ON DUAL AND THREE SPACE PROBLEMS FOR THE COMPACT
APPROXIMATION PROPERTY

CHANGSUN CHOI AND JU MYUNG KIM

We introduce the properties W*D and BW*D for the dual space of a Banach space.
And then solve the dual problem for the compact approximation property(CAP): if
X™* has the CAP and the W*D, then X has the CAP. Also, we solve the three space
problem for the CAP: for example, if M is a closed subspace of a Banach space
such that M-~ is complemented in X* and X* has the W*D, then X has the CAP
whenever X /M has the CAP and M has the bounded CAP. Corresponding problems
for the bounded compact approximation property are also addressed.
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1. Introduction

The approximation property(AP) was introduced at the early stage of the Banach space theory; it
already appeared in Banach’s book [B]. A systematic study of the AP was carried in his memoir by
Grothendieck [G]. The AP, besides finding many uses in Banach spaces, plays a special role in the
structure theory of Banach spaces. One important question about the AP is whether or not it passes
to the dual space and subspaces; the question in the opposite direction is equally important.

Well known is that if the dual X* has the AP, then so does X, in general, the converse does not
hold. But, the corresponding dual problem for the CAP is open (See Casazza [C], Problem 8.5):

If X* has the CAP, must X have the CAP ?

In general the converse is false. On the other hand, if M is a closed subspace of a Banach space
X, then the pair (X, M) has the three space property for the AP whenever M is complemented in
X. The three space problem for non-complemented subspaces is much harder. Godefroy and Saphar
[GS] obtained significant results on the three space problem for the AP under the assumption that
M+ is complemented in X*. Thus we are led to raise the following problem:

Does the pair (X, M) have the three space property for the CAP whenever M+ is complemented
in X*?

In this paper we solve the above two problems under the extra assumption that X* and M* have
certain density properties for the space of compact operators.

2. Preliminaries and the property W*D

In this section we first fix our notions and provide necessary definitions with comments. At the end of
the section we study relationship between our property W*D and various concepts of approximation
properties.

Notation 2.1. Let X be a Banach space and A > 0. Throughout this paper, we use the following

notations :

Idx : The identity operator on X.
B(X) : The collection of bounded linear operators on X.
F(X) : The collection of bounded and finite rank linear operators on X.
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) : The collection of compact operators on X.

* w*) : The collection of compact and w*-to-w* continuous operators on X*.

,A) : The collection of compact operators T" on X satisfying ||7']] < A.

* w*, ) : The collection of compact and w*-to-w* continuous operators 7' on X* satisfying

Similarly we define F(X*, w*), F(X, ) and F(X*, w*, ).
Note that w* means the weak* topology on X*. And observe that

KX w\)={T" e K(X*) : T e KL(X,\)},
where T™ is the adjoint of T

We introduce an topology on B(X), which is an important tool to study the approximation prop-
erties. For compact K C X, € >0, and T' € B(X) we put

N(T,K,e) ={R € B(X) : sup ||[Rx — Tx| < €}.
zeK

Let S be the collection of all such N (T, K, €)’s. Now we denote by 7 the topology on B(X) generated
by S. Observe that for 7" and a net (7},) in B(X)

T, — T in (B(X),7) <= for each compact K C X sup|Tox— Tzl — 0.
zeK

Grothendieck ([G]) showed the following lemma.

Lemma 2.2. Let X be a Banach space. Then the topology 7 on B(X) is a locally convex topology and
(B(X),7)* consists of all functionals f of the form f(T) = )", x;Tx,, where (z,) C X, (z}) C X*
and ), ||znll[[2} ]| < oo.

Now we give definition of various kinds of approximation properties for Banach spaces. We say that
X has the approzimation property (in short, AP) if for every compact K C X and € > 0 there is a
T € F(X)suchthat |[Tx—z| < eforallz € K. Also we say that X has the A-bounded approzimation
property (in short, A-BAP) if for every compact K C X and € > 0 there is a T' € F(X, \) such that
|Tx — z|| < € for all x € K. If X has the \-bounded approximation property for some A > 0, then
we say that X has the bounded approximation property (in short, BAP). We say that a Banach space
X has the compact approzimation property (in short, CAP) if for every compact K C X and € > 0
there is a T' € K(X) such that ||Tz — z|| < e for all x € K. Also we say that a Banach space X
has the A-bounded compact approximation property (in short, A-BCAP) if for every compact K C X
and € > 0 there is a T € K(X, \) such that |72 — z|| < € for all x € K. If X has the A-bounded
compact approximation property for some A > 0, then we say that X has the bounded compact
approzimation property (in short, BCAP). Recently Choi and Kim [CK] introduced weak versions of
the approximation property. We say that X has the weak approzimation property (in short, WAP) if
for every T' € K(X), compact K C X, and € > 0 there is a Ty € F(X) such that || Toz — Tz|| < € for
all z € K. Using the T-topology we see the following :

X has the AP iff Idy € F(X) .
X has the A-BAP iff Idx € F(X,\)

X has the CAP iff Idy € K(X) .

X has the A-BCAP iff Idy € K(X, ) .
X has the WAP iff K(X) c F(X) .

T

Also we observe the following :
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A Banach space has the AP iff it has both the CAP and the WAP.

To check the above statement we need that the AP implies the WAP. Indeed, if a Banach space X
has the AP, then we can pick a net (7,,) in F(X) such that T,, = Idx. Then for any S € K(X), we
have T,S = S, hence S € f(X)T, which proves that X has the WAP.

We need two topologies on the space of operators. We define topologies by specifying convergent
nets. Here X is a Banach space.

Definition 2.3. For T" and a net (T,) in B(X) we say that the net (T},) converges to T in the

v-topology, or Ty, — T iff
Z T (Tatn) — Z 2 (Ty)

for every (z,) C X and (z})) C X* satisfying > ||z]|||z}] < oo.

Recall Lemma 2.2. Then on the space B(X) the 7-topology is stronger than the v-topology. But
by a convex combination argument we see the following :

X has the AP iff Idy € F(X) .

X has the A-BAP iff Idy € F(X, \) .
X has the CAP iff Idy € K(X) .

X has the A-BCAP iff Idx € K(X,)) .

X has the WAP iff K(X) c F(X) .

Definition 2.4. For T and a net (7,) in B(X*) we say that the net (7,) converges to 7' in the

weak*-topology, or T, Wkl i
Z(Tax’;)xn — Z(Tx;;)xn

n

for every (x,) C X and (z)) C X* satisfying ) ||z, ||[|z}] < oco.

The name, the weak*-topology, comes from the fact that B(X*) can be, in the canonical way,
identified with (X*®,X)*, the dual of the completed projective tensor product of X* and X. On
the space B(X™) the v-topology is stronger than the weak*-topology. But they coincide when X is
reflexive. Note that for 7" and a net (7,) in B(X)

T, LT if T 7 (2.1)

We finally define the properties which enable us to prove the dual and the three space problems for
the CAP in our setting.

Definition 2.5. Let X be a Banach space.
(a) The dual space X* is said to have the weak® density for compact operators, in short, W*D if
————weak™*
K(X*) C K(X*, w*)

(b) The dual space X* is said to have the bounded weak* density for compact operators, in short,

BW*D if (X*, 1) C K(X*, w*, \) “*" for some A > 0.

In Section 3 it is shown that not every Banach space has the BW*D. The question whether or not
every Banach space has the W*D, which is not known, will be shown to be closely related to the dual
problem for the CAP.
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In this section we want to find, for the dual space X*, the relations between W*D, or BW*D and
the various kinds of approximation properties. For this we need a lemma which is originally due to

Lindenstrauss and Tzafriri [LT] and Johnson ([J], Lemma 1). A proof of the following version is given
in [CK].

Lemma 2.6. Let X be a Banach space. Then we have the following.
(a) F(X*) C F(X*,w*) C F(X* w)
(b) F(X*,\) C FXHw, ) € FXnw, 0" for all A > 0.

weak™

Now we have a proposition about the properties W*D and BW*D.

Proposition 2.7. Let X be a Banach space. Then the following statements hold.

(a) If X* is reflexive, X* has the W*D and the BW*D. But the converse is false in general.
(b) If X* has the WAP, X* has the W*D. But the converse is false in general.
(¢) If X* has the BAP, X* has the BW*D. But the converse is false in general.

Proof. (a). If X is reflexive, then every T' € B(X™*), being w-to-w continuous, is w*-to-w* continuous,
hence T € B(X*, w*) and we have K(X*) = K(X*,w*) and K(X*, 1) = K(X*, w*, 1), which implies
that X* has the W*D and the BW*D.

To show that the converse is false in general we consider X = ¢y, a non-reflexive Banach space.
Writing X* = [;, we claim that

K(X",1) € K(X*, w0, 1),

which obviously implies that X* has the BW*D, hence the W*D as well. Indeed, if we let T' € K(X*, 1),
then for each n € N the projection P, € B(l;) given by

P,((a)) = (a1, ..., 0, 0,0, ...)

is w*-to-norm continuous because
1Pl = lon] 4 + o] = 3 (e, (a0))
j=1

where e; € ¢ is the jth standard basis vector. Obviously ||P,|| < 1 for each n. Put T,, = T'P,. Then
each T), is compact and w*-to-norm continuous, hence it is w*-to-w* continuous. Having shown that
each T,, € KK(X*,w*, 1), it remains to show that T}, = T.

Let K C X* be compact and € > 0. There is a finite set A C K such that for each x* € K there is
y* € A with ||a* — y*|| < ¢/3. Since T,x* — Tx* for each z* € X* = [y, there is N € N such that
n > N implies

1Ty =Tyl < 5

for all y* € A. One can check that n > N implies ||T,,z* — T'z*|| < € for all * € K, which completes
the proof.

(b). Assume that X* has the WAP. Then we have

K(X*) € FIX7) = F(XHw) € KX5w) Ko w) ™,
where we used Lemma 2.6.(a) and the fact that the 7-topology is stronger than the weak*-topology.
Thus X* has the W*D.

To prove that the converse is not true in general we consider the Willis space Z, which is a separable
reflexive Banach space having the CAP, but not having the AP (See Willis [W]). Hence Z does not
have the WAP. Since Z is reflexive, with X = Z*, we have that X is reflexive, hence by (a), X* has
the W*D. But, X™*, being isometric to Z, fails to have the WAP.
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(c). Assume that X* has the BAP. Then there is A > 0 and a net (7,) in F(X*, \) such that
T, = Idx-. Now, if S € K(X*,1), then (T,) converges uniformly on the compact set S(Bx~), the
image of the unit ball of X* under S, or ||T,S — S|| — 0, hence T, S = S, which implies that

weak™

S e F(X*)\) C F(X*,w,\)
Here we used Lemma 2.6.(b). This proves that X* has the BW*D. Of course, the counterexample in

(b) serves as a counterexample for (c) also. d

The following diagram summarizes the relations we have found between the properties for the dual
space X*, including the W*D and the BW*D:

BAP —> AP —» WAPjW*D
BAPjBW*D W'D

Reflexivity j BW*D

3. The dual problem for the CAP

The following theorem shows that the properties W*D and BW*D are the right assumptions in solving
the dual problem for the CAP.
Theorem 3.1. Let X be a Banach space. Then we have the following.

(a) If X* has the CAP and the W*D, then X has the CAP.

(b) If X* has the BCAP and the BW*D, then X has the BCAP.

Proof. (a). Assume that X* has the CAP and the W*D. Then

weak™

Idx € K(X*) and K(X™) C K(X*, w*)

Since the 7-topology is stronger than the weak*-topology, we have

eak™ ————weak™*

Idy- € KX = K(X*,w")

By (2.1) Idy € K(X) which proves that X has the CAP.
(b). Assume that X* has the BCAP and the BW*D. Then,

weak™

Idy- € K(X*,\) and K(X* 1) C K(X* w*, 1)

weak™

for some A and p > 0. Since K(X*,\) C K(X*, w*, Ap) , as in (a), we have

weak™

Idx« € K(X*,w*, \u)
By (2.1) Idy € K(X, Au)” which proves that X has the BCAP. O
It is known that there is a Banach space X such that X fails to have the BCAP but X* has the

BCAP. According to Theorem 3.1.(b) X* cannot have the BW*D. It is not known whether all Banach
spaces have the W*D. Thus we are led to the following:

Question. Does the dual of every Banach space have the W*D ¢

If the above question has the affirmative answer, then the general dual problem for the CAP, in
view of Theorem 3.1.(a), also has the affirmative answer.
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4. The three space problem for the CAP
First we start with the following simple case when the subspace is complemented.

Proposition 4.1. If M is a complemented subspace of a Banach space X, then the pair (X, M) have
the three space property for the CAP and the BCAP.

Proof. Assume that M is a complemented subspace of a Banach space X. Then there is a projection
P:X — M onto M. Let ¢« : M — X be the inclusion.

First assume that X has the CAP. We will show that both M and X/M have the CAP. By the
assumption there is a net (7},) be in K(X) such that T, = Idy, hence T, = Idy. Put S, = PT,u.
Then (S,) is a net in JC(M) such that, whenever (m,,) C M and (m}) C M* with > ||m,||||m}] < oo,

we have
Zm;(Samn) = melP(Ta Lmy,) — Z(meP)(L my,) = Zm;mn

because Y, ||em,|||[[m:P|| < oo. Hence S, — Idy and M has the CAP.

For X/M observe that Idx — ¢t P : X — X is a projection with kernel M. Thus if we put
N = (Idx — ¢ P)(X) and define @ : X — N by Q(z) = (Idx — ¢ P)x, then @ is a projection onto
N. Hence N is a complemented subspace of X. By the above argument N has the CAP. But X/M
is isomorphic to IV, hence it is easily checked that X/M also has the CAP.

The above argument also shows that if X has the BCAP, then so do M and X/M. Indeed, notice
that, in the case that X has the BCAP, (7,) can be chosen as a bounded net in K(X). Thus (S,)
becomes bounded too, which implies that M has the BCAP. For the same reason X/M has the BCAP.

Now assume that both M and X/M have the CAP. Let j : N — X be the inclusion. Observe
that X = M & N, the sum of M and N. Since both M and N have the CAP, given a compact K C X
and € > 0 there are S € (M) and R € IC(V) such that

|SPx — Px| <€ and |[|[RQx — Qx| <€
for all x € K. Put Tx = 1SPx + jRQx for + € X. Then we observe that T' € K(X) and
|Tx — z|| = ||t (SPx — Pz) + j(RQz — Q)| < 2¢

for all x € K. Thus X has the CAP.
In the above, if M and N have the BCAP, then there are A, u > 0 so that

Idy € K(M,N) and Idy € K(N,p) .

Hence we could have chosen S and R in the above so that they also satisfy S € IC(M,\) and
R € K(N, p). Then, since ||T]] < M| P|| + p||Q||, we have

Idx € K(XAP+pl@l)
which proves that X has the BCAP. Il
The following is a well-known fact (See Diestel [D, Exercises 1.6 and 2.6,(1)]).

Fact. Let (X,) be a sequence of Banach spaces. If 1 < p < oo and K is a relatively compact
subset of (3, € X,);,, then for every € > 0 there is a positive integer N, such that

o
D llkally, <e

TL>N€
for all (k,) € K. Also, if a subset K of (), @ X,,), is relatively compact, then for every € > 0 there
is a positive integer N, such that

sup || knllx, <€
7L>Ne
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for all (k,) € K.

Now from the above fact and an argument of the proof (If M and N have the CAP (respectively
BCAP), then M @ N has the CAP (respectively BCAP)) of Proposition 4.1 we can easily check that
the CAP and the BCAP pass through sums. More precisely, if (X,,) is a sequence of Banach spaces
with the CAP, then the spaces (), @ X,);, for every 1 < p < oo and (3, P X,,)., have the CAP.
And, if (Xj)}_, is a finite sequence of Banach spaces with the BCAP, then the spaces (3_;_; €@ X&),
for every 1 < p < oo have the BCAP.

Now we consider the general case when M is not necessarily complemented in X. Observe that if
M is complemented in X, then M*' is complemented in X*. So it is reasonable for us to approach
the three space problem with the weaker assumption that M+ is complemented in X*.

Theorem 4.2. Let M be a closed subspace of a Banach space X such that M~ is complemented in
X*.

(a) If X has the CAP and M* has the W*D, then M has the CAP.

(b) If X has the BCAP and M* has the BW*D, then M has the BCAP.

Proof. Assume that M~ is complemented in X*. Then there is a projection P : X* — M onto
M. Define a map U : M* — X* by
Um* =x* — Pz*
where z* is any linear functional in X* with #* = m* on M. Since P is a projection on M=, one
easily checks that U is well-defined and
(Um*)m =m*m
for all m* € M* and m € M. Of course, U is a bounded operator.
Let ¢ : M — X be the inclusion.
(a). Assume that X has the CAP and M* has the W*D. Since X has the CAP, there is a net (7,)

in K(X) such that T,, = Idx, hence T,, = Idx. By (2.1) T weak! Id%. Observe that *TXU € KC(M*)
and if (m,) C M and (m}) C M* with )__ ||my,]|[[m;] < oo, then > |l¢m,||||Um}| < oo, hence

Z(L*T;Um;‘L) "—)Z Idx-Um;)emy, = Zm M.

n

eak™

Thus Idy~ € K(M*) . Now because of the assumption that AM* has the W*D, we have Idy» €

K(M*, w) eak*, hence Idy, € K(M) , which proves that M has the CAP.
(b). Assume that X has the BCAP and M* has the BW*D. Hence Idx € K(X, ) and K(M*,1) C

IKC(M*, w*, ) “*" for some A and p > 0. We proceed as in the proof of (a). This time we can arrange
a net (7,) in the above from (X, \) so that

[ TEUN < AU

weak™

Thus we have Idy« € K(M*, w*, Au||U||) L or Idy € K(M,  \u|[U])", which proves that M has
the BCAP. .

Our last theorem is about the remaining part of the three space problem.
Theorem 4.3. Let M be a closed subspace of a Banach space X such that M~ is complemented in
X* and M has the BCAP.

(a) If X/M has the CAP and X* has the W*D, then X has the CAP.
(b) If X/M has the BCAP and X* has the BW*D, then X has the BCAP.
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Proof. Assume that M~ is complemented in X* and M has the BCAP. As in the proof of Theorem 4.2
we let ¢ : M — X be the inclusion, P : X* — M be the projection onto M+ and U : M* — X*
be given by
Um* = x* — Pz*
where x* is in X* with x* = m* on M. Recall that U is a well-defined bounded operator such that
(Um*)m =m*m
for all m* € M* and m € M.

By the assumption that M has the BCAP, there is A > 0 and a net (S,) in (M, \) such that
S, % Idy;. Observe that (US!t*) is a bounded net in I(X*), hence, in view of the Alaoglu theorem,
it has a weak*-cluster point W in B(X™*). If 2* € X* and m € M, then (Wz*)m is a cluster point of
the net (USZ*z*)m) and

(USE Sz )ym = (Shz™)m = 2" (Sam) — (La™)m = 2"m,
thus we have
(Wax*)ym = z*m.
Now define an opertor R on X* by
Rx* =Wa* —a”.
Then R : X* — M is a well-defined bounded operator.

For the proof of this theorem let j : M+ — X* be the inclusion map. We will identify (X/M)*
with M~ in the canonical way.

(a). Assume that X/M has the CAP and X* has the W*D.

——weak™

Observe that Idx- = W — jR and notice that W € K(X*) . Thus, if we show that jR €
K(X*) ok , then we have
]dX* c —K(X*>weak _ —K(X*,w*)weak

because of the assumption that X* has the W*D. This proves that X has the CAP.

It only remains to check that jR € IC(X*) ok By the assumption that X /M has the CAP, there is
a net (Qg) in K(X/M) such that Qs = Idx;y. Now consider the net (jQ5R) in K(X*). If (z,) C X
and (z) C X* with > ||z, ||||«} | < oo, then

> (QsRz)zn = Y (Q4(Ra})) (2 + M) — Y (Ra})(wn + M) =Y (jRz})zn

n n n

eak™

because Q0 Y Idye and Y |2, + M|||| Rz || < oo
—weak™

This proves jQ5R weak” jR and jR € K(X*) )
(b). Assume that X/M has the BCAP and X* has the BW*D. Thus there are pu,n > 0 and a net

(Qp) in K(X/M,n) such that Qs % Idx/y and K(X*,1) € (X" w m) """
First, observe that W € IC(X*, \||U]]) ok Also, if we proceed as in the proof of (a), we find that
JR € IC(X*,nHRH)weak . Thus, we have
weak™
Ldx- € K(X*w, p(AU[| +n0l[RI)
which proves that X has the BCAP. O
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