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K. H. KWON AND E. H. LEE

Abstract. We develop single and two-channel sampling formula in the translation invariant sub-
spaces in the multi resolution analysis {Vj} of wavelet theory. First, we give a single channel sample
formula in V0, which extends results by G. G. Walter and W. Chen and S. Itoh. We then find
necessary and sufficient conditions for two-channel sampling formula to hold in V1.
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1. Introduction

The classical Whittaker-Shannon-Kotel’nikov(WSK) sampling theorem [4] states that if a signal
f(t) with finite energy is band-limited with the bandwidth π, then it can be completely reconstructed
from its discrete values by the formula

f(t) =
∞∑

n=−∞
f(n)

sin π(t− n)
π(t− n)

which converges both in L2(R) and uniformly on R, which has been extended in many directions
(e.g. [1], [6] and [8]). In 1992, G. G. Walter [9] developed a sampling theorem in wavelet subspaces,
noticing that the sampling function sinπt/πt in the WSK theorem is a scaling function of a multi
resolution analysis. He assumed that the scaling function φ(t) is a continuous real valued function
with φ(t) = O(|t|−1−ε)(ε > 0) for |t| large, which does not hold for sin πt/πt. Following G. G. Walter’s
work, A. J. E. M. Janssen [5] used the Zak transform to generalize Walter’s work. Later, W. Chen
and S. Itoh [2] extended Walter’s result by requiring only the condition {φ(n)} ∈ l2 on the scaling
function without any decaying property. However, there were some gaps in the proof of the main
result in [2].

In this work, we first re-examine the results in [2] and then extend it to single and double channel
sampling formulas in the translation invariant subspaces of a multi resolution analysis.

2. Preliminaries

Definition 2.1. A function φ(t) ∈ L2(R) is called a scaling function of a multi resolution analy-
sis(MRA in short) {Vj} if the closed subspaces Vj of L2(R),

Vj := span
{

φ(2jt− k) : k ∈ Z
}

, j ∈ Z
satisfy the following properties;

(i) · · · ⊂ V−1 ⊂ V0 ⊂ V1 · · · ;
(ii)

⋃
Vj = L2(R) ;

(iii)
⋂

Vj = {0};
(iv) f(t) ∈ Vj if and only if f(2t) ∈ Vj+1;

1



2 K. H. KWON AND E. H. LEE

(v) {φ(t− k) : k ∈ Z} is a Riesz basis of V0.

Then {φ(2jt − k) : k ∈ Z} becomes a Riesz basis of Vj for each j. The wavelet subspace Wj is
defined to be the orthogonal complement of Vj in Vj+1 so that

Vj+1 = Vj ⊕Wj .

Then there exists a wavelet ψ(t) ∈ L2(R) that induces a Riesz basis {ψ(2jt − k) : k ∈ Z} of Wj .
Moreover, {φ(2jt− k), ψ(2jt− k) : k ∈ Z} forms a Riesz basis of Vj+1.

For any φ(t) ∈ L2(R), we let

F(φ)(ξ) = φ̂(ξ) :=
1√
2π

∫ ∞

−∞
φ(t)e−itξdt and F−1(φ̂)(t) :=

1√
2π

∫ ∞

−∞
φ̂(ξ)eitξdξ

be the Fourier and inverse Fourier transforms of φ(t) and φ̂(ξ) respectively. For a measurable function
f(t) on a set X ⊂ R, we let

‖f(t)‖0 := sup
|E|=0

inf
X\E

|f(t)| and ‖f(t)‖∞ := inf
|E|=0

sup
X\E

|f(t)|

be the essential infimum of |f(t)| on X and the essential supremum of |f(t)| on X respectively.

Proposition 2.1. [3] Let φ(t) ∈ L2(R). Then

(i) {φ(t− k) : k ∈ Z} is a Bessel sequence if and only if there is a constant B > 0 such that
∑

k

|φ̂(ξ + 2kπ)|2 ≤ B, a.e. in [0, 2π];

(ii) {φ(t− k) : k ∈ Z} is a Riesz sequence if and only if there are constants B ≥ A > 0 such that

A ≤
∑

k

|φ̂(ξ + 2kπ)|2 ≤ B, a.e. in [0, 2π].

We call A and B lower and upper Riesz bounds for a Riesz sequence {φ(t−k) : k ∈ Z} respectively.
For later use we give a corollary of Proposition 2.1.

Corollary 2.2. Let φ(t) ∈ L2(R), M(ξ) ∈ L∞(R), and

C(φ)(t) := F−1(φ̂M)(t) =
1√
2π

∫ ∞

−∞
φ̂(ξ)M(ξ)eitξdξ.

Then

(i) {C(φ)(t− k) : k ∈ Z} is a Bessel sequence if {φ(t− k) : k ∈ Z} is a Bessel sequence.
(ii) {C(φ)(t − k) : k ∈ Z} is a Riesz sequence if {φ(t − k) : k ∈ Z} is a Riesz sequence and∥∥M(ξ)

∥∥
0

> 0.

Proof. (i): Let {φ(t− k) : k ∈ Z} be a Bessel sequence with
∑

k |φ̂(ξ + 2kπ)|2 ≤ B, a.e. in [0, 2π].
Then

∑

k

∣∣Ĉ(φ)(ξ + 2kπ)
∣∣2 =

∑

k

∣∣φ̂(ξ + 2kπ)M(ξ + 2kπ)
∣∣2

≤
∑

k

∣∣φ̂(ξ + 2kπ)
∣∣2∥∥M(ξ)

∥∥2

∞ ≤ B
∥∥M(ξ)

∥∥2

∞, a.e. in [0, 2π]

so that {C(φ)(t− k) : k ∈ Z} is a Bessel sequence by Proposition 2.1.
(ii): Let {φ(t− k) : k ∈ Z} be a Riesz sequence with bounds A and B. Then, as in (i) we have

A‖M(ξ)‖20 ≤
∑

k

∣∣Ĉ(φ)(ξ + 2kπ)
∣∣2 =

∑

k

∣∣φ̂(ξ + 2kπ)M(ξ + 2kπ)
∣∣2 ≤ B‖M(ξ)‖2∞

so that {C(φ)(t− k) : k ∈ Z} is a Riesz sequence by Proposition 2.1. ¤
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3. Single Channel Sampling in translation invariant Subspaces

In this section we give a single channel sampling in V0, which extends results in G. G. Walter [9]
and W. Chen and S. Itoh [2].

Lemma 3.1. [3] Let φ(t) ∈ L2(R) be such that {φ(t−k) : k ∈ Z} is a Bessel sequence. Then, for any
{ck} ∈ l2,

∑
k ckφ(t− k) converges in L2(R) and

F
( ∑

k

ckφ(t− k)
)

=
∑

k

(
cke−ikξφ̂(ξ)

)
=

(∑

k

cke−ikξ
)
φ̂(ξ).

Let F∗ be the discrete Fourier transform on lp (p = 1, 2) defined by F∗({ck})(ξ) :=
∑

k cke−ikξ.

Then, F∗({ck})(ξ) belongs to C[0, 2π] or L2[0, 2π] if {ck} ∈ l1 or l2 respectively. We denote F∗({φ(k)})(ξ)
by φ̂∗(ξ) for φ(t) ∈ L2(R) when φ(k)(k ∈ Z) are well defined.

Lemma 3.2. If {ak}, {bk} ∈ l2, and F∗({ak})(ξ) ∈ L∞[0, 2π], then
{ ∑

j ajbk−j

} ∈ l2 and

F∗({ak})(ξ)F∗({bk})(ξ) = F∗
({∑

j

ajbk−j

})
(ξ).

Proof. Since F∗({ak})(ξ) ∈ L∞[0, 2π] and F∗({bk})(ξ) ∈ L2[0, 2π], F∗({ak})(ξ)F∗({bk})(ξ) ∈ L2[0, 2π].
Hence we can expand F∗({ak})(ξ)F∗({bk})(ξ) into its Fourier series

∑
n cne−inξ in L2[0, 2π], where

cn =
1
2π

〈
F∗({ak})(ξ)F∗({bk})(ξ), e−inξ

〉
L2[0,2π]

=
1
2π

〈∑

k

ake−ikξ,
(∑

k

bkeikξ
)
e−inξ

〉
L2[0,2π]

=
1
2π

〈∑

k

ake−ikξ,
∑

k

bn−ke−ikξ
〉

L2[0,2π]
=

∑

k

akbn−k

by Parseval’s identity. Hence the conclusion follows. ¤

Theorem 3.3. Suppose that φ(t) is a scaling function for an MRA {Vj} such that φ(n)’s are well
defined and {φ(n)} ∈ l2. Then, there exists S(t) ∈ V0 such that {S(t− n) : n ∈ Z} is a Riesz basis of
V0 and

f(t) =
∑

n

f(n)S(t− n) in L2(R), f(t) ∈ V0(3.1)

if and only if 0 < ‖φ̂∗(ξ)‖0 ≤ ‖φ̂∗(ξ)‖∞ < ∞. In this case, we have Ŝ(ξ) =
φ̂(ξ)

φ̂∗(ξ)
.

Proof. Assume 0 < α := ‖φ̂∗(ξ)‖0 ≤ β := ‖φ̂∗(ξ)‖∞ < ∞. Then 1
|φ̂∗(ξ)| ≤

1
α a.e. in [0, 2π] so that

1
φ̂∗(ξ)

∈ L2[0, 2π]. Let 1
φ̂∗(ξ)

=
∑

k cke−ikξ be its Fourier series, where {ck} ∈ l2 and set F (ξ) := φ̂(ξ)

φ̂∗(ξ)
.

Then F (ξ) ∈ L2(R) and F (ξ) =
(∑

k cke−ikξ
)
φ̂(ξ) =

∑
k

(
cke−ikξφ̂(ξ)

)
by Lemma 3.1. Hence

S(t) := F−1(F )(t) =
∑

k ckφ(t− k) ∈ V0. Now, we show that {S(t− k) : k ∈ Z} is a Riesz sequence.

Since Ŝ(ξ) = φ̂(ξ)

φ̂∗(ξ)
, we have

Aφ

β2
≤

∑

k

∣∣Ŝ(ξ + 2kπ)
∣∣2 =

∑
k

∣∣φ̂(ξ + 2kπ)
∣∣2

|φ̂∗(ξ)|2 ≤ Bφ

α2
a.e. in [0, 2π]



4 K. H. KWON AND E. H. LEE

where Aφ and Bφ are Riesz bounds for {φ(t−k) : k ∈ Z}. Hence {S(t−k) : k ∈ Z} is a Riesz sequence
by Proposition 2.1 (ii).

For any f(t) =
∑

k akφ(t− k) ∈ V0 where {ak} ∈ l2, we have by Lemma 3.1,

f̂(ξ) =
( ∑

k

ake−ikξ
)
φ̂(ξ) =

( ∑

k

ake−ikξ
)
φ̂∗(ξ)Ŝ(ξ)

Since ‖φ̂∗(ξ)‖∞ < ∞, ( ∑

k

ake−ikξ
)
φ̂∗(ξ) =

∑
n

f(n)e−inξ(3.2)

where
{
f(n) :=

∑
k akφ(n− k)

} ∈ l2 by Lemma 3.2. Hence

f̂(ξ) =
( ∑

n

f(n)e−inξ
)
Ŝ(ξ) =

∑
n

(
f(n)e−inξŜ(ξ)

)
(3.3)

by Lemma 3.1 since {S(t − n) : n ∈ Z} is a Riesz sequence. Thus we have (3.1) by taking inverse
Fourier transform on (3.3). Then span{S(t − n) : n ∈ Z} = V0 so that {S(t − n) : n ∈ Z} is a Riesz
basis of V0.

Conversely assume that there exists S(t) ∈ V0 such that {S(t − n) : n ∈ Z} is a Riesz basis of V0

and (3.1) holds. In particular φ(t) =
∑

n φ(n)S(t− n) so that

φ̂(ξ) =
∑

n

(
φ(n)e−inξŜ(ξ)

)
=

( ∑
n

φ(n)e−inξ
)
Ŝ(ξ) = φ̂∗(ξ)Ŝ(ξ).(3.4)

Hence
∑

k

∣∣φ̂(ξ + 2kπ)
∣∣2 =

∣∣φ̂∗(ξ)
∣∣2 ∑

k

∣∣Ŝ(ξ + 2kπ)
∣∣2

so that
Aφ

BS
≤ ∣∣φ̂∗(ξ)∣∣2 ≤ Bφ

AS
a.e. in [0, 2π]

where (Aφ, Bφ) and (AS , BS) are Riesz bounds for {φ(t − k) : k ∈ Z} and {S(t − k) : k ∈ Z}
respectively. Thus 0 < ‖φ̂∗(ξ)‖0 ≤ ‖φ̂∗(ξ)‖∞ < ∞. ¤

If {φ(n)} ∈ l1, then φ̂∗(ξ) = φ̂∗(ξ + 2π) ∈ C[0, 2π] so that

‖φ̂∗(ξ)‖0 = min
[0,2π]

|φ̂∗(ξ)| and ‖φ̂∗(ξ)‖∞ = max
[0,2π]

|φ̂∗(ξ)|.

Hence we have:

Corollary 3.4. Suppose that φ(t) is a scaling function for an MRA {Vj} such that φ(n)’s are well
defined and {φ(n)} ∈ l1. Then there exists S(t) ∈ V0 such that {S(t− n) : n ∈ Z} is a Riesz basis of
V0 and (3.1) holds if and only if φ̂∗(ξ) 6= 0 in [0, 2π].

In [9], G. G. Walter requires that φ(t) is a continuous on R and φ(t) = O(|t|−1−ε)(ε > 0) for |t| large.
Then {φ(n)} ∈ l1 so that the results in [9] is a special case of Corollary 3.4. On the other hand, W.
Chen and S. Itoh [2] claimed: under the same hypothesis as in Theorem 3.3, there exists S(t) ∈ V0 with
which (3.1) holds if and only if φ̂∗(ξ)−1 ∈ L2[0, 2π]. However, there are some gaps in the arguments
in [2]. In the proof of sufficiency for Theorem 1 in [2],

( ∑
k ake−ikξ

)
φ̂∗(ξ) belongs to L1[0, 2π] but

not necessarily in L2[0, 2π] (unless ‖φ̂∗(ξ)‖∞ < ∞) so that {f(n)} = {∑k akφ(n− k)} ∈ l∞ and the
equation (3.2) becomes only a formal Fourier series expansion of a function in L1[0, 2π] (see Equation
(15) in [2]). Even if φ̂∗(ξ)−1 ∈ L2[0, 2π] and ‖φ̂∗(ξ)‖∞ < ∞, (3.2) holds but (3.3) may not hold since
{S(t − n) : n ∈ Z} is not a Bessel sequence unless ‖φ̂∗(ξ)‖0 > 0. Also, in the proof of necessity, we
may not have (3.4) (see equation (17) in [2]) unless {S(t− n) : n ∈ Z} is a Riesz sequence.
We may extend Theorem 3.3 by the same reasoning to a single channel sampling as:
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Theorem 3.5. Let M(ξ) be a measurable function on R such that 0 < ‖M(ξ)‖0 ≤ ‖M(ξ)‖∞ < ∞.

Suppose that φ(t) is a scaling function for an MRA {Vj} such that C(φ)(n)’s are well defined and
{C(φ)(n)} ∈ l2 where C(φ)(t) := F−1(φ̂M)(t). Then, there exists S(t) ∈ V0 such that {S(t− n) : n ∈
Z} is a Riesz basis of V0 and

f(t) =
∑

n

C(f)(n)S(t− n) in L2(R), f(t) ∈ V0(3.5)

if and only if 0 < ‖Ĉ(φ)∗(ξ)‖0 ≤ ‖Ĉ(φ)∗(ξ)‖∞ < ∞. In this case, we have Ŝ(ξ) =
φ̂(ξ)

Ĉ(φ)∗(ξ)
.

Remark 3.1. If furthermore the scaling function φ(t) in Theorem 3.3 or Theorem 3.5 is piecewise
continuous on R and |φ(t)| = O

(|t|−1
2 −ε

)
(ε > 0) for |t| large, then {φ(n)} ∈ l2 and V0 becomes a

reproducing kernel Hilbert space. Indeed, for any f(t) =
∑

k akφ(t − k) ∈ V0 where {ak} ∈ l2, we
have

∣∣f(t)
∣∣ ≤

∑
n

∣∣an

∣∣∣∣φ(t− n)
∣∣ ≤

( ∑
n

∣∣an

∣∣2
) 1

2
( ∑

n

∣∣φ(t− n)
∣∣2

) 1
2

≤
∥∥f(t)

∥∥
L2(R)√
A

( ∑
n

∣∣φ(t− n)
∣∣2

) 1
2
, t ∈ R

where A is a lower Riesz bound for {φ(t − k) : k ∈ Z}. Since
∑

n

∣∣φ(t − n)
∣∣2 < ∞ for each t in

R, the point evaluation functional lt(f) = f(t)(t ∈ R) is bounded in V0 so that V0 is a reproducing
kernel Hilbert space. Hence the sampling series (3.1) and (3.5) converge not only in L2(R) but also
absolutely on R.

Example 3.1. Shannon function φ(t) = sin πt/πt is continuous on R and {φ(n)} = {δn0} ∈ l1. Since
φ̂∗(ξ) = 1 on [0, 2π] but |φ(t)| = O(|t|−1) for |t| large, the WSK sampling theorem is not covered by
[2] or [9] but follows Corollary 3.4.

Example 3.2. Let φ(t) be the continuous scaling function considered by Chen and Itoh (Example 3
in [2]) such that

φ̂(ξ) =





−1, −4π ≤ ξ < −2π;
1, −2π ≤ ξ < 0;
ξs, 0 ≤ ξ < 2π;
0, otherwise

with 0 < s < 1
2 . Then we can easily see that φ(n) = O( 1

n ) for |n| large so that {φ(n)} ∈ l2 \ l1. Even
though φ̂∗(ξ) = ξs on [0, 2π] so that φ̂∗(ξ) ∈ L∞[0, 2π] and φ̂∗(ξ)−1 ∈ L2[0, 2π], ‖φ̂∗(ξ)‖0 = 0 so that
we can not expect a sampling formula from φ(t) suggested either by Theorem 1 in [2] or by Theorem
3.3.

Example 3.3. Let M(ξ) = e−iaξ with 0 < a < 1 so that 1 = ‖e−iaξ‖0= ‖e−iaξ‖∞, and φ(t) a
scaling function as in Remark 3.1. Then C(φ)(t) = φ(t − a) and {φ(n − a)} ∈ l2 so that Zφ(a, ξ) :=∑

n φ(n − a)e−inξ ∈ L2[0, 2π]. Hence if 0 < ‖Zφ(a, ξ)‖0 ≤ ‖Zφ(a, ξ)‖∞ < ∞, then we obtain the
shift-sampling f(t) =

∑
n f(n− a)S(t− n).
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4. Two-channel sampling in translation invariant subspaces

In this section we let φ(t) be a scaling function for an MRA {Vj} and ψ(t) the associated wavelet.
Let M1(ξ) and M2(ξ) be in L∞(R) and Ci(f)(t) = F−1(f̂Mi)(t) for i = 1, 2 and f(t) ∈ L2(R).
Assume that Ci(φ)(n)’s and Ci(ψ)(n)’s are well defined and {Ci(φ)(n)} and {Ci(ψ)(n)} are in l2. Let

A11(ξ) :=
∑

C1(φ)(n)e−inξ; A12(ξ) :=
∑

C2(φ)(n)e−inξ;

A21(ξ) :=
∑

C1(ψ)(n)e−inξ; A22(ξ) :=
∑

C2(ψ)(n)e−inξ,

and A(ξ) :=
[
Aij(ξ)

]2
i,j=1

. Then Aij(ξ) ∈ L2[0, 2π] and Aij(ξ) = Aij(ξ + 2π). We always assume that
‖Aij(ξ)‖∞ < ∞ for i, j = 1, 2 and det A(ξ) 6= 0 a.e. in [0, 2π]. Set

A−1(ξ) = B(ξ) :=
[
Bij(ξ)

]2
i,j=1

.

Then B(ξ) = B(ξ + 2π) is well defined a.e. in R.

Lemma 4.1. Let λ1,B(ξ) and λ2,B(ξ) be eigenvalues of B(ξ)B(ξ)∗ with λ1,B(ξ) ≤ λ2,B(ξ). If ‖detA(ξ)‖0 >

0, then

0 < ‖λ1,B(ξ)‖0 ≤ ‖λ2,B(ξ)‖∞ < ∞.

Proof. Since B(ξ)B(ξ)∗ is nonsingular Hermitian a.e. in [0, 2π],

0 < λ1,B(ξ) ≤ λ2,B(ξ) a.e. in [0, 2π].

Since Aij(ξ) ∈ L∞[0, 2π] and ‖detA(ξ)‖0 > 0, all entries of B(ξ) and so B(ξ)B(ξ)∗ are also in
L∞[0, 2π] so that the characteristic equation of B(ξ)B(ξ)∗ is of the form

λ(ξ)2 + f(ξ)λ(ξ) + g(ξ) = 0

where f(ξ) and g(ξ) are real-valued functions in L∞[0, 2π]. Hence, 0 < ‖λ2,B(ξ)‖∞ < ∞. Since

λ1,B(ξ)λ2,B(ξ) = det[B(ξ)B(ξ)∗] = | detA(ξ)|−2,

‖detA(ξ)‖−2
∞ ≤ λ1,B(ξ)λ2,B(ξ) ≤ ‖ det A(ξ)‖−2

0 a.e. in [0, 2π]

so that ‖detA(ξ)‖−2
∞ ‖λ2,B(ξ)‖−1

∞ ≤ λ1,B(ξ) ≤ λ2,B(ξ) ≤ ‖λ2,B(ξ)‖∞ a.e. in [0, 2π]. ¤

For any φ(t) ∈ L2(R),

∥∥φ
∥∥2

L2(R)
=

∥∥φ̂
∥∥2

L2(R)
=

∫ 2π

0

∑

k

∣∣φ̂(ξ + 2kπ)
∣∣2dξ

so that {φ̂(ξ + 2kπ)}k∈Z ∈ l2 for a.e. in [0, 2π].

Definition 4.1. For any φ(t) and ψ(t) in L2(R), we call

G(ξ) :=

[ ∑
k |φ̂(ξ + 2kπ)|2 ∑

k φ̂(ξ + 2kπ)ψ̂(ξ + 2kπ)∑
k φ̂(ξ + 2kπ)ψ̂(ξ + 2kπ)

∑
k |ψ̂(ξ + 2kπ)|2

]

the Gramian of {φ, ψ}, which is well defined a.e. in [0, 2π].

Then as a Hermitian matrix, G(ξ) has real eigenvalues.

Theorem 4.2. [7] Let λ1,G(ξ) and λ2,G(ξ) be eigenvalues of the Gramian G(ξ) of {φ, ψ} such that
λ1,G(ξ) ≤ λ2,G(ξ). Then {φ(t − k), ψ(t − k) : k ∈ Z} is a Riesz sequence if and only if there are
constants B ≥ A > 0 such that

A ≤ λ1,G(ξ) ≤ λ2,G(ξ) ≤ B a.e. in [0, 2π].(4.1)
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Lemma 4.3. Set
[

F1(ξ)
F2(ξ)

]
:= B(ξ)

[
φ̂(ξ)
ψ̂(ξ)

]
on R. If ‖detA(ξ)‖0 > 0, then Fi(ξ) ∈ L2(R),

Si(t) := F−1(Fi)(t) ∈ V1 for i = 1, 2, and {Si(t− n) : i = 1, 2 and n ∈ Z} is a Riesz sequence.

Proof. Since Bij(ξ) ∈ L∞(R), Fi(ξ) = Bi1(ξ)φ̂(ξ) + Bi2(ξ)ψ̂(ξ) ∈ L2(R) for i = 1, 2. Since Bij(ξ) =
Bij(ξ + 2π) ∈ L2[0, 2π], we may expand Bij(ξ) into its Fourier series Bij(ξ) =

∑
k bij,ke−ikξ where

{bij,k} ∈ l2. Then by Lemma 3.1,

Fi(ξ) =
(∑

k

bi1,ke−ikξ
)
φ̂(ξ) +

( ∑

k

bi2,ke−ikξ
)
ψ̂(ξ)

=
∑

k

(
bi1,ke−ikξφ̂(ξ) + bi2,ke−ikξψ̂(ξ)

)

so that

Si(t) := F−1(Fi)(t) =
∑

k

(
bi1,kφ(t− k) + bi2,kψ(t− k)

)
∈ V1.

Let

S(ξ) :=

[ ∑
k |Ŝ1(ξ + 2kπ)|2 ∑

k Ŝ1(ξ + 2kπ)Ŝ2(ξ + 2kπ)∑
k Ŝ1(ξ + 2kπ)Ŝ2(ξ + 2kπ)

∑
k |Ŝ2(ξ + 2kπ)|2

]

be the Gramian of {S1, S2} and λ1,S(ξ) ≤ λ2,S(ξ) the eigenvalues of S(ξ). Then we have by periodicity
of B(ξ),

S(ξ) = B(ξ)G(ξ)B(ξ)∗.

Let US(ξ) and UG(ξ) be unitary matrices, which diagonalize S(ξ) and G(ξ) respectively, i.e.,

S(ξ) = US(ξ)
[

λ1,S(ξ) 0
0 λ2,S(ξ)

]
US(ξ)∗

and

G(ξ) = UG(ξ)
[

λ1,G(ξ) 0
0 λ2,G(ξ)

]
UG(ξ)∗.

Then [
λ1,S(ξ) 0

0 λ2,S(ξ)

]
= R(ξ)

[
λ1,G(ξ) 0

0 λ2,G(ξ)

]
R(ξ)∗

where

R(ξ) = US(ξ)∗B(ξ)UG(ξ) :=
[

R11(ξ) R12(ξ)
R21(ξ) R22(ξ)

]

so that

λ1,S(ξ) = λ1,G(ξ)|R11(ξ)|2 + λ2,G(ξ)|R12(ξ)|2;(4.2)

λ2,S(ξ) = λ1,G(ξ)|R21(ξ)|2 + λ2,G(ξ)|R22(ξ)|2.(4.3)

On the other hand,

R(ξ)R(ξ)∗ = US(ξ)∗B(ξ)B(ξ)∗US(ξ)(4.4)

= US(ξ)∗UB(ξ)
[

λ1,B(ξ) 0
0 λ2,B(ξ)

]
UB(ξ)∗US(ξ),

where UB(ξ) is the unitary matrix such that

B(ξ)B(ξ)∗ = UB(ξ)
[

λ1,B(ξ) 0
0 λ2,B(ξ)

]
UB(ξ)∗
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with λ1,B(ξ) ≤ λ2,B(ξ). Set US(ξ)∗UB(ξ) =
[
Dij(ξ)

]2
i,j=1

, which is also a unitary matrix. Then we
have from diagonal entries of both sides of (4.4),

|R11(ξ)|2 + |R12(ξ)|2 = λ1,B(ξ)|D11(ξ)|2 + λ2,B(ξ)|D12(ξ)|2;(4.5)

|R21(ξ)|2 + |R22(ξ)|2 = λ1,B(ξ)|D21(ξ)|2 + λ2,B(ξ)|D22(ξ)|2.(4.6)

Then we have from (4.1), (4.2), (4.3), (4.5) and (4.6)

λ1,S(ξ) ≥ λ1,G(ξ)
(
|R11(ξ)|2 + |R12(ξ)|2

)
≥ λ1,G(ξ)λ1,B(ξ) a.e. in [0, 2π];

λ2,S(ξ) ≤ λ2,G(ξ)
(
|R21(ξ)|2 + |R22(ξ)|2

)
≤ λ2,G(ξ)λ2,B(ξ) a.e. in [0, 2π],

since |D11(ξ)|2 + |D12(ξ)|2 = |D21(ξ)|2 + |D22(ξ)|2 = 1 a.e. in [0, 2π]. Hence

0 < ‖λ1,G(ξ)‖0‖λ1,B(ξ)‖0 ≤ λ1,S(ξ) ≤ λ2,S(ξ) ≤ ‖λ2,G(ξ)‖∞‖λ2,B(ξ)‖∞ < ∞ a.e. in [0, 2π]

by Lemma 4.1 so that {Si(t− n) : i = 1, 2 and n ∈ Z} is a Riesz sequence by Theorem 4.2 . ¤

Now we are ready to give the main result in this section.

Theorem 4.4. Under the above setting, there exist Si(t) ∈ V1 (i = 1, 2) such that {Si(t − n) : i =
1, 2 and n ∈ Z} is a Riesz basis of V1 for which two-channel sampling formula

f(t) =
∑

n

C1(f)(n)S1(t− n) +
∑

n

C2(f)(n)S2(t− n), f ∈ V1(4.7)

holds if and only if ‖det A(ξ)‖0 > 0 on [0, 2π]. In this case

Si(t) = F−1
(
Bi1(ξ)φ̂(ξ) + Bi2(ξ)ψ̂(ξ)

)
(t) for i = 1, 2.(4.8)

Proof. Assume ‖detA(ξ)‖0 > 0 on [0, 2π] and define Si(t) by (4.8). Then Si(t) ∈ V1 (i = 1, 2) and
{Si(t− n) : i = 1, 2 and n ∈ Z} is a Riesz sequence by Lemma 4.3. For any f(t) ∈ V1

f(t) =
∑

k

c1,kφ(t− k) +
∑

k

c2,kψ(t− k)(4.9)

where {ci,k}k ∈ l2 for i = 1, 2 since {φ(t− k), ψ(t− k) : k ∈ Z} is a Riesz basis for V1. Applying the
bounded linear operator Ci(·) to (4.9) gives

Ci(f)(t) =
∑

k

c1,kCi(φ)(t− k) +
∑

k

c2,kCi(ψ)(t− k).(4.10)

On the other hand, we have by Lemma 3.1

f̂(ξ) =
( ∑

k

c1,ke−ikξ
)
φ̂(ξ) +

( ∑

k

c2,ke−ikξ
)
ψ̂(ξ)

Since
[

φ̂(ξ)
ψ̂(ξ)

]
= A(ξ)

[
Ŝ1(ξ)
Ŝ2(ξ)

]
,

f̂(ξ) =
[( ∑

k

c1,ke−ikξ
)
A11(ξ) +

( ∑

k

c2,ke−ikξ
)
A21(ξ)

]
Ŝ1(ξ)(4.11)

+
[( ∑

k

c1,ke−ikξ
)
A12(ξ) +

(∑

k

c2,ke−ikξ
)
A22(ξ)

]
Ŝ2(ξ)

=
∑

n

( ∑

k

c1,kC1(φ)(n− k) +
∑

k

c2,kC1(ψ)(n− k)
)
e−inξŜ1(ξ)

+
∑

n

( ∑

k

c1,kC2(φ)(n− k) +
∑

k

c2,kC2(ψ)(n− k)
)
e−inξŜ2(ξ)

=
∑

n

C1(f)(n)e−inξŜ1(ξ) +
∑

n

C2(f)(n)e−inξŜ2(ξ)
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by (4.10), where {Ci(f)(n)} ∈ l2 (i = 1, 2) by Lemma 3.2. Taking inverse Fourier transform on
(4.11) gives (4.7), which implies V1 = span {Si(t − n) : i = 1, 2 and n ∈ Z} so that {Si(t − n) : i =
1, 2 and n ∈ Z} is a Riesz basis of V1. Conversely assume that there exist Si(t) ∈ V1 (i = 1, 2) such
that {Si(t− n) : i = 1, 2 and n ∈ Z} is a Riesz basis of V1 and (4.7) holds. In particular,

φ(t) =
∑

n

C1(φ)(n)S1(t− n) +
∑

n

C2(φ)(n)S2(t− n);

ψ(t) =
∑

n

C1(ψ)(n)S1(t− n) +
∑

n

C2(ψ)(n)S2(t− n).

By taking Fourier transform and using Lemma 3.1, we have
[

φ̂(ξ)
ψ̂(ξ)

]
= A(ξ)

[
Ŝ1(ξ)
Ŝ2(ξ)

]
.

We then have as in the proof of Lemma 4.3

G(ξ) = A(ξ)S(ξ)A(ξ)∗,

where G(ξ) and S(ξ) are Gramians of {φ, ψ} and {S1, S2} respectively. Hence det G(ξ) = det S(ξ)| detA(ξ)|2
so that

|det A(ξ)|2 =
detG(ξ)
detS(ξ)

=
λ1,G(ξ)λ2,G(ξ)
λ1,S(ξ)λ2,S(ξ)

≥ λ1,G(ξ)2

λ2,S(ξ)2
a.e. in [0, 2π],

where λ1,G(ξ) ≤ λ2,G(ξ) and λ1,S(ξ) ≤ λ2,S(ξ) are eigenvalues of G(ξ) and S(ξ) respectively. There-
fore,

|det A(ξ)| ≥ λ1,G(ξ)
λ2,S(ξ)

≥ ‖λ1,G(ξ)‖0
‖λ2,S(ξ)‖∞ a.e. in [0, 2π]

so that ‖detA(ξ)‖0 > 0 since both {φ(t− n), ψ(t− n) : n ∈ Z} and {Si(t− n) : i = 1, 2 and n ∈ Z}
are Riesz sequences. ¤

Example 4.1. For Haar orthogonal system φ(t) = χ[0,1)(t) and ψ(t) = χ[0, 1
2 )(t) − χ[ 12 ,1)(t). Let

M1(ξ) = 1 and M2(ξ) = e−iaξ with 0 < a ≤ 1/2. Then C1(φ)(t) = χ[0,1)(t), C2(φ)(t) = χ[0,1)(t− a),
C1(ψ)(t) = χ[0, 1

2 )(t)− χ[ 12 ,1)(t) and C2(ψ)(t) = χ[0, 1
2 )(t− a)− χ[ 12 ,1)(t− a). Then

A(ξ) =
[

1 e−iξ

1 −e−iξ

]

so that | detA(ξ)| = 2, which satisfies the condition of Theorem 4.4. Hence we have a sampling
formula

f(t) =
∑

n

f(n)S1(t− n) +
∑

n

f(n− a)S2(t− n).
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