CHANNELED SAMPLING IN TRANSLATION INVARIANT SUBSPACES

K. H. KWON AND E. H. LEE

ABSTRACT. We develop single and two-channel sampling formula in the translation invariant sub-
spaces in the multi resolution analysis {V;} of wavelet theory. First, we give a single channel sample
formula in Vp, which extends results by G. G. Walter and W. Chen and S. Itoh. We then find
necessary and sufficient conditions for two-channel sampling formula to hold in V.
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1. INTRODUCTION

The classical Whittaker-Shannon-Kotel’'nikov(WSK) sampling theorem [4] states that if a signal
f(t) with finite energy is band-limited with the bandwidth 7, then it can be completely reconstructed
from its discrete values by the formula

sinm(t —n)
t) = e S
)= 3 fm

which converges both in L?(R) and uniformly on R, which has been extended in many directions
(e.g. [1], [6] and [8]). In 1992, G. G. Walter [9] developed a sampling theorem in wavelet subspaces,
noticing that the sampling function sinz¢/7t in the WSK theorem is a scaling function of a multi
resolution analysis He assumed that the scaling function ¢(t) is a continuous real valued function
with ¢(t) = O(|t|=*7¢)(e > 0) for |¢| large, which does not hold for sin7t/mt. Following G. G. Walter’s
work, A. J. E. M. Janssen [5] used the Zak transform to generalize Walter’s work. Later, W. Chen
and S. Itoh [2] extended Walter’s result by requiring only the condition {¢(n)} € I on the scaling
function without any decaying property. However, there were some gaps in the proof of the main
result in [2].

In this work, we first re-examine the results in [2] and then extend it to single and double channel
sampling formulas in the translation invariant subspaces of a multi resolution analysis.

2. PRELIMINARIES

Definition 2.1. A function ¢(¢t) € L*(R) is called a scaling function of a multi resolution analy-
sis(MRA in short) {V;} if the closed subspaces V; of L?*(R),

V= 7span{¢(2jt k) :ke Z}, jez
satisfy the following properties;
(i) ---cVacWc Vi

(i) U = L*(R) ;
(iii) ﬂ -—{0}
)




2 K. H KWON AND E. H. LEE

(v) {o(t — k) : k € Z} is a Riesz basis of V.

Then {¢(2/t — k) : k € Z} becomes a Riesz basis of V; for each j. The wavelet subspace W; is
defined to be the orthogonal complement of V; in V4 so that

Vi =V; & W;.

Then there exists a wavelet 1(t) € L2(R) that induces a Riesz basis {¢(27t — k) : k € Z} of W,
Moreover, {¢(2't — k),¥(2’t — k) : k € Z} forms a Riesz basis of Vj 1.
For any ¢(t) € L*(R), we let

F(9)(&) = 8(6) - \/ﬂ/ ¢(t)e"Cdt and  F'(e)(1) ;—\/12?/00 B(€)e™ de

be the Fourier and inverse Fourier transforms of ¢(¢) and qg(f ) respectively. For a measurable function
f(t) on aset X CR, we let

1f(®)llo == sup Inf [f()] and [[f()]e := Inf sup 1F @)l

|E|= 0 X\E |E|=0 x
be the essential infimum of |f(t)| on X and the essential supremum of |f( )| on X respectively.
Proposition 2.1. [3] Let ¢(t) € L*(R). Then
(i) {¢p(t — k) : k € Z} is a Bessel sequence if and only if there is a constant B > 0 such that
Z |p(€ + 2km)|> < B, a.e. in [0,2n);
k

(ii) {p(t — k) : k € Z} is a Riesz sequence if and only if there are constants B > A > 0 such that
A< b€+ 2km)P < B, ae in [0,27].
i

We call A and B lower and upper Riesz bounds for a Riesz sequence {¢(t — k) : k € Z} respectively.
For later use we give a corollary of Proposition 2.1.

Corollary 2.2. Let ¢(t) € L*>(R), M(£) € L*°(R), and

ClO)E) == F (M) = <= / (6 M (€)e .

Then

(i) {C(d)(t — k) : k € Z} is a Bessel sequence if {¢(t — k) : k € Z} is a Bessel sequence.
(i) {C(p)(t — k) : k € Z} is a Riesz sequence if {¢(t — k) : k € Z} is a Riesz sequence and

1M @]l >0

Proof. (i): Let {¢(t — k) : k € Z} be a Bessel sequence with . |p(€ + 2km)|2 < B, ae. in [0,2n].
Then

Z|C (€ + 2km)|? ST 16(E + 2km)M (€ + 2km)|?
k

IN

ST16E + 2km) [P M )% < B M©)|7Z,, ae. in [0,27]
k

so that {C(¢)(t — k) : k € Z} is a Bessel sequence by Proposition 2.1.
(79): Let {¢(t — k) : k € Z} be a Riesz sequence with bounds A and B. Then, as in (i) we have

AIME)E < S |C@)(E +2km)[* = 37 [d(¢ + 2km) M (€ + 2km)|* < BIM(E)]1%
k k

so that {C(¢)(t — k) : k € Z} is a Riesz sequence by Proposition 2.1. O
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3. SINGLE CHANNEL SAMPLING IN TRANSLATION INVARIANT SUBSPACES

In this section we give a single channel sampling in V;, which extends results in G. G. Walter [9]
and W. Chen and S. Ttoh [2].

Lemma 3.1. [3] Let ¢(t) € L*(R) be such that {¢(t — k) : k € Z} is a Bessel sequence. Then, for any
{ex} € 12,3, ckd(t — k) converges in L*(R) and

(et ) = 5 ) = (S )
k k k

Let F* be the discrete Fourier transform on 7 (p = 1,2) defined by F*({cx})(€) := >, cre k¢,
Then, F*({ck})(€) belongs to C[0, 27 or L2[0, 27] if {cx } € I or 2 respectively. We denote F*({#(k)})(€)
by ¢*(€) for ¢(t) € L2(R) when ¢(k)(k € Z) are well defined.

Lemma 3.2. If {ay},{br} € 1%, and F*({ax})(&) € L>[0,27], then {Z.ajbk,j} €1? and

F {aDEOF ({be})(€ ({Zajbk i})©.

Proof. Since F*({ax})(§) € L0, 2] and 7 ({bx}) (&) € L?[0,2x], F* ({ax}) () F* ({bx})(€) € L2[0, 27].
Hence we can expand F*({ay})(&)F*({bx})(€) into its Fourier series Y, c,e™"¢ in L?[0,2n], where

e = o P {a)OF (). ")

2w L2[0,27]

1 ke — e\ i
_ [ , bret {) zn§>
2W<;ake (; ke € L2[0,27]
1 —ikE T —iké
= E<Zak€ ,an—ke >L2[0.2ﬂ-] = Zakbn—k
k k ’ k

by Parseval’s identity. Hence the conclusion follows. |

Theorem 3.3. Suppose that ¢(t) is a scaling function for an MRA {V;} such that ¢(n)’s are well
defined and {¢(n)} € [?. Then, there exists S(t) € Vo such that {S(t —n) :n € Z} is a Riesz basis of
Vo and

(3.1) Zf S(t—mn) in L*(R), f(t)eVy
if and only if 0 < [|¢*(&)]lo < |6*(€)]lee < 0. In this case, we have S(€) = (;k(é))
Proof. Assume 0 < a = [|¢*(€)]lo < 6 := [|¢*(€)]lsc < 00. Then m < Lae. in [0,27] so that

(5) [0,2 = >, cke**¢ be its Fourier series, where {c;} € [? and set F(£) := ()

m- L % (f) (&)
Then F( ) € L*R ) and F(§) = (X, ke )0 h(e) = > (cre™ ”ngi)(f)) by Lemma 3.1. Hence
S(t) = FYF )( ) =D, ckp(t — k) € Vo. Now, we show that {S(t — k) : k € Z} is a Riesz sequence.
Since S({) == (é))
Sploe 2w B,
52 < S(€ + 2km) 2 = =k ||$*(£)|2 | < a—j a.e. in [0, 27]
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where A, and B, are Riesz bounds for {¢(t—k) : k € Z}. Hence {S(t—k) : k € Z} is a Riesz sequence
by Proposition 2.1 (ii).
For any f(t) = Zk akqﬁ(t — k) € Vo where {a;} € [?, we have by Lemma 3.1,

(Zake ) 4(6) (Zake #)é*(©)5(¢)
Since [¢*(€)]|o < oo,

(3.2) (Zake Zkg) Zf e~ing

where {f(n) =Y, ard(n k)} € [? by Lemma 3.2. Hence
(3.3) (e~ ") 8(6) = 3 (F)eS8(6))

by Lemma 3.1 since {S(t — n) :n € Z} is a Riesz sequence. Thus we have (3.1) by taking inverse
Fourier transform on (3.3). Then span{S(t — n) : n € Z} = Vj so that {S(t —n) : n € Z} is a Riesz
basis of Vj.

Conversely assume that there exists S(t) € Vj such that {S(¢t — n) : n € Z} is a Riesz basis of V}
and (3.1) holds. In particular ¢(t) = > #(n)S(t —n) so that

(3.4) 8(6) = (elmpeme5( >):(Z¢ ) 3(6) = 6°(©)S(9).

n

Zl (€ +2km)|* = |9*(6)

Hence

38 (¢ + 2km)|”
k

so that
Ay < Bo ,
< — .e. 2
Bs |¢> | A a.e. in [0, 27]
where (Ay, By) and (Ag, Bg) are Riesz bounds for {¢(t — k) : k € Z} and {S(t — k) : k € Z}
respectively. Thus 0 < [|¢*(€)]lo < ||¢*(§) oo < 00. O

If {¢(n)} € 1!, then ¢*(&) = ¢* (€ + 27) € C[0, 27] so that
16 (E)llo = [mm]|¢ © and 6" ()]0 = [maX]|¢ -
Hence we have:

Corollary 3.4. Suppose that ¢(t) is a scaling function for an MRA {V;} such that ¢(n)’s are well
defined and {¢(n)} € I'. Then there exists S(t) € Vo such that {S(t —n) : n € Z} is a Riesz basis of
Vo and (3.1) holds if and only if ¢*(£) # 0 in [0, 27).

n [9], G. G. Walter requires that ¢(t) is a continuous on R and ¢(¢) = O([t|17¢)(e > 0) for |¢| large.
Then {¢(n)} € ! so that the results in [9] is a special case of Corollary 3.4. On the other hand, W.
Chen and S. Itoh [2] claimed: under the same hypothesis as in Theorem 3.3, there exists S(t) € V, with
which (3.1) holds if and only if & (€)= € L?[0,27]. However, there are some gaps in the arguments
in [2]. In the proof of sufficiency for Theorem 1 in [2], (3, are="¢)¢*(€) belongs to L'[0, 2] but
not necessarily in L2[0,27] (unless ||¢* (€)oo < 00) so that {f(n)} = {3, arp(n — k)} € I°° and the
equation (3.2) becomes only a formal Fourier series expansion of a function in L'[0, 27] (see Equation
(15) in [2]). Even if ¢*(¢)~! € L]0, 2x] and [|¢*(€)]|so < 00, (3.2) holds but (3.3) may not hold since
{S(t —n) : n € Z} is not a Bessel sequence unless ||¢*(€)|[o > 0. Also, in the proof of necessity, we
may not have (3.4) (see equation (17) in [2]) unless {S(t — n) : n € Z} is a Riesz sequence.

We may extend Theorem 3.3 by the same reasoning to a single channel sampling as:



CHANNELED SAMPLING IN TRANSLATION INVARIANT SUBSPACES 5

Theorem 3.5. Let M (&) be a measurable function on R such that 0 < |[M(§)|lo < [|M(€)]lco < 0.
Suppose that ¢(t) is a scaling function for an MRA {V;} such that C(¢)(n)’s are well defined and
{C(¢)(n)} € 12 where C(p)(t) := F~H(GM)(t). Then, there exists S(t) € Vy such that {S(t —n) :n €
Z} is a Riesz basis of Vi and

(3:5) f£)=>_C(HmSE—n) in L*R), f(t)€Vy

. 4 — — . fey - O

if and only if 0 < [|C()*(E)|lo < |C(9)*(&)]loo < 00. In this case, we have S(§) = —=
C(9)*(§)

Remark 3.1. If furthermore the scaling function ¢(t) in Theorem 3.3 or Theorem 3.5 is piecewise
continuous on R and |¢(t)] = O(\t|_7176)(e > 0) for |t| large, then {¢(n)} € I? and Vy becomes a
reproducing kernel Hilbert space. Indeed, for any f(t) = >, ard(t — k) € Vo where {a} € I?, we
have

SIS
=

£

IN

> lanllott =) < (D laal*) (D Lo = ml*)
s

) 2
< ﬁ(;\¢(t—n)|2)7 teR

(NI

where A is a lower Riesz bound for {¢(t — k) : k € Z}. Since Y, |p(t — n)|2 < oo for each t in
R, the point evaluation functional l;(f) = f(¢)(t € R) is bounded in Vj so that Vj is a reproducing
kernel Hilbert space. Hence the sampling series (3.1) and (3.5) converge not only in L?(R) but also
absolutely on R.

Example 3.1. Shannon function ¢(¢) = sint/7t is continuous on R and {¢(n)} = {d,0} € I}. Since
¢*(€) =1 on [0,27] but |¢(t)] = O(Jt| 1) for || large, the WSK sampling theorem is not covered by
[2] or [9] but follows Corollary 3.4.

Example 3.2. Let ¢(¢) be the continuous scaling function considered by Chen and Itoh (Example 3
in [2]) such that

-1, —dw <E&< 2m;

Sl 1, 21 < € <0
PO=) e o<e<om
0, otherwise

with 0 < s < 1. Then we can easily see that ¢(n) = O(%) for |n| large so that {¢(n)} € i?\ I'. Even
though ¢*(£) = £° on [0,2n] so that ¢*(&) € L>°[0,2n] and ¢*(€)~" € L2[0,27], [|¢*(¢)]lo = 0 so that
we can not expect a sampling formula from ¢(t) suggested either by Theorem 1 in [2] or by Theorem
3.3.

Example 3.3. Let M(£) = e with 0 < a < 1 so that 1 = [[e™ o= [le™"%| o, and #(t) a
scaling function as in Remark 3.1. Then C(¢)(t) = ¢(t — a) and {¢(n —a)} € I? so that Zs(a, &) =
>, ¢(n —a)e”™ € L2[0,27]. Hence if 0 < || Z4(a,€)]lo < | Zs(a,€)]|c < oo, then we obtain the
shift-sampling f(t) =", f(n —a)S(t —n).
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4. TWO-CHANNEL SAMPLING IN TRANSLATION INVARIANT SUBSPACES

In this section we let ¢(t) be a scaling function for an MRA {V;} and ¢(t) the associated wavelet.
Let M;(€) and My(€) be in L®(R) and C;(f)(t) = F~L(fM;)(t) for i = 1,2 and f(t) € L2(R).
Assume that C;(¢)(n)’s and C;(1)(n)’s are well defined and {C;(¢) )} and {C;(¢)(n)} are in . Let

(n
A1(§) = Z Ci(9) (n)eimg; A€ Z Ca(¢) e~
A21(€) =Y Ci()(n)e™™; Az(€) =) Ca(¥)(n 7“’5,

and A(§) := [Aij(f)]ij:l. Then A;;(€) € L?[0,27] and A;;(€) = A;j(€ + 2m). We always assume that
| 4i;(€)]loo < 00 for 4,j =1,2 and det A(§) # 0 a.e. in [0, 27]. Set
2

A_l(é) = B(f) = [Blj(é-)] i,j=1"
Then B(§) = B(£ + 2m) is well defined a.e. in R.

Lemma 4.1. Let A1 p(§) and X, 5(€) be eigenvalues of B(E)B(€)" with M 5 (&) < A2,5(£). If || det A(E)]|o >
0, then

0 <A o < [A2.8(E) o0 < 00
Proof. Since B(£)B(€)™ is nonsingular Hermitian a.e. in [0, 27],
0< /\173(5) < )\273(5) a.e. in [0727@.

Since A;;(¢) € L*[0,27] and ||det A(§)|lo > 0, all entries of B(£) and so B(£)B(£)™ are also in
L®°[0,27] so that the characteristic equation of B(£)B(£)" is of the form

ME? + FONE) +9(6) =0

where f(&) and ¢(&) are real-valued functions in L>°[0, 27]. Hence, 0 < [|A2,5(§)|loc < 00. Since
ALB(E)Xe,5(€) = det[B(§)B(€)"] = | det A(€)| ™

[ det A)]152 < Avp(E)Aa,5(6) < || det A€ 52 ae. in [0,27]
so that || det A(€)[12Ie.(E) 15 < Ap(6) € Ae.s(E) < [Mep(©)lle ace. in [0,2]. O

For any ¢(t) € L*(R),
27
ol = 1603200 = | S 1ot + 26m)

so that {¢(€ + 2km)}rez € 12 for a.e. in [0,27].
Definition 4.1. For any ¢(t) and (t) in L?*(R), we call
Ge) = | Zulo€2kmP 35, 6(6+ 2km) (€ + 2km)

Sk O+ 2km)d(E + 2km) T, (€ + 2km)P?
the Gramian of {¢,1}, which is well defined a.e. in [0, 27].

Then as a Hermitian matrix, G(§) has real eigenvalues.

Theorem 4.2. [7] Let A1 ¢(§) and A2.c(§) be eigenvalues of the Gramian G(§) of {¢,¢} such that
Ac(§) < Aog(&). Then {p(t — k), v(t — k) : k € Z} is a Riesz sequence if and only if there are
constants B > A > 0 such that

(4.1) A< g€ <Ag(é) <B ae in [0,27].
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Lemma 4.3. Sef { 28 } — B(¢) [ zig ] on R, If |det A(€)llo > 0, then Fy(&) € L2(R),

Si(t) :=F LF)(t) eV fori=1,2, and {S;(t—n):i=1,2 and n € Z} is a Riesz sequence.
Proof Since By;(€) € L®(R), Fi(€) = B (€)d(€) + Bio(€)9(€) € LA(R) for i = 1,2. Since By;(€) =

B;;(& + 2m) € L?[0,2n], we may expand B;;(€) into its Fourier series B;;(€) = Y, bij e **¢ where
{bijx} € [*. Then by Lemma 3.1,

Fi(§) = (Zb 1,k€ mg) (Zbgke 1’“5)
= Z (bil,ke REG(E) + big e Zkﬁ?/’(f))

k
so that
Si(t) == F Z ( i1 kOt — k) + b k0 (t — k)) ev.
k
Let

S@%:[ i 1€+ 2km)P? zk&@+gmm$@+2mo]
35 S1(€ + 2k) Sz (€ + 2km) 225 192(€ + 2km)[?
be the Gramian of {S7, 52} and A1 s(&) < Ag,s(&) the eigenvalues of S(§). Then we have by periodicity
of B(¢),
S(§) = B(&)G(§)B(&)"
Let Ug(€) and Ug(€) be unitary matrices, which diagonalize S(€) and G(£) respectively, i.e.,

_ As(€) 0 .
S@)—L@@){ 0 &5@)]Uﬂ©

and
_ Ac(6) 0 .
G(&) %@[ 0 &doﬁwa
Then
A1,s(€) 0 _ Ana(§) 0 .
0 as(O) } = R() [ 0 Mool } RO
where
R(E) = Us(©) BlEUa(e) = | J1(E) T |
so that
(4.2) As(€) = Aa(©)|Ru (€)1 + Aa,a(€) | Ri2(9)[%;
(4.3) X2,5(€) = A1, (&)|Ra1(O)1* + A2, (&) Raa (€)1
On the other hand,
(4.4) RORE)" = Us(§)"B()B(§) Us(§)

. A1,B(&) 0 X
= usterue | 5€ 0 |umeruso).

where Up(€) is the unitary matrix such that

A1,B(&) 0

BB =vae) | 4E 0 uster
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with A g(&) < A2.g(€§). Set Ug(§)*Up(§) = [Dij(é“)]?j:l, which is also a unitary matrix. Then we
have from diagonal entries of both sides of (4.4),

(4.5) IR (&) + [Ri2(&)> = A,s(ID11(&)* + A2,(8)|D12(9)[%

(4.6) [Ro1 ()1 + [Ra2 (O = Ap(€)|D21(§)]” + A2,5(€)|D22(8) .
Then we have from (4.1), (4.2), (4.3), (4.5) and (4.6)

A1s(6) > )\1,G(f)<|R11(§)\2 + |Rl2(f)|2) > A a(§A,B(€) ae. in [0,27];

Xas(€) < Mo, (©) (IRt (€ + [Re2(©)?) < Aoci()ha,p(€) ae. in [0,27],
since |D11(€)[> + [D12(8)|? = |D21(&)]* + | D22 (€)|> = 1 a.e. in [0,2n]. Hence

0 < [Aa(©llollr.z(E)llo < Ars(§) < A2.5(8) < [[A2,a(E)llocl[A2.B(E) e < 00 ace. in [0,2n]
by Lemma 4.1 so that {S;(t —n) :4=1,2 and n € Z} is a Riesz sequence by Theorem 4.2 . O

Now we are ready to give the main result in this section.

Theorem 4.4. Under the above setting, there exist S;(t) € Vi (i = 1,2) such that {S;(t —n) : i =
1,2 and n € Z} is a Riesz basis of Vi for which two-channel sampling formula

(4.7) ch n)Sy(t —n +ZCQ (n)Sy(t—n), feW

holds if and only if || det A( Mo >0 on [0,27]. In this case
(4.8) Si(t) = FH(Ba(&)$(&) + Bia(OP(€)) (1) for i =1,2.

Proof. Assume || det A(£)]lo > 0 on [0,27] and define S;(t) by (4.8). Then S;(¢t) € V4 (i = 1,2) and
{S;(t—n):i=1,2 and n € Z} is a Riesz sequence by Lemma 4.3. For any f(t) € V}

(4.9) f@t) = Z crpp(t — k) + Z c2 kP (t — k)
k k

where {c¢; x}x, € [ for i = 1,2 since {¢(t — k),¥(t — k) : k € Z} is a Riesz basis for V;. Applying the
bounded linear operator C’v( ) (4.9) gives

(4.10) Z c1 kC )+ Z Co kC )

On the other hand, we have by Lemma 3.1

)= (Berwe )0 + (enne™ )it
0 { é:&éi |
(1) f©) = [(eune ™) An© (Zcmei ) A21()] $1(6)
k +[(Zq,ke ) A1a(€) (Zcme ) 422(6)| 52(6)
- 2(201 G =) + T easCa(v) )) IS, (€)
n +Z(Zc1 £ Cal(o —l—Zcsz’g n = k))e "S5y (¢)
- En:cl e"nES (¢ +§n:CQ n)e "5, (€)

| I
|
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by (4.10), where {C;(f)(n)} € I1? (i = 1,2) by Lemma 3.2. Taking inverse Fourier transform on
(4.11) gives (4.7), which implies V; = span {S;(t —n) : ¢ = 1,2 and n € Z} so that {S;(t —n) : i =
1,2 and n € Z} is a Riesz basis of V;. Conversely assume that there exist S;(¢t) € V1 (i = 1,2) such
that {S;(t —n):i=1,2 and n € Z} is a Riesz basis of V4 and (4.7) holds. In particular,

o) = ch n)Sy(t —n) +ZCQ (n)Sa(t — n);
ch Slt—n ZCQ Szt—n)

By taking Fourier transform and using Lemma 3.1, we have

58]0l 58]

We then have as in the proof of Lemma 4.3

G(§) = A(§)S(§)A(E)",
where G(£) and S(€) are Gramians of {¢, 9} and {S7, S2} respectively. Hence det G(£) = det S(€)| det A(¢)|?
so that

P(t)

|det A(&)]* = a.e. in [0, 27],

det G(§) _ Ma(©raa(§) o Mal®)?
det S(€)  A1s(§)A2,5(8) — A2,s(8)?
where A ¢(§) < A2.¢(€) and A1 (&) < Ag,5(§) are eigenvalues of G(§) and S(§) respectively. There-
fore,

Aa(E) o el
A2,5(6) T [1A2,5(8)lloo
so that || det A(£)]]o > 0 since both {¢p(t —n),¥(t —n) :n € Z} and {S;(t —n) :i=1,2 and n € Z}
are Riesz sequences. O

|det A(§)| =

a.e. in [0, 27]

Example 4.1. For Haar orthogonal system ¢(t) = Xo,1)(t) and ¢ (t) = xjo,1)(t) — X(2,1)(). Let

2

M;(€) =1 and M5(€) = e~ with 0 < a < 1/2. Then C1(¢)(t) = x[0,1)(t), C2(¢)(t) = x[0,1)(t — a),
C(8)(®) = Xpo.1)(®) — X(3.1)(£) and Ca(6)(£) = Xp0.3)(t — @) — X(3.1)(t — ). Then

A(¢) = { 1 _e;ig }

so that |det A(§)] = 2, which satisfies the condition of Theorem 4.4. Hence we have a sampling
formula

Zf )S1(t —n) +Zf n—a)Sy(t —n).
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