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We introduce the properties W∗D and BW∗D for the dual space of a Banach space.
And then solve the dual problem for the compact approximation property(CAP): if
X∗ has the CAP and the W∗D, then X has the CAP. Also, we solve the three space
problem for the CAP: for example, if M is a closed subspace of a Banach space
such that M⊥ is complemented in X∗ and X∗ has the W∗D, then X has the CAP
whenever X/M has the CAP and M has the bounded CAP. Corresponding problems
for the bounded compact approximation property are also addressed.
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1. Introduction

The approximation property(AP) was introduced at the early stage of the Banach space theory; it
already appeared in Banach’s book [B]. A systematic study of the AP was carried in his memoir by
Grothendieck [G]. The AP, besides finding many uses in Banach spaces, plays a special role in the
structure theory of Banach spaces. One important question about the AP is whether or not it passes
to the dual space and subspaces; the question in the opposite direction is equally important.

Well known is that if the dual X∗ has the AP, then so does X, in general, the converse does not
hold. But, the corresponding dual problem for the CAP is open (See Casazza [C], Problem 8.5):

If X∗ has the CAP, must X have the CAP ?

In general the converse is false. On the other hand, if M is a closed subspace of a Banach space
X, then the pair (X, M) has the three space property for the AP whenever M is complemented in
X. The three space problem for non-complemented subspaces is much harder. Godefroy and Saphar
[GS] obtained significant results on the three space problem for the AP under the assumption that
M⊥ is complemented in X∗. Thus we are led to raise the following problem:

Does the pair (X, M) have the three space property for the CAP whenever M⊥ is complemented
in X∗?

In this paper we solve the above two problems under the extra assumption that X∗ and M∗ have
certain density properties for the space of compact operators.

2. Preliminaries and the property W∗D

In this section we first fix our notions and provide necessary definitions with comments. At the end of
the section we study relationship between our property W∗D and various concepts of approximation
properties.

Notation 2.1. Let X be a Banach space and λ > 0. Throughout this paper, we use the following
notations :

IdX : The identity operator on X.
B(X) : The collection of bounded linear operators on X.
F(X) : The collection of bounded and finite rank linear operators on X.

1



2 CHANGSUN CHOI AND JU MYUNG KIM

K(X) : The collection of compact operators on X.
K(X∗, w∗) : The collection of compact and w∗-to-w∗ continuous operators on X∗.
K(X, λ) : The collection of compact operators T on X satisfying ‖T‖ ≤ λ.
K(X∗, w∗, λ) : The collection of compact and w∗-to-w∗ continuous operators T on X∗ satisfying

‖T‖ ≤ λ.

Similarly we define F(X∗, w∗), F(X, λ) and F(X∗, w∗, λ).
Note that w∗ means the weak* topology on X∗. And observe that

K(X∗, w∗, λ) = {T ∗ ∈ K(X∗) : T ∈ K(X, λ)},
where T ∗ is the adjoint of T .

We introduce an topology on B(X), which is an important tool to study the approximation prop-
erties. For compact K ⊂ X, ε > 0, and T ∈ B(X) we put

N(T,K, ε) = {R ∈ B(X) : sup
x∈K

‖Rx− Tx‖ < ε}.

Let S be the collection of all such N(T,K, ε)’s. Now we denote by τ the topology on B(X) generated
by S. Observe that for T and a net (Tα) in B(X)

Tα −→ T in (B(X), τ) ⇐⇒ for each compact K ⊂ X sup
x∈K

‖Tαx− Tx‖ −→ 0.

Grothendieck ([G]) showed the following lemma.

Lemma 2.2. Let X be a Banach space. Then the topology τ on B(X) is a locally convex topology and
(B(X), τ)∗ consists of all functionals f of the form f(T ) =

∑
n x∗nTxn, where (xn) ⊂ X, (x∗n) ⊂ X∗

and
∑

n ‖xn‖‖x∗n‖ < ∞.

Now we give definition of various kinds of approximation properties for Banach spaces. We say that
X has the approximation property (in short, AP) if for every compact K ⊂ X and ε > 0 there is a
T ∈ F(X) such that ‖Tx−x‖ < ε for all x ∈ K. Also we say that X has the λ-bounded approximation
property (in short, λ-BAP) if for every compact K ⊂ X and ε > 0 there is a T ∈ F(X, λ) such that
‖Tx − x‖ < ε for all x ∈ K. If X has the λ-bounded approximation property for some λ > 0, then
we say that X has the bounded approximation property (in short, BAP). We say that a Banach space
X has the compact approximation property (in short, CAP) if for every compact K ⊂ X and ε > 0
there is a T ∈ K(X) such that ‖Tx − x‖ < ε for all x ∈ K. Also we say that a Banach space X
has the λ-bounded compact approximation property (in short, λ-BCAP) if for every compact K ⊂ X
and ε > 0 there is a T ∈ K(X, λ) such that ‖Tx − x‖ < ε for all x ∈ K. If X has the λ-bounded
compact approximation property for some λ > 0, then we say that X has the bounded compact
approximation property (in short, BCAP). Recently Choi and Kim [CK] introduced weak versions of
the approximation property. We say that X has the weak approximation property (in short, WAP) if
for every T ∈ K(X), compact K ⊂ X, and ε > 0 there is a T0 ∈ F(X) such that ‖T0x− Tx‖ < ε for
all x ∈ K. Using the τ -topology we see the following :

X has the AP iff IdX ∈ F(X)
τ
.

X has the λ-BAP iff IdX ∈ F(X, λ)
τ
.

X has the CAP iff IdX ∈ K(X)
τ
.

X has the λ-BCAP iff IdX ∈ K(X, λ)
τ
.

X has the WAP iff K(X) ⊂ F(X)
τ
.

Also we observe the following :
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A Banach space has the AP iff it has both the CAP and the WAP.

To check the above statement we need that the AP implies the WAP. Indeed, if a Banach space X
has the AP, then we can pick a net (Tα) in F(X) such that Tα

τ→ IdX . Then for any S ∈ K(X), we

have TαS
τ→ S, hence S ∈ F(X)

τ
, which proves that X has the WAP.

We need two topologies on the space of operators. We define topologies by specifying convergent
nets. Here X is a Banach space.

Definition 2.3. For T and a net (Tα) in B(X) we say that the net (Tα) converges to T in the

ν-topology, or Tα
ν→ T iff ∑

n

x∗n(Tαxn) −→
∑

n

x∗n(Txn)

for every (xn) ⊂ X and (x∗n) ⊂ X∗ satisfying
∑

n ‖xn‖‖x∗n‖ < ∞.

Recall Lemma 2.2. Then on the space B(X) the τ -topology is stronger than the ν-topology. But
by a convex combination argument we see the following :

X has the AP iff IdX ∈ F(X)
ν
.

X has the λ-BAP iff IdX ∈ F(X, λ)
ν
.

X has the CAP iff IdX ∈ K(X)
ν
.

X has the λ-BCAP iff IdX ∈ K(X, λ)
ν
.

X has the WAP iff K(X) ⊂ F(X)
ν
.

Definition 2.4. For T and a net (Tα) in B(X∗) we say that the net (Tα) converges to T in the

weak∗-topology, or Tα
weak∗−→ T iff ∑

n

(Tαx∗n)xn −→
∑

n

(Tx∗n)xn

for every (xn) ⊂ X and (x∗n) ⊂ X∗ satisfying
∑

n ‖xn‖‖x∗n‖ < ∞.

The name, the weak∗-topology, comes from the fact that B(X∗) can be, in the canonical way,
identified with (X∗⊗̂πX)∗, the dual of the completed projective tensor product of X∗ and X. On
the space B(X∗) the ν-topology is stronger than the weak∗-topology. But they coincide when X is
reflexive. Note that for T and a net (Tα) in B(X)

Tα
ν→ T iff T ∗α

weak∗−→ T ∗. (2.1)

We finally define the properties which enable us to prove the dual and the three space problems for
the CAP in our setting.

Definition 2.5. Let X be a Banach space.

(a) The dual space X∗ is said to have the weak∗ density for compact operators, in short, W∗D if

K(X∗) ⊂ K(X∗, w∗)
weak∗

.
(b) The dual space X∗ is said to have the bounded weak∗ density for compact operators, in short,

BW∗D if K(X∗, 1) ⊂ K(X∗, w∗, λ)
weak∗

for some λ > 0.

In Section 3 it is shown that not every Banach space has the BW∗D. The question whether or not
every Banach space has the W∗D, which is not known, will be shown to be closely related to the dual
problem for the CAP.
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In this section we want to find, for the dual space X∗, the relations between W∗D, or BW∗D and
the various kinds of approximation properties. For this we need a lemma which is originally due to
Lindenstrauss and Tzafriri [LT] and Johnson ([J], Lemma 1). A proof of the following version is given
in [CK].

Lemma 2.6. Let X be a Banach space. Then we have the following.

(a) F(X∗) ⊂ F(X∗, w∗)
τ
⊂ F(X∗, w∗)

weak∗

.

(b) F(X∗, λ) ⊂ F(X∗, w∗, λ)
τ
⊂ F(X∗, w∗, λ)

weak∗

for all λ > 0.

Now we have a proposition about the properties W∗D and BW∗D.

Proposition 2.7. Let X be a Banach space. Then the following statements hold.

(a) If X∗ is reflexive, X∗ has the W∗D and the BW∗D. But the converse is false in general.
(b) If X∗ has the WAP, X∗ has the W∗D. But the converse is false in general.
(c) If X∗ has the BAP, X∗ has the BW∗D. But the converse is false in general.

Proof. (a). If X is reflexive, then every T ∈ B(X∗), being w-to-w continuous, is w∗-to-w∗ continuous,
hence T ∈ B(X∗, w∗) and we have K(X∗) = K(X∗, w∗) and K(X∗, 1) = K(X∗, w∗, 1), which implies
that X∗ has the W∗D and the BW∗D.

To show that the converse is false in general we consider X = c0, a non-reflexive Banach space.
Writing X∗ = l1, we claim that

K(X∗, 1) ⊂ K(X∗, w∗, 1)
τ
,

which obviously implies that X∗ has the BW∗D, hence the W∗D as well. Indeed, if we let T ∈ K(X∗, 1),
then for each n ∈ N the projection Pn ∈ B(l1) given by

Pn((αi)) = (α1, ..., αn, 0, 0, ...)

is w∗-to-norm continuous because

‖Pn((αi))‖ = |α1|+ ... + |αn| =
n∑

j=1

|〈ej, (αi)〉|

where ej ∈ c0 is the jth standard basis vector. Obviously ‖Pn‖ ≤ 1 for each n. Put Tn = TPn. Then
each Tn is compact and w∗-to-norm continuous, hence it is w∗-to-w∗ continuous. Having shown that
each Tn ∈ K(X∗, w∗, 1), it remains to show that Tn

τ→ T .
Let K ⊂ X∗ be compact and ε > 0. There is a finite set A ⊂ K such that for each x∗ ∈ K there is

y∗ ∈ A with ‖x∗ − y∗‖ < ε/3. Since Tnx
∗ −→ Tx∗ for each x∗ ∈ X∗ = l1, there is N ∈ N such that

n ≥ N implies

‖Tny
∗ − Ty∗‖ <

ε

3
for all y∗ ∈ A. One can check that n ≥ N implies ‖Tnx

∗ − Tx∗‖ < ε for all x∗ ∈ K, which completes
the proof.

(b). Assume that X∗ has the WAP. Then we have

K(X∗) ⊂ F(X∗)
τ

= F(X∗, w∗)
τ
⊂ K(X∗, w∗)

τ
⊂ K(X∗, w∗)

weak∗

,

where we used Lemma 2.6.(a) and the fact that the τ -topology is stronger than the weak∗-topology.
Thus X∗ has the W∗D.

To prove that the converse is not true in general we consider the Willis space Z, which is a separable
reflexive Banach space having the CAP, but not having the AP (See Willis [W]). Hence Z does not
have the WAP. Since Z is reflexive, with X = Z∗, we have that X is reflexive, hence by (a), X∗ has
the W∗D. But, X∗, being isometric to Z, fails to have the WAP.
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(c). Assume that X∗ has the BAP. Then there is λ > 0 and a net (Tα) in F(X∗, λ) such that

Tα
τ→ IdX∗ . Now, if S ∈ K(X∗, 1), then (Tα) converges uniformly on the compact set S(BX∗), the

image of the unit ball of X∗ under S, or ‖TαS − S‖ → 0, hence TαS
τ→ S, which implies that

S ∈ F(X∗, λ)
τ
⊂ F(X∗, w∗, λ)

weak∗

.

Here we used Lemma 2.6.(b). This proves that X∗ has the BW∗D. Of course, the counterexample in
(b) serves as a counterexample for (c) also. �

The following diagram summarizes the relations we have found between the properties for the dual
space X∗, including the W∗D and the BW∗D:

BAP =⇒ AP =⇒ WAP
=⇒
:

W ∗D

BAP
=⇒
:

BW ∗D =⇒ W ∗D

Reflexivity
=⇒
:

BW ∗D

3. The dual problem for the CAP

The following theorem shows that the properties W∗D and BW∗D are the right assumptions in solving
the dual problem for the CAP.

Theorem 3.1. Let X be a Banach space. Then we have the following.

(a) If X∗ has the CAP and the W∗D, then X has the CAP.
(b) If X∗ has the BCAP and the BW∗D, then X has the BCAP.

Proof. (a). Assume that X∗ has the CAP and the W∗D. Then

IdX∗ ∈ K(X∗)
τ

and K(X∗) ⊂ K(X∗, w∗)
weak∗

.

Since the τ -topology is stronger than the weak∗-topology, we have

IdX∗ ∈ K(X∗)
weak∗

= K(X∗, w∗)
weak∗

.

By (2.1) IdX ∈ K(X)
ν

which proves that X has the CAP.

(b). Assume that X∗ has the BCAP and the BW∗D. Then,

IdX∗ ∈ K(X∗, λ)
τ

and K(X∗, 1) ⊂ K(X∗, w∗, µ)
weak∗

for some λ and µ > 0. Since K(X∗, λ) ⊂ K(X∗, w∗, λµ)
weak∗

, as in (a), we have

IdX∗ ∈ K(X∗, w∗, λµ)
weak∗

.

By (2.1) IdX ∈ K(X,λµ)
ν

which proves that X has the BCAP. �

It is known that there is a Banach space X such that X fails to have the BCAP but X∗ has the
BCAP. According to Theorem 3.1.(b) X∗ cannot have the BW∗D. It is not known whether all Banach
spaces have the W∗D. Thus we are led to the following:

Question. Does the dual of every Banach space have the W∗D ?

If the above question has the affirmative answer, then the general dual problem for the CAP, in
view of Theorem 3.1.(a), also has the affirmative answer.
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4. The three space problem for the CAP

First we start with the following simple case when the subspace is complemented.

Proposition 4.1. If M is a complemented subspace of a Banach space X, then the pair (X, M) have
the three space property for the CAP and the BCAP.

Proof. Assume that M is a complemented subspace of a Banach space X. Then there is a projection
P : X −→ M onto M . Let ι : M −→ X be the inclusion.

First assume that X has the CAP. We will show that both M and X/M have the CAP. By the

assumption there is a net (Tα) be in K(X) such that Tα
τ→ IdX , hence Tα

ν→ IdX . Put Sα = PTαι.
Then (Sα) is a net in K(M) such that, whenever (mn) ⊂ M and (m∗

n) ⊂ M∗ with
∑

n ‖mn‖‖m∗
n‖ < ∞,

we have ∑
n

m∗
n(Sαmn) =

∑
n

m∗
nP (Tα ι mn) −→

∑
n

(m∗
nP )(ι mn) =

∑
n

m∗
nmn

because
∑

n ‖ι mn‖‖m∗
nP‖ < ∞. Hence Sα

ν→ IdM and M has the CAP.
For X/M observe that IdX − ι P : X −→ X is a projection with kernel M . Thus if we put

N = (IdX − ι P )(X) and define Q : X −→ N by Q(x) = (IdX − ι P )x, then Q is a projection onto
N . Hence N is a complemented subspace of X. By the above argument N has the CAP. But X/M
is isomorphic to N , hence it is easily checked that X/M also has the CAP.

The above argument also shows that if X has the BCAP, then so do M and X/M . Indeed, notice
that, in the case that X has the BCAP, (Tα) can be chosen as a bounded net in K(X). Thus (Sα)
becomes bounded too, which implies that M has the BCAP. For the same reason X/M has the BCAP.

Now assume that both M and X/M have the CAP. Let j : N −→ X be the inclusion. Observe
that X = M⊕N , the sum of M and N . Since both M and N have the CAP, given a compact K ⊂ X
and ε > 0 there are S ∈ K(M) and R ∈ K(N) such that

‖SPx− Px‖ < ε and ‖RQx−Qx‖ < ε

for all x ∈ K. Put Tx = ιSPx + jRQx for x ∈ X. Then we observe that T ∈ K(X) and

‖Tx− x‖ = ‖ι (SPx− Px) + j(RQx−Qx)‖ < 2ε

for all x ∈ K. Thus X has the CAP.
In the above, if M and N have the BCAP, then there are λ, µ > 0 so that

IdM ∈ K(M, λ)
τ

and IdN ∈ K(N, µ)
τ
.

Hence we could have chosen S and R in the above so that they also satisfy S ∈ K(M, λ) and
R ∈ K(N, µ). Then, since ‖T‖ ≤ λ‖P‖+ µ‖Q‖, we have

IdX ∈ K(X, λ‖P‖+ µ‖Q‖)
τ
,

which proves that X has the BCAP. �

The following is a well-known fact (See Diestel [D, Exercises 1.6 and 2.6,(1)]).

Fact. Let (Xn) be a sequence of Banach spaces. If 1 ≤ p < ∞ and K is a relatively compact
subset of (

∑
n

⊕
Xn)lp , then for every ε > 0 there is a positive integer Nε such that

∞∑
n>Nε

‖kn‖p
Xn

< ε

for all (kn) ∈ K. Also, if a subset K of (
∑

n

⊕
Xn)c0 is relatively compact, then for every ε > 0 there

is a positive integer Nε such that
sup
n>Nε

‖kn‖Xn < ε



ON DUAL AND THREE SPACE PROBLEMS FOR THE COMPACT APPROXIMATION PROPERTY 7

for all (kn) ∈ K.

Now from the above fact and an argument of the proof (If M and N have the CAP (respectively
BCAP), then M

⊕
N has the CAP (respectively BCAP)) of Proposition 4.1 we can easily check that

the CAP and the BCAP pass through sums. More precisely, if (Xn) is a sequence of Banach spaces
with the CAP, then the spaces (

∑
n

⊕
Xn)lp for every 1 ≤ p < ∞ and (

∑
n

⊕
Xn)c0 have the CAP.

And, if (Xk)
n
k=1 is a finite sequence of Banach spaces with the BCAP, then the spaces (

∑n
k=1

⊕
Xk)lp

for every 1 ≤ p ≤ ∞ have the BCAP.
Now we consider the general case when M is not necessarily complemented in X. Observe that if

M is complemented in X, then M⊥ is complemented in X∗. So it is reasonable for us to approach
the three space problem with the weaker assumption that M⊥ is complemented in X∗.

Theorem 4.2. Let M be a closed subspace of a Banach space X such that M⊥ is complemented in
X∗.

(a) If X has the CAP and M∗ has the W∗D, then M has the CAP.
(b) If X has the BCAP and M∗ has the BW∗D, then M has the BCAP.

Proof. Assume that M⊥ is complemented in X∗. Then there is a projection P : X∗ −→ M⊥ onto
M⊥. Define a map U : M∗ −→ X∗ by

Um∗ = x∗ − Px∗

where x∗ is any linear functional in X∗ with x∗ = m∗ on M . Since P is a projection on M⊥, one
easily checks that U is well-defined and

(Um∗)m = m∗m

for all m∗ ∈ M∗ and m ∈ M . Of course, U is a bounded operator.
Let ι : M −→ X be the inclusion.

(a). Assume that X has the CAP and M∗ has the W∗D. Since X has the CAP, there is a net (Tα)

in K(X) such that Tα
τ→ IdX , hence Tα

ν→ IdX . By (2.1) T ∗α
weak∗−→ Id∗X . Observe that ι∗T ∗αU ∈ K(M∗)

and if (mn) ⊂ M and (m∗
n) ⊂ M∗ with

∑
n ‖mn‖‖m∗

n‖ < ∞, then
∑

n ‖ι mn‖‖Um∗
n‖ < ∞, hence∑

n

(ι∗T ∗αUm∗
n)mn −→

∑
n

(IdX∗Um∗
n)ι mn =

∑
n

m∗
nmn.

Thus IdM∗ ∈ K(M∗)
weak∗

. Now because of the assumption that M∗ has the W∗D, we have IdM∗ ∈
K(M∗, w∗)

weak∗

, hence IdM ∈ K(M)
ν
, which proves that M has the CAP.

(b). Assume that X has the BCAP and M∗ has the BW∗D. Hence IdX ∈ K(X, λ)
τ

and K(M∗, 1) ⊂
K(M∗, w∗, µ)

weak∗

for some λ and µ > 0. We proceed as in the proof of (a). This time we can arrange
a net (Tα) in the above from K(X,λ) so that

‖ι∗T ∗αU‖ ≤ λ‖U‖.

Thus we have IdM∗ ∈ K(M∗, w∗, λµ‖U‖)
weak∗

, or IdM ∈ K(M, λµ‖U‖)
ν
, which proves that M has

the BCAP. �

Our last theorem is about the remaining part of the three space problem.

Theorem 4.3. Let M be a closed subspace of a Banach space X such that M⊥ is complemented in
X∗ and M has the BCAP.

(a) If X/M has the CAP and X∗ has the W∗D, then X has the CAP.
(b) If X/M has the BCAP and X∗ has the BW∗D, then X has the BCAP.
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Proof. Assume that M⊥ is complemented in X∗ and M has the BCAP. As in the proof of Theorem 4.2
we let ι : M −→ X be the inclusion, P : X∗ −→ M⊥ be the projection onto M⊥ and U : M∗ −→ X∗

be given by

Um∗ = x∗ − Px∗

where x∗ is in X∗ with x∗ = m∗ on M . Recall that U is a well-defined bounded operator such that

(Um∗)m = m∗m

for all m∗ ∈ M∗ and m ∈ M .
By the assumption that M has the BCAP, there is λ > 0 and a net (Sα) in K(M, λ) such that

Sα
ν→ IdM . Observe that (US∗αι∗) is a bounded net in K(X∗), hence, in view of the Alaoglu theorem,

it has a weak∗-cluster point W in B(X∗). If x∗ ∈ X∗ and m ∈ M , then (Wx∗)m is a cluster point of
the net ((US∗αι∗x∗)m) and

(US∗αι∗x∗)m = (S∗αι∗x∗)m = ι∗x∗(Sαm) −→ (ι∗x∗)m = x∗m,

thus we have

(Wx∗)m = x∗m.

Now define an opertor R on X∗ by

Rx∗ = Wx∗ − x∗.

Then R : X∗ −→ M⊥ is a well-defined bounded operator.
For the proof of this theorem let j : M⊥ −→ X∗ be the inclusion map. We will identify (X/M)∗

with M⊥ in the canonical way.

(a). Assume that X/M has the CAP and X∗ has the W∗D.

Observe that IdX∗ = W − jR and notice that W ∈ K(X∗)
weak∗

. Thus, if we show that jR ∈
K(X∗)

weak∗

, then we have

IdX∗ ∈ K(X∗)
weak∗

= K(X∗, w∗)
weak∗

because of the assumption that X∗ has the W∗D. This proves that X has the CAP.

It only remains to check that jR ∈ K(X∗)
weak∗

. By the assumption that X/M has the CAP, there is

a net (Qβ) in K(X/M) such that Qβ
ν→ IdX/M . Now consider the net (jQ∗

βR) in K(X∗). If (xn) ⊂ X
and (x∗n) ⊂ X∗ with

∑
n ‖xn‖‖x∗n‖ < ∞, then∑

n

(jQ∗
βRx∗n)xn =

∑
n

(Q∗
β(Rx∗n))(xn + M) −→

∑
n

(Rx∗n)(xn + M) =
∑

n

(jRx∗n)xn

because Q∗
β

weak∗→ IdM⊥ and
∑

n ‖xn + M‖‖Rx∗n‖ < ∞.

This proves jQ∗
βR

weak∗→ jR and jR ∈ K(X∗)
weak∗

.

(b). Assume that X/M has the BCAP and X∗ has the BW∗D. Thus there are µ, η > 0 and a net

(Qβ) in K(X/M, η) such that Qβ
ν→ IdX/M and K(X∗, 1) ⊂ K(X∗, w∗, µ)

weak∗

.

First, observe that W ∈ K(X∗, λ‖U‖)
weak∗

. Also, if we proceed as in the proof of (a), we find that

jR ∈ K(X∗, η‖R‖)
weak∗

. Thus, we have

IdX∗ ∈ K(X∗, w∗, µ(λ‖U‖+ η‖R‖))
weak∗

,

which proves that X has the BCAP. �
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