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Abstract. In this paper we show that, for two regular Borel probabilities µ
and ν on a compact Hausdorff space Ω, absolute continuity of measures µ ¿ ν
is equivalent to absolute continuity of inclusion operators [C(Ω) ↪→ L1(µ)] ¿
[C(Ω) ↪→ L1(ν)]. We then generalize this to vector valued cases.

1. Introduction

The notion of (absolute) continuity of one measure with respect to another has
its roots in classical real variables, of course. The absolute continuity of point
functions defined on intervals goes back at least as far as Harnack in his study of
integration. However, it was G. Vitali who truly established absolutely continuous
functions as objects of great importance in a sequence of fundamental properties
in the first decade of the twentieth century. A decisive step in the evolution of ab-
solute continuity was taken with the famous theorem of S. Banach and M. Zarecki
to the effect that a continuous function f : [0, 1] → R of bounded variation is
absolutely continuous if and only if f(E) has Lebesgue measure zero whenever E
does. The emergence of general measure theory was accompanied by the important
role to be played in that theory by absolute continuity. Already by 1930, Nikodým
had established the so-called Radon-Nikodým theorem, extending earlier work of
J. Radon regarding Borel measures in Euclidean spaces. The establishment by
A.N. Kolmogorov of the foundation of probability theory on a measure theoretic
basis and the critical role played by the Radon-Nykodým theorem in understand-
ing conditioning ensured absolute continuity of a permanent and central place in
mathematical analysis. This note concerns the absolute continuity of regular Borel
measures on compact Hausdorff spaces. Our main results build on earlier work of
C.P. Niculescu; the ideas of Niculescu (see [2]) were used, for example, to broach
the subject of weakly compact operators on C(K)-spaces and their relationship to
absolute summing operators in ([1], Chapter 15).

2. Preliminaries

Let (Ω, Σ) be a measurable space, X a Banach space with unit ball BX and dual
space X∗, and F : Σ → X a countably additive vector measure. The semivariation
of F is the set function ‖F‖(A) = sup{|x∗F |(A) : x∗ ∈ BX∗}, where |x∗F | is the
variation of the scalar measure x∗F . A vector measure F : Σ → X is regular if for
any E ∈ Σ and ε > 0, there exist a compact set K and an open set O such that

Date: July 11, 2005.
2000 Mathematics Subject Classification. Primary: 28B05; Secondary: 28A15.
Key words and phrases. Vector measure, Rybakov control measure, Radon-Nikodým theorem.
Research of the first author is supported by BK 21 project.

1



2 CHANGSUN CHOI AND M. DE KOCK

‖F‖(O \K) < ε, where K ⊂ E ⊂ O. We say that a vector measure F : Σ → X is
absolutely continuous with respect to another vector measure G : Σ → Y if for all
ε > 0, there exists δ > 0 such that for each E ∈ Σ, ‖G‖(E) < δ implies ‖F‖(E) < ε.
We denote it by F ¿ G.

Let X, Y and Z be Banach spaces. Suppose T : X → Y and S : X → Z are
bounded linear operators. We say that T is absolutely continuous with respect to
S, written T ¿ S, if given ε > 0, there is a k > 0 so that for any x ∈ X

‖Tx‖ ≤ k‖Sx‖+ ε‖x‖.

A measurable function f : Ω → R is integrable with respect to a vector measure
F : Σ → X if

(1) f is x∗F integrable for every x∗ ∈ X∗ and
(2) for every A ∈ Σ there exists an element of X, denoted by

∫
A

fdF , such
that

x∗
∫

A

fdF =
∫

A

fdx∗F

for every x∗ ∈ X∗.

Identifying two functions if the set where they differ has null ‖F‖ semivariation, we
obtain a linear space of classes of functions which, when endowed with the norm

‖f‖L1(F ) = sup
{∫

Ω

|f |d|x∗F | : x∗ ∈ BX∗

}
,

becomes a Banach space. We denote it by L1(F ) (see [4]). A Rybakov control
measure for F : Σ → X is a measure µ = |x∗F |, such that µ(E) = 0 if and only if
‖F‖(E) = 0. The well-known Rybakov theorem says that any countably additive
vector measure has a Rybakov control measure.(see [5], Theorem IX.2.2).

3. Absolute continuity of scalar-valued measures

Theorem 1. Let Ω be a compact Hausdorff space with Borel σ-field Σ and let µ
and ν be regular Borel probabilities on Ω. Then the following are equivalent:

(a) [C(Ω) ↪→ L1(µ)] ¿ [C(Ω) ↪→ L1(ν)]
(b) µ ¿ ν
(c) [B(Σ) ↪→ L1(µ)] ¿ [B(Σ) ↪→ L1(ν)],

where B(Σ) is the Banach space of all bounded Borel measurable functions equipped
with the supremum norm.

Proof. (a) ⇒ (b). Suppose µ is not absolutely continuous with respect to ν. Then
there exists E ∈ Σ and ε > 0 such that µ(E) = 3ε > 0 and ν(E) = 0. Using
the regularity of µ and ν, choose a compact set K ⊂ E so that µ(K) > 2ε and
a sequence of open sets (On) such that On ⊇ E and ν(On \ E) = ν(On) → 0 as
n →∞. For the above ε > 0 our assumption (a) gives a k > 0 such that

∫

Ω

|f |dµ ≤ k

∫

Ω

|f |dν + ε‖f‖C(Ω)
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for all f ∈ C(Ω). For each n, the Urysohn lemma gives fn ∈ C(Ω) such that
χK ≤ fn ≤ χOn

. Then

2ε < µ(K) ≤
∫

Ω

fndµ

≤ k

∫

Ω

|fn|dν + ε‖fn‖C(Ω)

≤ kν(On) + ε

for all n; a contradiction.
(b) ⇒ (c). Assume µ ¿ ν, then by the Radon-Nykodým theorem there exists

h ∈ L1(ν) such that 0 ≤ h < ∞ and µ(E) =
∫

E
hdν for all E ∈ Σ. Given ε > 0

choose k > 0 such that ∫

{h>k}
hdν < ε.

Then, given f ∈ B(Σ),

‖f‖L1(µ) =
∫

Ω

|f |dµ =
∫

Ω

|f |hdν

=
∫

{h≤k}
|f |hdν +

∫

{h>k }
|f |hdν

≤ k‖f‖L1(ν) + ε‖f‖B(Σ).

(c) ⇒ (a). This is clear. ¤

We now generalize the above result to vector valued functions.

Theorem 2. Let X 6= {0} be a Banach space, Ω a compact Hausdorff space with
Borel σ-field Σ, and let µ and ν be regular Borel probabilities on Ω. Then the
following are equivalent:

(a) [C(Ω, X) ↪→ L1(µ,X)] ¿ [C(Ω, X) ↪→ L1(ν, X)]
(b) µ ¿ ν
(c) [B(Σ, X) ↪→ L1(µ,X)] ¿ [B(Σ, X) ↪→ L1(ν,X)],

where f ∈ B(Σ, X) if and only if fn → f uniformly on Ω for some sequence (fn)
of Borel simple functions fn : Ω → X.

Proof. (a) ⇒ (b). In view of Theorem 1, it suffices to show that (a) implies
(a∗) [C(Ω) ↪→ L1(µ)] ¿ [C(Ω) ↪→ L1(ν)].

Pick x0 ∈ X with ‖x0‖ = 1. Given ε > 0, by (a) there is a k > 0 such that

(1)
∫

Ω

‖f‖dµ ≤ k

∫

Ω

‖f‖dν + ε‖f‖C(Ω,X)

for all f ∈ C(Ω, X). For each f ∈ C(Ω), consider fx0 ∈ C(Ω, X) in (1), in order to
get ∫

Ω

|f |dµ ≤ k

∫

Ω

|f |dν + ε‖f‖C(Ω),

which proves (a∗).
(b) ⇒ (c). The proof is similar to the proof of the previous theorem. In fact,

assume µ ¿ ν, then there is an 0 ≤ h ∈ L1(ν) such that µ(E) =
∫

E
hdν for all
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E ∈ Σ. Given ε > 0 choose k > 0 such that∫

{h>k}
hdν < ε.

Then given f ∈ B(Σ, X),

‖f‖L1(µ,X) =
∫

Ω

‖f‖dµ

=
∫

{h≤k}
‖f‖hdν +

∫

{h>k}
‖f‖hdν

≤ k‖f‖L1(ν) + ε‖f‖B(Σ).

(c) ⇒ (a). This is clear.
¤

4. Absolute continuity of vector measures

We can extend the result in the previous section to absolutely continuous vector
measures.

Theorem 3. Let Ω be a compact Hausdorff space with Borel σ-field Σ. Let X and
Y be Banach spaces and let F : Σ → X and G : Σ → Y be countably additive
regular vector measures. Then the following are equivalent:

(a) [C(Ω) ↪→ L1(F )] ¿ [C(Ω) ↪→ L1(G)]
(b) F ¿ G
(c) [B(Σ) ↪→ L1(F )] ¿ [B(Σ) ↪→ L1(G)],

where B(Σ) is the Banach space of all bounded Borel measurable scalar-valued func-
tions on Ω.

Proof. (a)⇒(b). Suppose F ¿ G is false. Then there is a sequence (En) in Σ and
ε > 0 such that

‖F‖(En) > 3ε and ‖G‖(En) <
1
2n

for all n. By the regularity of F and G there exist compact sets (Kn) and open
sets (On) such that Kn ⊂ En ⊂ On and

‖F‖(En \Kn) < ε and ‖G‖(On \ En) <
1
2n

for all n. By the Urysohn lemma, we can choose fn ∈ C(Ω) such that

χKn ≤ fn ≤ χOn .

We claim that ‖fn‖L1(F ) > 2ε and ‖fn‖L1(G) < 1
n for all n. Indeed, notice that

‖fn‖L1(F ) = sup
{∫

Ω

|fn| d|x∗F | : x∗ ∈ BX∗

}

≥ sup {|x∗F |(Kn) : x∗ ∈ BX∗}
= ‖F‖(Kn)

≥ ‖F‖(En)− ‖F‖(En \Kn)
> 3ε− ε
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follows from the subadditivity of the semivariation. That ‖fn‖L1(G) < 1
n follows in

a similar fashion. By (a) we have for the above ε > 0 a constant k > 0 such that

‖f‖L1(F ) ≤ k‖f‖L1(G) + ε‖f‖C(Ω)

for all f ∈ C(Ω). Then it follows from our claim that

2ε < k · 1
n

+ ε

for all n; a contradiction.
(b)⇒(c). Assume F ¿ G. By the Rybakov theorem there is a y∗0 ∈ Y ∗ such

that ‖y∗0‖ ≤ 1 and G ¿ |y∗0G|. Put µ = |y∗0G|. Since we assume F ¿ G we have
F ¿ µ. Hence, given ε > 0 there is δ > 0 such that ‖F‖(E) ≤ ε whenever E ∈ Σ

and µ(E) ≤ δ. Put k =
‖F‖(Ω)

δ
. Then, for each x∗ ∈ BX∗ , since |x∗F | ¿ µ,

writing gx∗ for the Radon-Nikodým derivative of |x∗F | with respect to µ, we have∫

{gx∗>k}
gx∗dµ = |x∗F |({gx∗ > k}) ≤ ‖F‖({gx∗ > k}) ≤ ε

because

µ({gx∗ > k}) ≤ 1
k

∫

Ω

gx∗dµ =
1
k
|x∗F |(Ω) ≤ ‖F‖(Ω)

k
= δ.

Hence, for any f ∈ B(Σ) and x∗ ∈ BX∗ , recalling that µ = |y∗0G| with ‖y∗0‖ ≤ 1,
we have ∫

Ω

|f |d|x∗F | =
∫

Ω

|f |gx∗dµ

=
∫

{gx∗≤k}
|f |gx∗dµ +

∫

{gx∗>k }
|f |gx∗dµ

≤ k

∫

Ω

|f |dµ + ‖f‖B(Σ)

∫

{gx∗>k }
gx∗dµ

≤ k‖f‖L1(G) + ε‖f‖B(Σ).

Now, taking the supremum over x∗ ∈ BX∗ , we obtain

‖f‖L1(F ) ≤ k‖f‖L1(G) + ε‖f‖B(Σ)

for f ∈ B(Σ). This proves the implication.
(c) ⇒ (a). This is obvious. ¤
Remark. It is interesting to observe that in Theorem 3 the implication (a) ⇒ (c)

can be proved directly if one applies Lusin’s theorem and Tietze’s extension theo-
rem. Indeed, given f ∈ B(Σ), Lusin’s theorem gives a sequence (Kn) of compact
subsets of Ω such that f |Kn is continuous and η(Kc

n) < 1
n , µ(Kc

n) < 1
n for all n ∈ N.

Here η = |x∗0F | and µ = |y∗0G| are Rybakov measures for F and G, respectively.
Then using Tietze’s extension theorem one obtains a sequence (fn) in C(Ω) such
that

‖fn‖C(Ω) ≤ ‖f‖B(Σ)

and ∫

Ω

|fn − f |dη ≤ 2
n
‖f‖B(Σ),

∫

Ω

|fn − f |dµ ≤ 2
n
‖f‖B(Σ)

holds for all n. Hence, in order to prove (a) ⇒ (c), it suffices to check that
‖fn‖L1(F ) → ‖f‖L1(F ) and ‖fn‖L1(G) → ‖f‖L1(G) as n → ∞. Let ε > 0 and
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δ > 0, and k > 0 be as in the proof of (b) ⇒ (c) in Theorem 3. Also let gx∗ be the
Radon-Nikodým derivative of |x∗F | with respect to η. Then∫

Ω

|fn − f |d|x∗F | =
∫

{gx∗>k}
|fn − f |gx∗dη

≤ k

∫

Ω

|fn − f |dη + 2‖f‖B(Σ) ·
∫

{gx∗>k}
gx∗dη

≤ 2
(

k

n
+ ε

)
‖f‖B(Σ)

for all x∗ ∈ BX∗ . Now, taking the supremum over x∗, then taking the limit as
n →∞, one gets

lim sup
n→∞

‖fn − f‖L1(F ) ≤ 2ε‖f‖B(Σ).

Since ε > 0 was arbitrary one has |‖fn‖L1(F ) − ‖f‖L1(F )| ≤ ‖fn − f‖L1(F ) → 0 as
n →∞.
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