j,k)(ξ), ξ ∈ I

since φn(ξ) is periodic with period d. Hence

D
[
F

(
yj,k

(
t− mn

ω

))]
(ξ) =

√
dA(ξ)−1eλ(j,k)φn(ξ)

where eλ(j,k) = (0, 0, · · · , 0, 1, 0, · · · , 0)T is the λ(j, k)-th unit vector in CM where 1 appears
only in the λ(j, k)-th position. Hence

yj,k

(
t− Mn

ω

)
=
√

dF−1D−1A(ξ)−1(eλ(j,k)φn(ξ)).

Therefore {yj,k(t − nM
ω )} is a Riesz basis of PWπω since {eλψn(ξ)|n ∈ Z and 1 ≤ λ ≤ M}

is an orthonormal basis of L2(I)M , A(ξ) is an isomorphism from L2(I)M onto L2(I)M and
D−1 and F−1 are unitary. This completes the first part of Theorem 2.2.

For the second part of Theorem 2.2, let yj,k,n(t) = yj,k(t− nM
ω ) and {y∗j,k,n(t)} be the dual

of {yj,k,n(t)}. From the biorthogonality, we have

δmn =〈yj,k,m(t), y∗j,k,n(t)〉L2(R)

=
〈√

dF−1D−1A(ξ)−1(eλ(j,k)φm(ξ)), y∗j,k,n(t)
〉

L2(R)

=
〈
eλ(j,k)φm(ξ),

√
d[A(ξ)−1]∗DF(y∗j,k,n(t))

〉
L2(I)M

for m and n ∈ Z.

Thus we obtain
√

d[A(ξ)−1]∗DF(ỹ∗j,k,n(t)) = eλ(j,k)φn(ξ)

so that

y∗j,k,n(t) =
1√
d
F−1D−1A(ξ)∗(eλ(j,k)φn(ξ)).
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Since the λ(j, k)-th row of A(ξ) is the (k + 1)-th row of Bj(ξ), which is

[Aj(ξ + (l − 1)d)e
i Mk

mjω
(ξ+(l−1)d)

]Ml=1

and D(φn)(ξ) = (φn(ξ), · · · , φn(ξ))T ,

D−1A(ξ)∗(eλ(j,k)φn(ξ)) = Aj(ξ)e
i Mk

mjω
ξ
φn(ξ).

Hence

y∗j,k,n(t) =
1√
d
F−1(Aj(ξ)e

i Mk
mjω

ξ
φn(ξ))(t)

=
1

d
√

2π

∫ πω

−πω
Aj(ξ)e

i(t− Mk
mjω

−nM
ω

)ξ
dξ,

from which (2.9) follows. Then, it is easy to show that the sampling series (2.5) is also a
Riesz basis expansion of f(t) with respect to the Riesz basis {yj,k(t− nM

ω )} of PWπω so that
the series (2.5) converges also in the sense of L2(R). Then finally since the Paley-Wiener
space PWπω is a reproducing kernel Hilbert space with the reproducing kernel

k(s, t) = ω
sinπω(s− t)

πω(s− t)

and ‖k(·, t)‖L2(R) =
√

ω is bounded on R, the series (2.5) converges also absolutely and uni-
formly on R (See [4, p. 59]). ¤

When m1 = m2 = · · · = mN = 1 so that M = N and the transfer matrix A(ξ) =
[Aj(ξ + (k − 1)d)]Nj,k=1, we obtain the Papoulis multi-channel sampling formula([7]) with
uniform sampling rates on all channels as a special case of Theorem 2.1. However, A. Pa-
poulis[7] did not mention the determinant condition (2.4) explicitly.

Example 2.1. Take A1(ξ) = 1, A2(ξ) = −isgnξ and m1 = 2, m2 = 1 so that c1(f)(t) = f(t)
and c2(f)(t) = f̃(t) is the Hilbert transform of f(t). Then

A(ξ) =




1 1 1
ei 3

2ω
ξ −ei 3

2ω
ξ ei 3

2ω
ξ

i −isgn(ξ + 2
3πω) −i




and

A(ξ)−1 =




1
4(1 + sgn(ξ + 2

3πω)) 1
4e−i 3

2ω
ξ(1− sgn(ξ + 2

3πω)) − i
4

1
2 −1

2e−i 3
2ω

ξ 0
1
4(1− sgn(ξ + 2

3πω)) 1
4e−i 3

2ω
ξ(1 + sgn(ξ + 2

3πω)) i
4


 .

Now we have for any f(t) ∈ PWπω,

f(t) =
3√
2πω

∑
n

[
f
(3n

ω

)
y1,0

(
t− 3n

ω

)
+ f

(3n

ω
+

3
2ω

)
y1,1

(
t− 3n

ω

)
+ f̃

(3n

ω

)
y2,0

(
t− 3n

ω

)]
.
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where sinct = sin πt
πt and

y1,0(t) =
ω
√

2π

3
sinc

(2ω

3
t
)
,

y1,1(t) =
ω
√

2π

6

[
sinc

(ω

3
(t− 3

2ω
)
)

+ sinc
(1

6
ω(t− 3

2ω
)
)

cos
(5πω

6
(t− 3

2ω
)
)]

,

y2,0(t) =− ω
√

2π

6
sinc

(ω

3
t
)

sin
(2πω

3
t
)
.

In general, the determinant condition (2.4) on the transfer matrix A(ξ) is not easy to check.
Note first that | detA(ξ)| = | det Ã(ξ)| where Ã(ξ) = [B̃1(ξ) · · · B̃N (ξ)]T is an M ×M matrix
and

B̃j(ξ) =
[
Aj(ξ + (l − 1)d)e

i
k(l−1)2π

mj

]mj−1,M

k=0,l=1

is an mj×M matrix. Let S = diag[S1, S2, · · · , SN ] be the block matrix, where Si(1 ≤ i ≤ N)
is an mi ×mi constant matrix whose (j, k) entry is

[Si]jk =
1

mi
e
−i

(j−1)(k−1)2π
mi .

If we let T (ξ) = SÃ(ξ), then the (j, k) entry Tj,k(ξ) of T (ξ) is obtained as follows.
For 1 ≤ j ≤ m1,

Tjk(ξ) =
m1∑

l=1

1
m1

e
−i

(j−1)(l−1)2π
m1 e

i
(l−1)(k−1)2π

m1 A1(ξ + (k − 1)d)

=
m1∑

l=1

1
m1

(
e
i
(k−j)2π

m1

)l−1
A1(ξ + (k − 1)d).

Since e
i
(k−j)2π

m1 = 1 if and only if j = k (mod m1),

Tjk(ξ) = A1(ξ + (k − 1)d)δ0,(k−j) mod m1
for 1 ≤ j ≤ m1.

Similarly, we have

Tjk(ξ) = An(ξ + (k − 1)d)δ
0,(k−j+

n−1P
i=1

mi) mod mn

for
n−1∑

i=1

mi + 1 ≤ j ≤
n∑

i=1

mi.

where 1 ≤ n ≤ N . Since S is a non-singular constant matrix and | detA(ξ)| = |det Ã(ξ)|, the
condition (2.4) is equivalent to the condition

(2.10) | detT (ξ)| ≥ α̃ := α| detS|, ξ ∈ I.

If all channels Aj(ξ) for 1 ≤ j ≤ N are continuous on [−πω, πω]. then the condition (2.10)
is also equivalent to detT (ξ) 6= 0 on I since in this case detT (ξ) is also continuous on I.
Furthermore, in case of 2 channels, the condition (2.10) can be simplified as:

Proposition 2.3. Assume N = 2 and m1 ≥ m2. Let

h(ξ) =
[ m1−1∏

j=m2

A1(ξ + jd)
]
×

∣∣∣∣∣∣∣∣∣

m2−1∏
j=0

A1(ξ + jd)
M−1∏
j=m1

A1(ξ + jd)

m2−1∏
j=0

A2(ξ + jd)
M−1∏
j=m1

A2(ξ + jd)

∣∣∣∣∣∣∣∣∣
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(
0∏
1

:= 1 when m1 = m2 = 1). Then the condition (2.10) is equivalent to the condition that

there is a constant α̃ > 0 such that |h(ξ)| ≥ α̃, ξ ∈ I.

Proof. If m1 = m2 = 1, then it is trivial. Hence, assume that m1 > m2. It is enough to show
that |h(ξ)| = |det T (ξ)|. Since Tjk(ξ) = A1(ξ + (j− 1)d)δjk for m2 + 1 ≤ j ≤ m1, we have by
taking Laplace expansions

det T (ξ) =
m1−1∏

j=m2

A1(ξ + jd) det T̃ (ξ)

where T̃ (ξ) =
[

A B
C D

]
is a block matrix with

A = diag[A1(ξ), A1(ξ + d), · · · , A1(ξ + (m2 − 1)d)]

B = diag[A1(ξ + m1d), A1(ξ + (m1 + 1)d), · · · , A1(ξ + (M − 1)d)]

C = diag[A2(ξ), A2(ξ + d), · · · , A2(ξ + (m2 − 1)d)]

D = [djk]m2
j,k=1

and

dj,k = A2(ξ + (k + m1 − 1)d)δ0,(k−j+m1) mod m2
.

If m2 = 1, T̃ (ξ) is a 2× 2 matrix and

det T (ξ) =
[ m1∏

j=2

A1(ξ + (j − 1)d)
]
×

[
A1(ξ)A2(ξ + (M − 1)d)−A2(ξ)A1(ξ + (M − 1)d)

]

so that |h(ξ)| = | det T (ξ)|.
If m2 ≥ 2, we let r := m1 mod m2, then A2(ξ+m1d) occurs in (r+1)-th row and gcd(m2, r) =
1. Hence | det T̃ (ξ)| = |h(ξ)| follows from the following lemma. ¤

Lemma 2.4. Let N > r ≥ 1 be integers with gcd(N, r) = 1. Let X =
[

A B
C D

]
be a block

matrix where

A = diag[a1, a2, · · · , aN ], B = diag[b1, b2, · · · , bN ], C = diag[c1, c2, · · · , cN ]

and D =
[

0 D1

D2 0

]
is a block matrix where

D1 = diag[dN−r+1, dN−r+2, · · · , dN ] and D2 = diag[d1, d2, · · · , dN−r].

Then

det X = (−1)N−1
[ N∏

k=1

akdk −
N∏

k=1

bkck

]
.

Proof. Let xi,j be the (i, j) entry of the matrix X. By the definition of determinant,

det X =
∑

σ

ε(σ)x1,σ(1)x2,σ(2) · · ·x2N,σ(2N)
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where the sum is taken over all permutations σ of {1, 2, · · · , 2N} and ε(σ) is the sign of the
permutation σ. Note that x1,σ(1)x2,σ(2) · · ·x2N,σ(2N) is trivial unless

σ(k) =





k or k + N for 1 ≤ k ≤ N
k −N or k + N − r for N + 1 ≤ k ≤ N + r
k −N or k − r for N + r + 1 ≤ k ≤ 2N

=
{

k or k + N for 1 ≤ k ≤ N
k −N or N + τ(k − r) for N + 1 ≤ k ≤ 2N,

(2.11)

where τ(n) is an integer such that 1 ≤ τ(n) ≤ N and τ(n) = n mod N .
We claim that if σ(1) = 1 and σ satisfies (2.11), then

(2.12) σ(k) =
{

k for 1 ≤ k ≤ N,
N + τ(k − r) for N + 1 ≤ k ≤ 2N.

Now, (2.12) is equivalent to

(2.13) σ(τ(1− kr)) = τ(1− kr) and σ(N + τ(1− kr)) = N + τ(1− (k + 1)r)

for 0 ≤ k ≤ N−1 since {τ(1−kr)|0 ≤ k ≤ N−1} = {1, 2, · · · , N} and τ(N +τ(1−kr)−r) =
τ(1− (k + 1)r). We prove (2.13) by induction on k = 0, 1, · · · , N − 1.
When σ(1) = 1, σ(N + 1) = N + τ(1− r) since σ(N + 1) 6= σ(1) = 1. Hence, (2.13) holds for
k = 0. Assume that (2.13) holds for 0 ≤ k ≤ n < N − 1. By (2.11),

σ(τ(1− (n + 1)r)) = τ(1− (n + 1)r) or N + τ(1− (n + 1)r).

Since N + τ(1 − nr) 6= τ(1 − (n + 1)r) and σ(N + τ(1 − nr)) = N + τ(1 − (n + 1)r),
σ(τ(1− (n + 1)r)) = τ(1− (n + 1)r). Again, by (2.11)

σ(N + τ(1− (n + 1)r)) = τ(1− (n + 1)r) or N + τ(1− (n + 2)r).

Since τ(1 − (n + 1)r) 6= N + τ(1 − (n + 1)r) and σ(τ(1 − (n + 1)r)) = 1 − (n + 1)r, σ(N +
τ(1− (n + 1)r)) = N + τ(1− (n + 2)r), that is, (2.13) is true also for n + 1. Hence the claim
is proved. Similarly, if σ(1) = N + 1 and σ satisfies (2.11),

σ(k) =
{

k + N for 1 ≤ k ≤ N
k −N for N + 1 ≤ k ≤ 2N.

Let
σ1 = (N + 1, N + τ(1− r), · · · , N + τ(1− (N − 1)r))

and
σ2 = (1, N + 1)(2, N + 2) · · · (N, 2N)

be two permutations of {1, 2, · · · , 2N}. Then ε(σ1) = (−1)N−1 and ε(σ2) = (−1)N so that

det X = ε(σ1)x1,1x2,2 · · ·xN,NxN+1,2N−r+1 · · ·xN+α,2NxN+r+1,N+1 · · ·x2N,2N−r

+ ε(σ2)x1,N+1x2,N+2 · · ·xN,2NxN+1,1 · · ·x2N,N

= (−1)N−1a1 · · · aNd1 · · · dN + (−1)Nb1 · · · bNc1 · · · cN .

Hence the lemma is proved. ¤

Example 2.2. (Derivative sampling)
Take A1(ξ) = 1 and A2(ξ) = iξ so that c1(f)(t) = f(t) and c2(f)(t) = f ′(t). We then claim
that the determinant condition (2.4) holds if and only if m1 ≥ m2 and m2 is a positive odd
integer. In fact, by Proposition 2.3 and the continuity of h(ξ) on I, we only need to show
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that h(ξ) 6= 0, ξ ∈ I if and only if m1 ≥ m2 and m2 is a positive integer. First assume that
m1 < m2. Then

h(ξ) =
m2−1∏

j=m1

A2(ξ + jd)
( m2−1∏

j=0

A2(ξ + jd)−
M−1∏

j=m1

A2(ξ + jd)
)

= im2

m2−1∏
m1

(ξ + jd)
( m2−1∏

j=0

(ξ + jd)−
M−1∏

j=m1

(ξ + jd)
)
.

Since −πω+m1d = −(M−2m1)πω
M < 0 and −πω+m2d = (2m2−M)πω

M > 0, 0 ∈ [−πω+jd,−πω+

(j +1)d] for some j = m1,m1 +1, · · · ,m2−1 so that
m2−1∏
j=m1

(ξ + jd) = 0 for some ξ in I. Hence

h(ξ) = 0 for some ξ in I.
When m1 = m2 = 1, h(ξ) = iπω 6= 0.
Finally assume m1 > m2. Then

h(ξ) = im2

( M−1∏

j=m1

(ξ + jd)−
m2−1∏

j=0

(ξ + jd)
)
.

Since −πω + m1d = (2m1−M)πω
M > 0 and −πω + m2d = (2m2−M)πω

M < 0,
M−1∏
j=m1

(ξ + jd) > 0 on

I and sgn
m2−1∏
j=0

(ξ + jd) = (−1)m2 on I. Hence if m2 is odd, then |h(ξ)| > 0 on I.

For m2 even,

h
(
− πω +

d

2

)
= im2

( M−1∏

j=m1

(−πω +
d

2
+ jd)−

m2−1∏

j=0

(−πω +
d

2
+ jd)

)

= im2

( m2−1∏

j=0

(−πω +
d

2
+ (M − 1− j)d)−

m2−1∏

j=0

(−πω +
d

2
+ jd)

)

= im2

( m2−1∏

j=0

(πω − d

2
− jd)−

m2−1∏

j=0

(−πω +
d

2
+ jd)

)
= 0.

3. Aliasing error of asymmetric multi-channel sampling

In this section, we give an upper bound for the aliasing error, which occurs when we apply
the asymmetric sampling formula (3.4) to a non-bandlimited signal. Let F := {f(t) ∈ L2(R) :
f̂(ξ) ∈ L1(R)}. Then any signal f(t) in F is, in fact, continuous on R. Let Aj(ξ), 1 ≤ j ≤ N ,
be bounded measurable functions on R and let

cj(f)(t) :=
1√
2π

∫ ∞

−∞
f̂(ξ)Aj(ξ)eitξdξ, f ∈ F.
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Then cj(f)(t)’s are continuous functions on R since Aj(ξ)f̂(ξ) ∈ L1(R).
For any ω > 0, take [−πω, πω] to be an assumed band region for f(t) in F and let

I(ω) := [−πω,−πω + d(ω)] (d(ω)) =
2πω

M
, M as in section 2),

Eω(t) := (1, eid(ω)t, · · · , ei(M−1)d(ω)t)T ,

Aω,j(ξ) := Aj(ξ)χ[−πω,πω](ξ) (1 ≤ j ≤ N),

where χ[−πω,πω](ξ) is the characteristic function of [−πω, πω]. Let Aω(ξ) be the M × M

transfer matrix on I(ω) as in Section 2, where Aj(ξ)’s are replaced by Aω,j(ξ)’s. Assuming
that Aω(ξ) is non-singular in I(ω), let

Yω(ξ, t) := [Aω(ξ)−1]T Eω(t)

= [Yω,j,k(ξ, t)]
N mj−1
j=1,k=0

is the M × 1 column vector as Y (ξ, t) in section 2.

Lemma 3.1. Let g(ξ) ∈ L1[−π, π] be periodic of period 2π and g(ξ) ∼ ∑
n

αneinξ be the

Fourier series of g(ξ). Then for any function φ(ξ) of bounded variation on R,
∫ b

a
φ(ξ)g(ξ)dξ =

∑
n

αn

∫ b

a
einξφ(ξ)dξ (−∞ < a < b < ∞).

Proof. See [4, p. 16]. ¤

Theorem 3.2. Assume further that Aj(ξ)’s are of bounded variations on R and there are
positive constants βj for 1 ≤ j ≤ N such that

|Aj(ξ)| ≤ βj < ∞ for ξ ∈ R
and for any ω > 0, there is a positive constant α(ω) such that

α(ω) ≤ | detAω(ξ)| for ξ ∈ I(ω).

Let

(3.1) fω(t) :=
M√
2πω

N∑

j=1

mj−1∑

k=1

∞∑
n=−∞

cj(f)
( M

mjω
(mjn + k)

)
yω,j,k

(
t− nM

ω

)

be the multi-channel alias of f(t) over the assumed band region [−πω, πω], where

yω,j,k(t) :=
1√
2π

∫

I(ω)
Yω,j,k(ξ, t)eitξdξ.

Then the series in (3.1) converges to a continuous function on R:

(3.2) fω(t) =
N∑

j=1

mj−1∑

k=0

∫

I(ω)
ψj,k(ξ)Yω,j,k(ξ, t)eitξdξ

where

(3.3) ψj,k(ξ) =
1√
2π

∞∑
n=−∞

Aj(ξ + nd(ω))f̂(ξ + nd(ω))e
i Mk

mjω
(ξ+nd(ω))
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converges in L1(I(ω)). Moreover, we have an aliasing error bound:

(3.4)
√

2π|f(t)− fω(t)| ≤ (1 +
N∑

j=1

mj∑

k=1

βjγω,j,k)
∫

|ξ|≥πω
|f̂(ξ)|dξ.

where γω,j,k = sup
I(ω)×R

|Yω,j,k(ξ, t)|.
If furthermore,

(3.5) lim inf
ω>0

α(ω) > 0

then fω(t) converges to f(t) uniformly on R as ω −→∞.

Proof. Since each Aj(ξ) is bounded on R and f̂(ξ) ∈ L1(R),
∫

I(ω)
|ψj,k(ξ)|dξ ≤ 1√

2π

∞∑
n=−∞

∫

I(ω)
|Aj(ξ + nd(ω))f̂(ξ + nd(ω))|dξ

=
1√
2π

∫ ∞

−∞
|Aj(ξ)f̂(ξ)|dξ < ∞.

Hence, each ψj,k(ξ) ∈ L1(I(ω)) of which the Fourier series is

ψj,k(ξ) ∼ M

2πω

∞∑
n=−∞

(∫

I(ω)
ψj,k(ξ)ei nM

ω
ξdξ

)
e−i nM

ω
ξ

=
M

2πω

∞∑
n=−∞

cj(f)
( M

mjω
(mjn + k)

)
e−i nM

ω
ξ

since ∫

I(ω)
ψj,k(ξ)ei nM

ω
ξdξ

=
1√
2π

∞∑

l=−∞

∫

I(ω)
Aj(ξ + ld(ω))f̂(ξ + ld(ω))e

Mk
mjω

(ξ+ld(ω))
ei nM

ω
ξdξ

=
1√
2π

∞∑

l=−∞

∫

I(ω)+ld(ω)
Aj(ξ)f̂(ξ)e

i M
mjω

(mjn+k)ξ
dξ

=
1√
2π

∫ ∞

−∞
Aj(ξ)f̂(ξ)e

i M
mjω

(mjn+k)ξ
dξ

= cj(f)(
M

mjω
(mjn + k)).

Hence, by Lemma 3.1 and the fact that Yω,j,k(ξ, t)eitξ is of bounded variation on I(ω) as a
function of ξ, we have∫

I(ω)
ψj,k(ξ)Yω,j,k(ξ, t)eitξdξ

=
M

2πω

∞∑
n=−∞

cj(f)
( M

mjω
(mjn + k)

) ∫

I(ω)
Yω,j,k(ξ, t)ei(t−nM

ω
)ξdξ

=
M√
2πω

∞∑
n=−∞

cj(f)
( M

mjω
(mjn + k)

)
yω,j,k

(
t− nM

ω

)
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from which (3.2) follows.
Now since the series (3.3) converges in L1(I(ω)), we have

∫

I(ω)
ψj,k(ξ)Yω,j,k(ξ, t)eitξdξ

=
1√
2π

∞∑
n=−∞

∫

I(ω)+nd(ω)
Aj(ξ)f̂(ξ)Yω,j,k(ξ − nd(ω), t)e

i Mk
mjω

ξ
eit(ξ−nd(ω))dξ,

which converges absolutely and uniformly to a continuous function on R since Yω,j,k(ξ, t) is
bounded on I(ω)× R and is continuous in t. Hence

(3.6) fω(t) =
1√
2π

N∑

j=1

mj−1∑

k=0

∫

I(ω)+nd(ω)
Aj(ξ)f̂(ξ)Yω,j,k(ξ − nd(ω), t)e

i Mk
mjω

ξ
eit(ξ−nd(ω))dξ

is also continuous on R.
On the other hand,

f(t) =
1√
2π

∫ ∞

−∞
f̂(ξ)eitξdξ =

1√
2π

∞∑
n=−∞

∫

I(ω)+nd(ω)
f̂(ξ)eitξdξ

=
1√
2π

(
∑

n∈Q

+
∑

n/∈Q

)
∫

I(ω)+nd(ω)
f̂(ξ)eitξdξ

where Q := {0, 1, 2, · · · ,M − 1}. Then
∑

n∈Q

∫

I(ω)+nd(ω)
f̂(ξ)eitξdξ

=
∑

n∈Q

∫

Iω

f̂(ξ + nd(ω))eit(ξ+nd(ω))dξ

=
∫

I(ω)
Eω(t)T D(f̂(ξ)χ[−πω,πω](ξ))e

itξdξ

=
∫

I(ω)
Eω(t)T Aω(ξ)−1Gω(ξ)eitξdξ

=
∫

I(ω)
Yω(ξ, t)T Gω(ξ)eitξdξ

=
N∑

j=1

mj−1∑

k=0

M∑

l=1

∫

I(ω)

[
Aω,j(ξ + (l − 1)d(ω))f̂(ξ + (l − 1)d(ω))

×Yω,j,k(ξ, t)e
i Mk

mjω
(ξ+(l−1)d(ω))

eitξ
]
dξ

where

Gω(ξ) := Aω(ξ)D(f̂(ξ)χ[−πω,πω](ξ)) = (Gω,j,k(ξ))
N mj−1
j=1,k=0

is the N × 1 column vector as in section 2 and

Gω,j,k(ξ) :=
M∑

l=1

Aω,j(ξ + (l − 1)d(ω))f̂(ξ + (l − 1)d(ω))e
i Mk

mjω
(ξ+(l−1)d(ω))

.
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Hence
∑

n∈Q

∫

I(ω)+nd(ω)
f̂(ξ)eitξdξ(3.7)

=
N∑

j=1

mj−1∑

k=0

M∑

l=1

∫

I(ω)+(l−1)d(ω)
Aj(ξ)f̂(ξ)Yω,j,k(ξ − (l − 1)d(ω), t)e

i Mk
mjω

ξ
eit(ξ−(l−1)d(ω))dξ

since Aω,j(ξ) = Aj(ξ) on [−πω, πω]. We then have from (3.6) and (3.7)
√

2π[f(t)− fω(t)]

=
( ∑

n∈Q

+
∑

n/∈Q

)∫

I(ω)+nd(ω)
f̂(ξ)eitξdξ

−
N∑

j=1

mj−1∑

k=0

∞∑
n=−∞

∫

I(ω)+nd(ω)
Aj(ξ)f̂(ξ)Yω,j,k(ξ − nd(ω), t)e

i Mk
mjω

ξ
eit(ξ−nd(ω))dξ

=
∑

n/∈Q

∫

I(ω)+nd(ω)
f̂(ξ)eitξ

[
1−

N∑

j=1

mj−1∑

k=0

Aj(ξ)Yω,j,k(ξ − nd(ω), t)e
i Mk

mjω
ξ
e−ind(ω)t

]
dξ.

Hence
√

2π|f(t)− fω(t)|

≤
∑

n/∈Q

∫

I(ω)+nd(ω)
|f̂(ξ)|

[
1 +

N∑

j=1

mj−1∑

k=0

|Aj(ξ)||Yω,j,k(ξ −md, t)|
]
dξ

=(1 +
N∑

1

mj−1∑

k=0

βjγω,j,k)
∫

|ξ|≥πω
|f̂(ξ)|dξ

which proves (3.4). Finally assume that the condition (3.5) holds. Choose a positive constant
α with 0 < α < lim inf

ω>0
α(ω). Then α < α(ω) ≤ | detAω(ξ)| for ω large enough. Let

Aω(ξ)−1 = 1
det Aω(ξ) [cω,j,k(ξ)], where cω,j,k(ξ) is the (j, k) cofactor of Aω(ξ). Then cω,j,k(ξ)’s

are uniformly bounded in ξ and ω, that is, there is a positive constant K, independent of ξ

and ω > 0, such that

|cω,j,k(ξ)| ≤ K

for any j, k and ω > 0, ξ ∈ I(ω). Then we have from Yω(ξ, t) = [Aω(ξ)−1]T Eω(t)

|Yω,j,k(ξ, t)| ≤ MK

α

for any j, k, any t in R, and ω large enough. Hence

γω,j,k ≤ MK

α
for any j, k and ω large enough

so that
√

2π|f(t)− fω(t)| ≤
(
1 +

MK

α

N∑

j=1

mjβj

)∫

|ξ|≥πω
|f̂(ξ)|dξ −→ 0

as ω −→∞. Hence, fω(t) −→ f(t) uniformly on R as ω −→∞. ¤
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Example 3.1. In case of Example 2.1, |A1(ξ)| = 1, |A2(ξ)| = 1 and detAω(ξ) = 4i. We also
have |Yω,1,0(ξ, t)| ≤ 3

2 , |Yω,1,1(ξ, t)| ≤ 3
2 and |Yω,2,0(ξ, t)| ≤ 1

2 on I(ω) × R. Hence, we obtain
an upper bound for aliasing error as

|f(t)− fω(t)| ≤ 9
2
√

2π

∫

|ξ|≥πω
|f̂(ξ)|dξ.
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