CHANNELED SAMPLING IN TRANSLATION INVARIANT SUBSPACES

K. H. KWON AND E. H. LEE

Abstract

We develop single and two-channel sampling formula in the translation invariant subspaces in the multi resolution analysis $\left\{V_{j}\right\}$ of wavelet theory. First, we give a single channel sample formula in V_{0}, which extends results by G. G. Walter and W. Chen and S. Itoh. We then find necessary and sufficient conditions for two-channel sampling formula to hold in V_{1}. KEY WORDS : CHANNELED SAMPLING, TRANSLATION INVARIANT SUBSPACE, WAVELET

1. Introduction

The classical Whittaker-Shannon-Kotel'nikov(WSK) sampling theorem [4] states that if a signal $f(t)$ with finite energy is band-limited with the bandwidth π, then it can be completely reconstructed from its discrete values by the formula

$$
f(t)=\sum_{n=-\infty}^{\infty} f(n) \frac{\sin \pi(t-n)}{\pi(t-n)}
$$

which converges both in $L^{2}(\mathbb{R})$ and uniformly on \mathbb{R}, which has been extended in many directions (e.g. [1], [6] and [8]). In 1992, G. G. Walter [9] developed a sampling theorem in wavelet subspaces, noticing that the sampling function $\sin \pi t / \pi t$ in the WSK theorem is a scaling function of a multi resolution analysis. He assumed that the scaling function $\phi(t)$ is a continuous real valued function with $\phi(t)=O\left(|t|^{-1-\epsilon}\right)(\epsilon>0)$ for $|t|$ large, which does not hold for $\sin \pi t / \pi t$. Following G. G. Walter's work, A. J. E. M. Janssen [5] used the Zak transform to generalize Walter's work. Later, W. Chen and S. Itoh [2] extended Walter's result by requiring only the condition $\{\phi(n)\} \in l^{2}$ on the scaling function without any decaying property. However, there were some gaps in the proof of the main result in [2].

In this work, we first re-examine the results in [2] and then extend it to single and double channel sampling formulas in the translation invariant subspaces of a multi resolution analysis.

2. Preliminaries

Definition 2.1. A function $\phi(t) \in L^{2}(\mathbb{R})$ is called a scaling function of a multi resolution analy$\operatorname{sis}\left(\right.$ MRA in short) $\left\{V_{j}\right\}$ if the closed subspaces V_{j} of $L^{2}(\mathbb{R})$,

$$
V_{j}:=\overline{\operatorname{span}}\left\{\phi\left(2^{j} t-k\right): k \in \mathbb{Z}\right\}, \quad j \in \mathbb{Z}
$$

satisfy the following properties;
(i) $\cdots \subset V_{-1} \subset V_{0} \subset V_{1} \cdots$;
(ii) $\overline{\bigcup V_{j}}=L^{2}(\mathbb{R})$;
(iii) $\cap V_{j}=\{0\}$;
(iv) $f(t) \in V_{j}$ if and only if $f(2 t) \in V_{j+1}$;
(v) $\{\phi(t-k): k \in \mathbb{Z}\}$ is a Riesz basis of V_{0}.

Then $\left\{\phi\left(2^{j} t-k\right): k \in \mathbb{Z}\right\}$ becomes a Riesz basis of V_{j} for each j. The wavelet subspace W_{j} is defined to be the orthogonal complement of V_{j} in V_{j+1} so that

$$
V_{j+1}=V_{j} \oplus W_{j}
$$

Then there exists a wavelet $\psi(t) \in L^{2}(\mathbb{R})$ that induces a Riesz basis $\left\{\psi\left(2^{j} t-k\right): k \in \mathbb{Z}\right\}$ of W_{j}. Moreover, $\left\{\phi\left(2^{j} t-k\right), \psi\left(2^{j} t-k\right): k \in \mathbb{Z}\right\}$ forms a Riesz basis of V_{j+1}.

For any $\phi(t) \in L^{2}(\mathbb{R})$, we let

$$
\mathcal{F}(\phi)(\xi)=\hat{\phi}(\xi):=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \phi(t) e^{-i t \xi} d t \quad \text { and } \quad \mathcal{F}^{-1}(\hat{\phi})(t):=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{\phi}(\xi) e^{i t \xi} d \xi
$$

be the Fourier and inverse Fourier transforms of $\phi(t)$ and $\hat{\phi}(\xi)$ respectively. For a measurable function $f(t)$ on a set $X \subset \mathbb{R}$, we let

$$
\|f(t)\|_{0}:=\sup _{|E|=0} \inf _{X \backslash E}|f(t)| \quad \text { and } \quad\|f(t)\|_{\infty}:=\inf _{|E|=0} \sup _{X \backslash E}|f(t)|
$$

be the essential infimum of $|f(t)|$ on X and the essential supremum of $|f(t)|$ on X respectively.
Proposition 2.1. [3] Let $\phi(t) \in L^{2}(\mathbb{R})$. Then
(i) $\{\phi(t-k): k \in \mathbb{Z}\}$ is a Bessel sequence if and only if there is a constant $B>0$ such that

$$
\sum_{k}|\hat{\phi}(\xi+2 k \pi)|^{2} \leq B, \quad \text { a.e. in } \quad[0,2 \pi]
$$

(ii) $\{\phi(t-k): k \in \mathbb{Z}\}$ is a Riesz sequence if and only if there are constants $B \geq A>0$ such that

$$
A \leq \sum_{k}|\hat{\phi}(\xi+2 k \pi)|^{2} \leq B, \quad \text { a.e. in } \quad[0,2 \pi]
$$

We call A and B lower and upper Riesz bounds for a Riesz sequence $\{\phi(t-k): k \in \mathbb{Z}\}$ respectively. For later use we give a corollary of Proposition 2.1.

Corollary 2.2. Let $\phi(t) \in L^{2}(\mathbb{R}), M(\xi) \in L^{\infty}(\mathbb{R})$, and

$$
C(\phi)(t):=\mathcal{F}^{-1}(\hat{\phi} M)(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{\phi}(\xi) M(\xi) e^{i t \xi} d \xi
$$

Then
(i) $\{C(\phi)(t-k): k \in \mathbb{Z}\}$ is a Bessel sequence if $\{\phi(t-k): k \in \mathbb{Z}\}$ is a Bessel sequence.
(ii) $\{C(\phi)(t-k): k \in \mathbb{Z}\}$ is a Riesz sequence if $\{\phi(t-k): k \in \mathbb{Z}\}$ is a Riesz sequence and $\|M(\xi)\|_{0}>0$.

Proof. (i): Let $\{\phi(t-k): k \in \mathbb{Z}\}$ be a Bessel sequence with $\sum_{k}|\hat{\phi}(\xi+2 k \pi)|^{2} \leq B$, a.e. in $\quad[0,2 \pi]$. Then

$$
\begin{aligned}
\sum_{k}|\widehat{C(\phi)}(\xi+2 k \pi)|^{2} & =\sum_{k}|\hat{\phi}(\xi+2 k \pi) M(\xi+2 k \pi)|^{2} \\
& \leq \sum_{k}|\hat{\phi}(\xi+2 k \pi)|^{2}\|M(\xi)\|_{\infty}^{2} \leq B\|M(\xi)\|_{\infty}^{2}, \text { a.e. in }[0,2 \pi]
\end{aligned}
$$

so that $\{C(\phi)(t-k): k \in \mathbb{Z}\}$ is a Bessel sequence by Proposition 2.1.
(ii): Let $\{\phi(t-k): k \in \mathbb{Z}\}$ be a Riesz sequence with bounds A and B. Then, as in (i) we have

$$
A\|M(\xi)\|_{0}^{2} \leq \sum_{k}|\widehat{C(\phi)}(\xi+2 k \pi)|^{2}=\sum_{k}|\hat{\phi}(\xi+2 k \pi) M(\xi+2 k \pi)|^{2} \leq B\|M(\xi)\|_{\infty}^{2}
$$

so that $\{C(\phi)(t-k): k \in \mathbb{Z}\}$ is a Riesz sequence by Proposition 2.1.

3. Single Channel Sampling in translation invariant Subspaces

In this section we give a single channel sampling in V_{0}, which extends results in G. G. Walter [9] and W. Chen and S. Itoh [2].

Lemma 3.1. [3] Let $\phi(t) \in L^{2}(\mathbb{R})$ be such that $\{\phi(t-k): k \in \mathbb{Z}\}$ is a Bessel sequence. Then, for any $\left\{c_{k}\right\} \in l^{2}, \sum_{k} c_{k} \phi(t-k)$ converges in $L^{2}(\mathbb{R})$ and

$$
\mathcal{F}\left(\sum_{k} c_{k} \phi(t-k)\right)=\sum_{k}\left(c_{k} e^{-i k \xi} \hat{\phi}(\xi)\right)=\left(\sum_{k} c_{k} e^{-i k \xi}\right) \hat{\phi}(\xi)
$$

Let \mathcal{F}^{*} be the discrete Fourier transform on $l^{p}(p=1,2)$ defined by $\mathcal{F}^{*}\left(\left\{c_{k}\right\}\right)(\xi):=\sum_{k} c_{k} e^{-i k \xi}$. Then, $\mathcal{F}^{*}\left(\left\{c_{k}\right\}\right)(\xi)$ belongs to $C[0,2 \pi]$ or $L^{2}[0,2 \pi]$ if $\left\{c_{k}\right\} \in l^{1}$ or l^{2} respectively. We denote $\mathcal{F}^{*}(\{\phi(k)\})(\xi)$ by $\hat{\phi}^{*}(\xi)$ for $\phi(t) \in L^{2}(\mathbb{R})$ when $\phi(k)(k \in \mathbb{Z})$ are well defined.

Lemma 3.2. If $\left\{a_{k}\right\},\left\{b_{k}\right\} \in l^{2}$, and $\mathcal{F}^{*}\left(\left\{a_{k}\right\}\right)(\xi) \in L^{\infty}[0,2 \pi]$, then $\left\{\sum_{j} a_{j} b_{k-j}\right\} \in l^{2}$ and

$$
\mathcal{F}^{*}\left(\left\{a_{k}\right\}\right)(\xi) \mathcal{F}^{*}\left(\left\{b_{k}\right\}\right)(\xi)=\mathcal{F}^{*}\left(\left\{\sum_{j} a_{j} b_{k-j}\right\}\right)(\xi)
$$

Proof. Since $\mathcal{F}^{*}\left(\left\{a_{k}\right\}\right)(\xi) \in L^{\infty}[0,2 \pi]$ and $\mathcal{F}^{*}\left(\left\{b_{k}\right\}\right)(\xi) \in L^{2}[0,2 \pi], \mathcal{F}^{*}\left(\left\{a_{k}\right\}\right)(\xi) \mathcal{F}^{*}\left(\left\{b_{k}\right\}\right)(\xi) \in L^{2}[0,2 \pi]$. Hence we can expand $\mathcal{F}^{*}\left(\left\{a_{k}\right\}\right)(\xi) \mathcal{F}^{*}\left(\left\{b_{k}\right\}\right)(\xi)$ into its Fourier series $\sum_{n} c_{n} e^{-i n \xi}$ in $L^{2}[0,2 \pi]$, where

$$
\begin{aligned}
c_{n} & =\frac{1}{2 \pi}\left\langle\mathcal{F}^{*}\left(\left\{a_{k}\right\}\right)(\xi) \mathcal{F}^{*}\left(\left\{b_{k}\right\}\right)(\xi), e^{-i n \xi}\right\rangle_{L^{2}[0,2 \pi]} \\
& =\frac{1}{2 \pi}\left\langle\sum_{k} a_{k} e^{-i k \xi},\left(\sum_{k} \overline{b_{k}} e^{i k \xi}\right) e^{-i n \xi}\right\rangle_{L^{2}[0,2 \pi]} \\
& =\frac{1}{2 \pi}\left\langle\sum_{k} a_{k} e^{-i k \xi}, \sum_{k} \overline{b_{n-k}} e^{-i k \xi}\right\rangle_{L^{2}[0,2 \pi]}=\sum_{k} a_{k} b_{n-k}
\end{aligned}
$$

by Parseval's identity. Hence the conclusion follows.
Theorem 3.3. Suppose that $\phi(t)$ is a scaling function for an $M R A\left\{V_{j}\right\}$ such that $\phi(n)$'s are well defined and $\{\phi(n)\} \in l^{2}$. Then, there exists $S(t) \in V_{0}$ such that $\{S(t-n): n \in \mathbb{Z}\}$ is a Riesz basis of V_{0} and

$$
\begin{equation*}
f(t)=\sum_{n} f(n) S(t-n) \quad \text { in } L^{2}(\mathbb{R}), \quad f(t) \in V_{0} \tag{3.1}
\end{equation*}
$$

if and only if $0<\left\|\hat{\phi}^{*}(\xi)\right\|_{0} \leq\left\|\hat{\phi}^{*}(\xi)\right\|_{\infty}<\infty$. In this case, we have $\hat{S}(\xi)=\frac{\hat{\phi}(\xi)}{\hat{\phi}^{*}(\xi)}$.
Proof. Assume $0<\alpha:=\left\|\hat{\phi}^{*}(\xi)\right\|_{0} \leq \beta:=\left\|\hat{\phi}^{*}(\xi)\right\|_{\infty}<\infty$. Then $\frac{1}{\left|\hat{\phi}^{*}(\xi)\right|} \leq \frac{1}{\alpha}$ a.e. in $[0,2 \pi]$ so that $\frac{1}{\hat{\phi}^{*}(\xi)} \in L^{2}[0,2 \pi]$. Let $\frac{1}{\hat{\phi}^{*}(\xi)}=\sum_{k} c_{k} e^{-i k \xi}$ be its Fourier series, where $\left\{c_{k}\right\} \in l^{2}$ and set $F(\xi):=\frac{\hat{\phi}(\xi)}{\hat{\phi}^{*}(\xi)}$. Then $F(\xi) \in L^{2}(\mathbb{R})$ and $F(\xi)=\left(\sum_{k} c_{k} e^{-i k \xi}\right) \hat{\phi}(\xi)=\sum_{k}\left(c_{k} e^{-i k \xi} \hat{\phi}(\xi)\right)$ by Lemma 3.1. Hence $S(t):=\mathcal{F}^{-1}(F)(t)=\sum_{k} c_{k} \phi(t-k) \in V_{0}$. Now, we show that $\{S(t-k): k \in \mathbb{Z}\}$ is a Riesz sequence. Since $\hat{S}(\xi)=\frac{\hat{\phi}(\xi)}{\hat{\phi}^{*}(\xi)}$, we have

$$
\frac{A_{\phi}}{\beta^{2}} \leq \sum_{k}|\hat{S}(\xi+2 k \pi)|^{2}=\frac{\sum_{k}|\hat{\phi}(\xi+2 k \pi)|^{2}}{\left|\hat{\phi}^{*}(\xi)\right|^{2}} \leq \frac{B_{\phi}}{\alpha^{2}} \quad \text { a.e. in }[0,2 \pi]
$$

where A_{ϕ} and B_{ϕ} are Riesz bounds for $\{\phi(t-k): k \in \mathbb{Z}\}$. Hence $\{S(t-k): k \in \mathbb{Z}\}$ is a Riesz sequence by Proposition 2.1 (ii).

For any $f(t)=\sum_{k} a_{k} \phi(t-k) \in V_{0}$ where $\left\{a_{k}\right\} \in l^{2}$, we have by Lemma 3.1,

$$
\hat{f}(\xi)=\left(\sum_{k} a_{k} e^{-i k \xi}\right) \hat{\phi}(\xi)=\left(\sum_{k} a_{k} e^{-i k \xi}\right) \hat{\phi}^{*}(\xi) \hat{S}(\xi)
$$

Since $\left\|\hat{\phi}^{*}(\xi)\right\|_{\infty}<\infty$,

$$
\begin{equation*}
\left(\sum_{k} a_{k} e^{-i k \xi}\right) \hat{\phi}^{*}(\xi)=\sum_{n} f(n) e^{-i n \xi} \tag{3.2}
\end{equation*}
$$

where $\left\{f(n):=\sum_{k} a_{k} \phi(n-k)\right\} \in l^{2}$ by Lemma 3.2. Hence

$$
\begin{equation*}
\hat{f}(\xi)=\left(\sum_{n} f(n) e^{-i n \xi}\right) \hat{S}(\xi)=\sum_{n}\left(f(n) e^{-i n \xi} \hat{S}(\xi)\right) \tag{3.3}
\end{equation*}
$$

by Lemma 3.1 since $\{S(t-n): n \in \mathbb{Z}\}$ is a Riesz sequence. Thus we have (3.1) by taking inverse Fourier transform on (3.3). Then $\overline{\operatorname{span}}\{S(t-n): n \in \mathbb{Z}\}=V_{0}$ so that $\{S(t-n): n \in \mathbb{Z}\}$ is a Riesz basis of V_{0}.

Conversely assume that there exists $S(t) \in V_{0}$ such that $\{S(t-n): n \in \mathbb{Z}\}$ is a Riesz basis of V_{0} and (3.1) holds. In particular $\phi(t)=\sum_{n} \phi(n) S(t-n)$ so that

$$
\begin{equation*}
\hat{\phi}(\xi)=\sum_{n}\left(\phi(n) e^{-i n \xi} \hat{S}(\xi)\right)=\left(\sum_{n} \phi(n) e^{-i n \xi}\right) \hat{S}(\xi)=\hat{\phi}^{*}(\xi) \hat{S}(\xi) \tag{3.4}
\end{equation*}
$$

Hence

$$
\sum_{k}|\hat{\phi}(\xi+2 k \pi)|^{2}=\left|\hat{\phi}^{*}(\xi)\right|^{2} \sum_{k}|\hat{S}(\xi+2 k \pi)|^{2}
$$

so that

$$
\frac{A_{\phi}}{B_{S}} \leq\left|\hat{\phi}^{*}(\xi)\right|^{2} \leq \frac{B_{\phi}}{A_{S}} \quad \text { a.e. in }[0,2 \pi]
$$

where $\left(A_{\phi}, B_{\phi}\right)$ and $\left(A_{S}, B_{S}\right)$ are Riesz bounds for $\{\phi(t-k): k \in \mathbb{Z}\}$ and $\{S(t-k): k \in \mathbb{Z}\}$ respectively. Thus $0<\left\|\hat{\phi}^{*}(\xi)\right\|_{0} \leq\left\|\hat{\phi}^{*}(\xi)\right\|_{\infty}<\infty$.

If $\{\phi(n)\} \in l^{1}$, then $\hat{\phi}^{*}(\xi)=\hat{\phi}^{*}(\xi+2 \pi) \in C[0,2 \pi]$ so that

$$
\left\|\hat{\phi}^{*}(\xi)\right\|_{0}=\min _{[0,2 \pi]}\left|\hat{\phi}^{*}(\xi)\right| \quad \text { and } \quad\left\|\hat{\phi}^{*}(\xi)\right\|_{\infty}=\max _{[0,2 \pi]}\left|\hat{\phi}^{*}(\xi)\right|
$$

Hence we have:
Corollary 3.4. Suppose that $\phi(t)$ is a scaling function for an $M R A\left\{V_{j}\right\}$ such that $\phi(n)$'s are well defined and $\{\phi(n)\} \in l^{1}$. Then there exists $S(t) \in V_{0}$ such that $\{S(t-n): n \in \mathbb{Z}\}$ is a Riesz basis of V_{0} and (3.1) holds if and only if $\hat{\phi}^{*}(\xi) \neq 0$ in $[0,2 \pi]$.

In [9], G. G. Walter requires that $\phi(t)$ is a continuous on \mathbb{R} and $\phi(t)=O\left(|t|^{-1-\epsilon}\right)(\epsilon>0)$ for $|t|$ large. Then $\{\phi(n)\} \in l^{1}$ so that the results in [9] is a special case of Corollary 3.4. On the other hand, W. Chen and S. Itoh [2] claimed: under the same hypothesis as in Theorem 3.3, there exists $S(t) \in V_{0}$ with which (3.1) holds if and only if $\hat{\phi}^{*}(\xi)^{-1} \in L^{2}[0,2 \pi]$. However, there are some gaps in the arguments in [2]. In the proof of sufficiency for Theorem 1 in [2], $\left(\sum_{k} a_{k} e^{-i k \xi}\right) \hat{\phi}^{*}(\xi)$ belongs to $L^{1}[0,2 \pi]$ but not necessarily in $L^{2}[0,2 \pi]$ (unless $\left.\left\|\hat{\phi}^{*}(\xi)\right\|_{\infty}<\infty\right)$ so that $\{f(n)\}=\left\{\sum_{k} a_{k} \phi(n-k)\right\} \in l^{\infty}$ and the equation (3.2) becomes only a formal Fourier series expansion of a function in $L^{1}[0,2 \pi]$ (see Equation (15) in [2]). Even if $\hat{\phi}^{*}(\xi)^{-1} \in L^{2}[0,2 \pi]$ and $\left\|\hat{\phi}^{*}(\xi)\right\|_{\infty}<\infty,(3.2)$ holds but (3.3) may not hold since $\{S(t-n): n \in \mathbb{Z}\}$ is not a Bessel sequence unless $\left\|\hat{\phi}^{*}(\xi)\right\|_{0}>0$. Also, in the proof of necessity, we may not have (3.4) (see equation (17) in [2]) unless $\{S(t-n): n \in \mathbb{Z}\}$ is a Riesz sequence.
We may extend Theorem 3.3 by the same reasoning to a single channel sampling as:

Theorem 3.5. Let $M(\xi)$ be a measurable function on \mathbb{R} such that $0<\|M(\xi)\|_{0} \leq\|M(\xi)\|_{\infty}<\infty$. Suppose that $\phi(t)$ is a scaling function for an MRA $\left\{V_{j}\right\}$ such that $C(\phi)(n)$'s are well defined and $\{C(\phi)(n)\} \in l^{2}$ where $C(\phi)(t):=\mathcal{F}^{-1}(\hat{\phi} M)(t)$. Then, there exists $S(t) \in V_{0}$ such that $\{S(t-n): n \in$ $\mathbb{Z}\}$ is a Riesz basis of V_{0} and

$$
\begin{equation*}
f(t)=\sum_{n} C(f)(n) S(t-n) \quad \text { in } L^{2}(\mathbb{R}), \quad f(t) \in V_{0} \tag{3.5}
\end{equation*}
$$

if and only if $0<\left\|\widehat{C(\phi)^{*}}(\xi)\right\|_{0} \leq\left\|\widehat{C(\phi)^{*}}(\xi)\right\|_{\infty}<\infty$. In this case, we have $\hat{S}(\xi)=\frac{\hat{\phi}(\xi)}{\widehat{C(\phi)^{*}}(\xi)}$.
Remark 3.1. If furthermore the scaling function $\phi(t)$ in Theorem 3.3 or Theorem 3.5 is piecewise continuous on \mathbb{R} and $|\phi(t)|=O\left(|t|^{\frac{-1}{2}-\epsilon}\right)(\epsilon>0)$ for $|t|$ large, then $\{\phi(n)\} \in l^{2}$ and V_{0} becomes a reproducing kernel Hilbert space. Indeed, for any $f(t)=\sum_{k} a_{k} \phi(t-k) \in V_{0}$ where $\left\{a_{k}\right\} \in l^{2}$, we have

$$
\begin{aligned}
|f(t)| & \leq \sum_{n}\left|a_{n}\right||\phi(t-n)| \leq\left(\sum_{n}\left|a_{n}\right|^{2}\right)^{\frac{1}{2}}\left(\sum_{n}|\phi(t-n)|^{2}\right)^{\frac{1}{2}} \\
& \leq \frac{\|f(t)\|_{L^{2}(\mathbb{R})}}{\sqrt{A}}\left(\sum_{n}|\phi(t-n)|^{2}\right)^{\frac{1}{2}}, \quad t \in \mathbb{R}
\end{aligned}
$$

where A is a lower Riesz bound for $\{\phi(t-k): k \in \mathbb{Z}\}$. Since $\sum_{n}|\phi(t-n)|^{2}<\infty$ for each t in \mathbb{R}, the point evaluation functional $l_{t}(f)=f(t)(t \in \mathbb{R})$ is bounded in V_{0} so that V_{0} is a reproducing kernel Hilbert space. Hence the sampling series (3.1) and (3.5) converge not only in $L^{2}(\mathbb{R})$ but also absolutely on \mathbb{R}.

Example 3.1. Shannon function $\phi(t)=\sin \pi t / \pi t$ is continuous on \mathbb{R} and $\{\phi(n)\}=\left\{\delta_{n 0}\right\} \in l^{1}$. Since $\hat{\phi}^{*}(\xi)=1$ on $[0,2 \pi]$ but $|\phi(t)|=O\left(|t|^{-1}\right)$ for $|t|$ large, the WSK sampling theorem is not covered by [2] or [9] but follows Corollary 3.4.

Example 3.2. Let $\phi(t)$ be the continuous scaling function considered by Chen and Itoh (Example 3 in [2]) such that

$$
\hat{\phi}(\xi)= \begin{cases}-1, & -4 \pi \leq \xi<-2 \pi \\ 1, & -2 \pi \leq \xi<0 \\ \xi^{s}, & 0 \leq \xi<2 \pi \\ 0, & \text { otherwise }\end{cases}
$$

with $0<s<\frac{1}{2}$. Then we can easily see that $\phi(n)=O\left(\frac{1}{n}\right)$ for $|n|$ large so that $\{\phi(n)\} \in l^{2} \backslash l^{1}$. Even though $\hat{\phi}^{*}(\xi)=\xi^{s}$ on $[0,2 \pi]$ so that $\hat{\phi}^{*}(\xi) \in L^{\infty}[0,2 \pi]$ and $\hat{\phi}^{*}(\xi)^{-1} \in L^{2}[0,2 \pi],\left\|\hat{\phi}^{*}(\xi)\right\|_{0}=0$ so that we can not expect a sampling formula from $\phi(t)$ suggested either by Theorem 1 in [2] or by Theorem 3.3.

Example 3.3. Let $M(\xi)=e^{-i a \xi}$ with $0<a<1$ so that $1=\left\|e^{-i a \xi}\right\|_{0}=\left\|e^{-i a \xi}\right\|_{\infty}$, and $\phi(t)$ a scaling function as in Remark 3.1. Then $C(\phi)(t)=\phi(t-a)$ and $\{\phi(n-a)\} \in l^{2}$ so that $Z_{\phi}(a, \xi):=$ $\sum_{n} \phi(n-a) e^{-i n \xi} \in L^{2}[0,2 \pi]$. Hence if $0<\left\|Z_{\phi}(a, \xi)\right\|_{0} \leq\left\|Z_{\phi}(a, \xi)\right\|_{\infty}<\infty$, then we obtain the shift-sampling $f(t)=\sum_{n} f(n-a) S(t-n)$.

4. Two-Channel sampling in translation invariant subspaces

In this section we let $\phi(t)$ be a scaling function for an MRA $\left\{V_{j}\right\}$ and $\psi(t)$ the associated wavelet. Let $M_{1}(\xi)$ and $M_{2}(\xi)$ be in $L^{\infty}(\mathbb{R})$ and $C_{i}(f)(t)=\mathcal{F}^{-1}\left(\hat{f} M_{i}\right)(t)$ for $i=1,2$ and $f(t) \in L^{2}(\mathbb{R})$. Assume that $C_{i}(\phi)(n)$'s and $C_{i}(\psi)(n)$'s are well defined and $\left\{C_{i}(\phi)(n)\right\}$ and $\left\{C_{i}(\psi)(n)\right\}$ are in l^{2}. Let

$$
\begin{array}{ll}
A_{11}(\xi):=\sum C_{1}(\phi)(n) e^{-i n \xi} ; & A_{12}(\xi):=\sum C_{2}(\phi)(n) e^{-i n \xi} \\
A_{21}(\xi):=\sum C_{1}(\psi)(n) e^{-i n \xi} ; & A_{22}(\xi):=\sum C_{2}(\psi)(n) e^{-i n \xi}
\end{array}
$$

and $A(\xi):=\left[A_{i j}(\xi)\right]_{i, j=1}^{2}$. Then $A_{i j}(\xi) \in L^{2}[0,2 \pi]$ and $A_{i j}(\xi)=A_{i j}(\xi+2 \pi)$. We always assume that $\left\|A_{i j}(\xi)\right\|_{\infty}<\infty$ for $i, j=1,2$ and $\operatorname{det} A(\xi) \neq 0$ a.e. in $[0,2 \pi]$. Set

$$
A^{-1}(\xi)=B(\xi):=\left[B_{i j}(\xi)\right]_{i, j=1}^{2}
$$

Then $B(\xi)=B(\xi+2 \pi)$ is well defined a.e. in \mathbb{R}.
Lemma 4.1. Let $\lambda_{1, B}(\xi)$ and $\lambda_{2, B}(\xi)$ be eigenvalues of $B(\xi) B(\xi)^{*}$ with $\lambda_{1, B}(\xi) \leq \lambda_{2, B}(\xi)$. If $\|\operatorname{det} A(\xi)\|_{0}>$ 0 , then

$$
0<\left\|\lambda_{1, B}(\xi)\right\|_{0} \leq\left\|\lambda_{2, B}(\xi)\right\|_{\infty}<\infty
$$

Proof. Since $B(\xi) B(\xi)^{*}$ is nonsingular Hermitian a.e. in $[0,2 \pi]$,

$$
0<\lambda_{1, B}(\xi) \leq \lambda_{2, B}(\xi) \quad \text { a.e. in }[0,2 \pi] .
$$

Since $A_{i j}(\xi) \in L^{\infty}[0,2 \pi]$ and $\|\operatorname{det} A(\xi)\|_{0}>0$, all entries of $B(\xi)$ and so $B(\xi) B(\xi)^{*}$ are also in $L^{\infty}[0,2 \pi]$ so that the characteristic equation of $B(\xi) B(\xi)^{*}$ is of the form

$$
\lambda(\xi)^{2}+f(\xi) \lambda(\xi)+g(\xi)=0
$$

where $f(\xi)$ and $g(\xi)$ are real-valued functions in $L^{\infty}[0,2 \pi]$. Hence, $0<\left\|\lambda_{2, B}(\xi)\right\|_{\infty}<\infty$. Since

$$
\begin{gathered}
\lambda_{1, B}(\xi) \lambda_{2, B}(\xi)=\operatorname{det}\left[B(\xi) B(\xi)^{*}\right]=|\operatorname{det} A(\xi)|^{-2} \\
\|\operatorname{det} A(\xi)\|_{\infty}^{-2} \leq \lambda_{1, B}(\xi) \lambda_{2, B}(\xi) \leq\|\operatorname{det} A(\xi)\|_{0}^{-2} \quad \text { a.e. in }[0,2 \pi]
\end{gathered}
$$

so that $\|\operatorname{det} A(\xi)\|_{\infty}^{-2}\left\|\lambda_{2, B}(\xi)\right\|_{\infty}^{-1} \leq \lambda_{1, B}(\xi) \leq \lambda_{2, B}(\xi) \leq\left\|\lambda_{2, B}(\xi)\right\|_{\infty} \quad$ a.e. in $\quad[0,2 \pi]$.
For any $\phi(t) \in L^{2}(\mathbb{R})$,

$$
\|\phi\|_{L^{2}(\mathbb{R})}^{2}=\|\hat{\phi}\|_{L^{2}(\mathbb{R})}^{2}=\int_{0}^{2 \pi} \sum_{k}|\hat{\phi}(\xi+2 k \pi)|^{2} d \xi
$$

so that $\{\hat{\phi}(\xi+2 k \pi)\}_{k \in \mathbb{Z}} \in l^{2}$ for a.e. in $[0,2 \pi]$.
Definition 4.1. For any $\phi(t)$ and $\psi(t)$ in $L^{2}(\mathbb{R})$, we call

$$
G(\xi):=\left[\begin{array}{cc}
\sum_{k}|\hat{\phi}(\xi+2 k \pi)|^{2} & \sum_{k} \hat{\phi}(\xi+2 k \pi) \overline{\hat{\psi}(\xi+2 k \pi)} \\
\sum_{k} \hat{\phi}(\xi+2 k \pi) \hat{\psi}(\xi+2 k \pi) & \sum_{k}|\hat{\psi}(\xi+2 k \pi)|^{2}
\end{array}\right]
$$

the Gramian of $\{\phi, \psi\}$, which is well defined a.e. in $[0,2 \pi]$.
Then as a Hermitian matrix, $G(\xi)$ has real eigenvalues.
Theorem 4.2. [7] Let $\lambda_{1, G}(\xi)$ and $\lambda_{2, G}(\xi)$ be eigenvalues of the Gramian $G(\xi)$ of $\{\phi, \psi\}$ such that $\lambda_{1, G}(\xi) \leq \lambda_{2, G}(\xi)$. Then $\{\phi(t-k), \psi(t-k): k \in \mathbb{Z}\}$ is a Riesz sequence if and only if there are constants $B \geq A>0$ such that

$$
\begin{equation*}
A \leq \lambda_{1, G}(\xi) \leq \lambda_{2, G}(\xi) \leq B \text { a.e. in }[0,2 \pi] . \tag{4.1}
\end{equation*}
$$

Lemma 4.3. Set $\left[\begin{array}{c}F_{1}(\xi) \\ F_{2}(\xi)\end{array}\right]:=B(\xi)\left[\begin{array}{c}\hat{\phi}(\xi) \\ \hat{\psi}(\xi)\end{array}\right]$ on \mathbb{R}. If $\|\operatorname{det} A(\xi)\|_{0}>0$, then $F_{i}(\xi) \in L^{2}(\mathbb{R})$, $S_{i}(t):=\mathcal{F}^{-1}\left(F_{i}\right)(t) \in V_{1} \quad$ for $i=1,2$, and $\left\{S_{i}(t-n): i=1,2\right.$ and $\left.n \in \mathbb{Z}\right\}$ is a Riesz sequence.

Proof. Since $B_{i j}(\xi) \in L^{\infty}(\mathbb{R}), F_{i}(\xi)=B_{i 1}(\xi) \hat{\phi}(\xi)+B_{i 2}(\xi) \hat{\psi}(\xi) \in L^{2}(\mathbb{R})$ for $i=1,2$. Since $B_{i j}(\xi)=$ $B_{i j}(\xi+2 \pi) \in L^{2}[0,2 \pi]$, we may expand $B_{i j}(\xi)$ into its Fourier series $B_{i j}(\xi)=\sum_{k} b_{i j, k} e^{-i k \xi}$ where $\left\{b_{i j, k}\right\} \in l^{2}$. Then by Lemma 3.1,

$$
\begin{aligned}
F_{i}(\xi) & =\left(\sum_{k} b_{i 1, k} e^{-i k \xi}\right) \hat{\phi}(\xi)+\left(\sum_{k} b_{i 2, k} e^{-i k \xi}\right) \hat{\psi}(\xi) \\
& =\sum_{k}\left(b_{i 1, k} e^{-i k \xi} \hat{\phi}(\xi)+b_{i 2, k} e^{-i k \xi} \hat{\psi}(\xi)\right)
\end{aligned}
$$

so that

$$
S_{i}(t):=\mathcal{F}^{-1}\left(F_{i}\right)(t)=\sum_{k}\left(b_{i 1, k} \phi(t-k)+b_{i 2, k} \psi(t-k)\right) \in V_{1}
$$

Let

$$
S(\xi):=\left[\begin{array}{cc}
\sum_{k}\left|\hat{S}_{1}(\xi+2 k \pi)\right|^{2} & \sum_{k} \hat{S}_{1}(\xi+2 k \pi) \overline{\hat{S}_{2}(\xi+2 k \pi)} \\
\sum_{k} \hat{S}_{1}(\xi+2 k \pi) \hat{S}_{2}(\xi+2 k \pi) & \sum_{k}\left|\hat{S}_{2}(\xi+2 k \pi)\right|^{2}
\end{array}\right]
$$

be the Gramian of $\left\{S_{1}, S_{2}\right\}$ and $\lambda_{1, S}(\xi) \leq \lambda_{2, S}(\xi)$ the eigenvalues of $S(\xi)$. Then we have by periodicity of $B(\xi)$,

$$
S(\xi)=B(\xi) G(\xi) B(\xi)^{*}
$$

Let $U_{S}(\xi)$ and $U_{G}(\xi)$ be unitary matrices, which diagonalize $S(\xi)$ and $G(\xi)$ respectively, i.e.,

$$
S(\xi)=U_{S}(\xi)\left[\begin{array}{cc}
\lambda_{1, S}(\xi) & 0 \\
0 & \lambda_{2, S}(\xi)
\end{array}\right] U_{S}(\xi)^{*}
$$

and

$$
G(\xi)=U_{G}(\xi)\left[\begin{array}{cc}
\lambda_{1, G}(\xi) & 0 \\
0 & \lambda_{2, G}(\xi)
\end{array}\right] U_{G}(\xi)^{*}
$$

Then

$$
\left[\begin{array}{cc}
\lambda_{1, S}(\xi) & 0 \\
0 & \lambda_{2, S}(\xi)
\end{array}\right]=R(\xi)\left[\begin{array}{cc}
\lambda_{1, G}(\xi) & 0 \\
0 & \lambda_{2, G}(\xi)
\end{array}\right] R(\xi)^{*}
$$

where

$$
R(\xi)=U_{S}(\xi)^{*} B(\xi) U_{G}(\xi):=\left[\begin{array}{ll}
R_{11}(\xi) & R_{12}(\xi) \\
R_{21}(\xi) & R_{22}(\xi)
\end{array}\right]
$$

so that

$$
\begin{align*}
& \lambda_{1, S}(\xi)=\lambda_{1, G}(\xi)\left|R_{11}(\xi)\right|^{2}+\lambda_{2, G}(\xi)\left|R_{12}(\xi)\right|^{2} \tag{4.2}\\
& \lambda_{2, S}(\xi)=\lambda_{1, G}(\xi)\left|R_{21}(\xi)\right|^{2}+\lambda_{2, G}(\xi)\left|R_{22}(\xi)\right|^{2} \tag{4.3}
\end{align*}
$$

On the other hand,

$$
\begin{align*}
R(\xi) R(\xi)^{*} & =U_{S}(\xi)^{*} B(\xi) B(\xi)^{*} U_{S}(\xi) \tag{4.4}\\
& =U_{S}(\xi)^{*} U_{B}(\xi)\left[\begin{array}{cc}
\lambda_{1, B}(\xi) & 0 \\
0 & \lambda_{2, B}(\xi)
\end{array}\right] U_{B}(\xi)^{*} U_{S}(\xi)
\end{align*}
$$

where $U_{B}(\xi)$ is the unitary matrix such that

$$
B(\xi) B(\xi)^{*}=U_{B}(\xi)\left[\begin{array}{cc}
\lambda_{1, B}(\xi) & 0 \\
0 & \lambda_{2, B}(\xi)
\end{array}\right] U_{B}(\xi)^{*}
$$

with $\lambda_{1, B}(\xi) \leq \lambda_{2, B}(\xi)$. Set $U_{S}(\xi)^{*} U_{B}(\xi)=\left[D_{i j}(\xi)\right]_{i, j=1}^{2}$, which is also a unitary matrix. Then we have from diagonal entries of both sides of (4.4),

$$
\begin{align*}
\left|R_{11}(\xi)\right|^{2}+\left|R_{12}(\xi)\right|^{2} & =\lambda_{1, B}(\xi)\left|D_{11}(\xi)\right|^{2}+\lambda_{2, B}(\xi)\left|D_{12}(\xi)\right|^{2} \tag{4.5}\\
\left|R_{21}(\xi)\right|^{2}+\left|R_{22}(\xi)\right|^{2} & =\lambda_{1, B}(\xi)\left|D_{21}(\xi)\right|^{2}+\lambda_{2, B}(\xi)\left|D_{22}(\xi)\right|^{2} \tag{4.6}
\end{align*}
$$

Then we have from (4.1), (4.2), (4.3), (4.5) and (4.6)

$$
\begin{aligned}
& \lambda_{1, S}(\xi) \geq \lambda_{1, G}(\xi)\left(\left|R_{11}(\xi)\right|^{2}+\left|R_{12}(\xi)\right|^{2}\right) \geq \lambda_{1, G}(\xi) \lambda_{1, B}(\xi) \text { a.e. in }[0,2 \pi] \\
& \lambda_{2, S}(\xi) \leq \lambda_{2, G}(\xi)\left(\left|R_{21}(\xi)\right|^{2}+\left|R_{22}(\xi)\right|^{2}\right) \leq \lambda_{2, G}(\xi) \lambda_{2, B}(\xi) \quad \text { a.e. in }[0,2 \pi]
\end{aligned}
$$

since $\left|D_{11}(\xi)\right|^{2}+\left|D_{12}(\xi)\right|^{2}=\left|D_{21}(\xi)\right|^{2}+\left|D_{22}(\xi)\right|^{2}=1$ a.e. in $[0,2 \pi]$. Hence
$0<\left\|\lambda_{1, G}(\xi)\right\|_{0}\left\|\lambda_{1, B}(\xi)\right\|_{0} \leq \lambda_{1, S}(\xi) \leq \lambda_{2, S}(\xi) \leq\left\|\lambda_{2, G}(\xi)\right\|_{\infty}\left\|\lambda_{2, B}(\xi)\right\|_{\infty}<\infty \quad$ a.e. in $\quad[0,2 \pi]$
by Lemma 4.1 so that $\left\{S_{i}(t-n): i=1,2\right.$ and $\left.n \in \mathbb{Z}\right\}$ is a Riesz sequence by Theorem 4.2 .
Now we are ready to give the main result in this section.
Theorem 4.4. Under the above setting, there exist $S_{i}(t) \in V_{1}(i=1,2)$ such that $\left\{S_{i}(t-n): i=\right.$ $1,2$ and $n \in \mathbb{Z}\}$ is a Riesz basis of V_{1} for which two-channel sampling formula

$$
\begin{equation*}
f(t)=\sum_{n} C_{1}(f)(n) S_{1}(t-n)+\sum_{n} C_{2}(f)(n) S_{2}(t-n), \quad f \in V_{1} \tag{4.7}
\end{equation*}
$$

holds if and only if $\|\operatorname{det} A(\xi)\|_{0}>0$ on $[0,2 \pi]$. In this case

$$
\begin{equation*}
S_{i}(t)=\mathcal{F}^{-1}\left(B_{i 1}(\xi) \hat{\phi}(\xi)+B_{i 2}(\xi) \hat{\psi}(\xi)\right)(t) \quad \text { for } \quad i=1,2 \tag{4.8}
\end{equation*}
$$

Proof. Assume $\|\operatorname{det} A(\xi)\|_{0}>0$ on $[0,2 \pi]$ and define $S_{i}(t)$ by (4.8). Then $S_{i}(t) \in V_{1}(i=1,2)$ and $\left\{S_{i}(t-n): i=1,2\right.$ and $\left.n \in \mathbb{Z}\right\}$ is a Riesz sequence by Lemma 4.3. For any $f(t) \in V_{1}$

$$
\begin{equation*}
f(t)=\sum_{k} c_{1, k} \phi(t-k)+\sum_{k} c_{2, k} \psi(t-k) \tag{4.9}
\end{equation*}
$$

where $\left\{c_{i, k}\right\}_{k} \in l^{2}$ for $i=1,2$ since $\{\phi(t-k), \psi(t-k): k \in \mathbb{Z}\}$ is a Riesz basis for V_{1}. Applying the bounded linear operator $C_{i}(\cdot)$ to (4.9) gives

$$
\begin{equation*}
C_{i}(f)(t)=\sum_{k} c_{1, k} C_{i}(\phi)(t-k)+\sum_{k} c_{2, k} C_{i}(\psi)(t-k) \tag{4.10}
\end{equation*}
$$

On the other hand, we have by Lemma 3.1

$$
\hat{f}(\xi)=\left(\sum_{k} c_{1, k} e^{-i k \xi}\right) \hat{\phi}(\xi)+\left(\sum_{k} c_{2, k} e^{-i k \xi}\right) \hat{\psi}(\xi)
$$

Since $\left[\begin{array}{c}\hat{\phi}(\xi) \\ \hat{\psi}(\xi)\end{array}\right]=A(\xi)\left[\begin{array}{c}\hat{S}_{1}(\xi) \\ \hat{S}_{2}(\xi)\end{array}\right]$,

$$
\begin{align*}
\hat{f}(\xi)= & {\left[\left(\sum_{k} c_{1, k} e^{-i k \xi}\right) A_{11}(\xi)+\left(\sum_{k} c_{2, k} e^{-i k \xi}\right) A_{21}(\xi)\right] \hat{S}_{1}(\xi) } \tag{4.11}\\
& \quad+\left[\left(\sum_{k} c_{1, k} e^{-i k \xi}\right) A_{12}(\xi)+\left(\sum_{k} c_{2, k} e^{-i k \xi}\right) A_{22}(\xi)\right] \hat{S}_{2}(\xi) \\
= & \sum_{n}\left(\sum_{k} c_{1, k} C_{1}(\phi)(n-k)+\sum_{k} c_{2, k} C_{1}(\psi)(n-k)\right) e^{-i n \xi} \hat{S}_{1}(\xi) \\
& \quad+\sum_{n}\left(\sum_{k} c_{1, k} C_{2}(\phi)(n-k)+\sum_{k} c_{2, k} C_{2}(\psi)(n-k)\right) e^{-i n \xi} \hat{S}_{2}(\xi) \\
= & \sum_{n} C_{1}(f)(n) e^{-i n \xi} \hat{S}_{1}(\xi)+\sum_{n} C_{2}(f)(n) e^{-i n \xi} \hat{S}_{2}(\xi)
\end{align*}
$$

by (4.10), where $\left\{C_{i}(f)(n)\right\} \in l^{2}(i=1,2)$ by Lemma 3.2. Taking inverse Fourier transform on (4.11) gives (4.7), which implies $V_{1}=\overline{\operatorname{span}}\left\{S_{i}(t-n): i=1,2\right.$ and $\left.n \in \mathbb{Z}\right\}$ so that $\left\{S_{i}(t-n): i=\right.$ $1,2$ and $n \in \mathbb{Z}\}$ is a Riesz basis of V_{1}. Conversely assume that there exist $S_{i}(t) \in V_{1}(i=1,2)$ such that $\left\{S_{i}(t-n): i=1,2\right.$ and $\left.n \in \mathbb{Z}\right\}$ is a Riesz basis of V_{1} and (4.7) holds. In particular,

$$
\begin{aligned}
\phi(t) & =\sum_{n} C_{1}(\phi)(n) S_{1}(t-n)+\sum_{n} C_{2}(\phi)(n) S_{2}(t-n) \\
\psi(t) & =\sum_{n} C_{1}(\psi)(n) S_{1}(t-n)+\sum_{n} C_{2}(\psi)(n) S_{2}(t-n)
\end{aligned}
$$

By taking Fourier transform and using Lemma 3.1, we have

$$
\left[\begin{array}{c}
\hat{\phi}(\xi) \\
\hat{\psi}(\xi)
\end{array}\right]=A(\xi)\left[\begin{array}{c}
\hat{S}_{1}(\xi) \\
\hat{S}_{2}(\xi)
\end{array}\right]
$$

We then have as in the proof of Lemma 4.3

$$
G(\xi)=A(\xi) S(\xi) A(\xi)^{*}
$$

where $G(\xi)$ and $S(\xi)$ are Gramians of $\{\phi, \psi\}$ and $\left\{S_{1}, S_{2}\right\}$ respectively. Hence $\operatorname{det} G(\xi)=\operatorname{det} S(\xi)|\operatorname{det} A(\xi)|^{2}$ so that

$$
|\operatorname{det} A(\xi)|^{2}=\frac{\operatorname{det} G(\xi)}{\operatorname{det} S(\xi)}=\frac{\lambda_{1, G}(\xi) \lambda_{2, G}(\xi)}{\lambda_{1, S}(\xi) \lambda_{2, S}(\xi)} \geq \frac{\lambda_{1, G}(\xi)^{2}}{\lambda_{2, S}(\xi)^{2}} \quad \text { a.e. in }[0,2 \pi]
$$

where $\lambda_{1, G}(\xi) \leq \lambda_{2, G}(\xi)$ and $\lambda_{1, S}(\xi) \leq \lambda_{2, S}(\xi)$ are eigenvalues of $G(\xi)$ and $S(\xi)$ respectively. Therefore,

$$
|\operatorname{det} A(\xi)| \geq \frac{\lambda_{1, G}(\xi)}{\lambda_{2, S}(\xi)} \geq \frac{\left\|\lambda_{1, G}(\xi)\right\|_{0}}{\left\|\lambda_{2, S}(\xi)\right\|_{\infty}} \quad \text { a.e. in }[0,2 \pi]
$$

so that $\|\operatorname{det} A(\xi)\|_{0}>0$ since both $\{\phi(t-n), \psi(t-n): n \in \mathbb{Z}\}$ and $\left\{S_{i}(t-n): i=1,2\right.$ and $\left.n \in \mathbb{Z}\right\}$ are Riesz sequences.

Example 4.1. For Haar orthogonal system $\phi(t)=\chi_{[0,1)}(t)$ and $\psi(t)=\chi_{\left[0, \frac{1}{2}\right)}(t)-\chi_{\left[\frac{1}{2}, 1\right)}(t)$. Let $M_{1}(\xi)=1$ and $M_{2}(\xi)=e^{-i a \xi}$ with $0<a \leq 1 / 2$. Then $C_{1}(\phi)(t)=\chi_{[0,1)}(t), C_{2}(\phi)(t)=\chi_{[0,1)}(t-a)$, $C_{1}(\psi)(t)=\chi_{\left[0, \frac{1}{2}\right)}(t)-\chi_{\left[\frac{1}{2}, 1\right)}(t)$ and $C_{2}(\psi)(t)=\chi_{\left[0, \frac{1}{2}\right)}(t-a)-\chi_{\left[\frac{1}{2}, 1\right)}(t-a)$. Then

$$
A(\xi)=\left[\begin{array}{cc}
1 & e^{-i \xi} \\
1 & -e^{-i \xi}
\end{array}\right]
$$

so that $|\operatorname{det} A(\xi)|=2$, which satisfies the condition of Theorem 4.4. Hence we have a sampling formula

$$
f(t)=\sum_{n} f(n) S_{1}(t-n)+\sum_{n} f(n-a) S_{2}(t-n)
$$

Acknowledgements. Both authors appreciate Dr. Rae Y. Kim for his kind helps on wavelet theory. The first author KHK was partially supported by KOSEF (00-2-101-1001-5) and BK-21 and the second author EHL was partially supported by KOSEF(M02-2004-20791-0).

References

[1] A. Aldroubi and Karlheinz Gröchenig, Nonuniform sampling and reconstruction in shift-invariant spaces, Siam Review, vol.43, No.4, pp.585-620, 2001
[2] W. Chen and S. Itoh, A sampling theorem for shift-invariant subspace, IEEE Trans. Signal Processing, vol.46, pp.2822-2824, Oct. 1998.
[3] O. Christensen, An Introduction to frames and riesz Bases, Birkhäuser, 2002.
[4] J. R. Higgins, Sampling theory in Fourier and signal analysis, Oxford University Press, 1996
[5] A. J. E. M. Janssen, The Zak-transform and sampling theorem for savelet subspaces, IEEE Trans. Signal Processing, vol.41, pp.3360-3364, Dec. 1993
[6] A. J. Jerri, The Shannon sampling theorem-Its various extentions and applications: A tutorial review, Proc. IEEE, vol.65, pp.1565-1596, Nov. 1977
[7] A. Ron and Z. Shen, Frames and stable bases for shift-invariant subspaces of $L^{2}(\mathbb{R})$, Canadian J. Math., 47, pp.1051-1094, 1995.
[8] M. Unser, Sampling-50 years after Shannon, Proc. IEEE, vol.88, pp.567-587, Apr. 2000
[9] G. G. Walter, A sampling theorem for wavelet subspaces, IEEE Trans. Inform. Theory, vol.38, pp.881-884, Apr. 1992.

Division of Applied Math., KAIST
Daejeon 305-701, Korea
khkwon@amath.kaist.ac.kr
eunghyun@amath.kaist.ac.kr

