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Abstract

This paper presents a new method of model selection in regression problems
based on the modulus of continuity. For this purpose, the bounds on the expected
risks are suggested using the modulus of continuity for the target and estimation
functions. As a result, the suggested bounds are described by learned parameters
of regression models and the model selection criteria referred to as the modulus of
continuity information criteria (MCIC) are suggested for the selection of optimal
structure of regression models. Through the simulation for function approximation,
we have shown that the suggested model selection can provide a better performance
than other statistical methods of model selection such as AIC or BIC from the view
points of the risks and the number of parameters.

1 Introduction

Model selection is an important issue of selecting a reasonable network size to get the
optimal performance of regression models. The regression of real-valued functions is per-
formed for a given finite number of samples. In this regression, the proper network size
(or number of parameters) in a regression model is hard to decide since the performance
of a regression model measured for the entire distribution of samples (not just given sam-
ples) should be optimized. For the performance of regression models, the loss function of
error square is usually measured and the expectation of the loss function for the entire
sample distribution is considered. This expected risk can be decomposed by the bias and
variance terms of regression models. If we increase the number of parameters, the bias
term is decreased but the variance term is increased or vice versa. If the number of pa-
rameters is so small that the performance is not optimal due to large bias term, it is called
the under-fitting of regression models. If the number of parameters is too large so that
the performance is not optimal due to large variance term, it is called the over-fitting of
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regression models. So we need the trade-off between the under-fitting and over-fitting of
regression models. Here, the important issue is measuring the model complexity related
to the variance term. The statistical methods of model selection are to use a penalty
(correction) term as the measure of model complexity. The well known criteria using
this penalty term are Akaike information criteria (AIC)[1], Bayesian information criteria
(BIC)[2], generalized cross-validation (GCV)[3], minimum description length (MDL)[4, 5],
risk inflation criteria (RIC)[6], etc. These methods can be easily fit to linear regression
models when a large number of samples is available. However, they suffer the difficulty
to select the optimal structure of the estimation networks in the case of nonlinear re-
gression models and/or the small number of samples. Recently, Vapnik[7] proposed a
model selection method based on the structural risk minimization (SRM) principle. One
of characteristics of this method is that the model complexity is described by the struc-
tural information such as the VC dimension of the estimation network. This method can
be applied to nonlinear models and also regression models trained for a small number of
samples. Chapelle et al.[8] and Cherkasky et al.[9] showed that the SRM based model
selection is able to outperform other statistical methods such as AIC or BIC. However,
these methods require the actual VC dimension of the hypothesis space associated with
the estimation network, which is not easy to determine in the case of nonlinear regression
models. From this point of view, we present the bounds on the expected risks in the sense
of the modulus of continuity (MC) representing a measure of continuity for the given
function. Lorentz[10] applied the MC to function approximation theories. In our method,
this measure is applied to determine the bounds on expected risks. For the estimation
of these bounds, the MC is analyzed for both the target and estimation functions. As a
result, the suggested bounds are described by learned parameters of regression models and
the model selection criteria referred to as the modulus of continuity information criteria
(MCIC) are suggested for the selection of optimal structure of regression models. One
of characteristics in the suggested MCIC is that it can be estimated directly from the
given samples. Through the simulation for function approximation, we have shown that
the suggested method of model selection can provide the better performance than other
statistical methods of model selection such as AIC or BIC from the view points of the
risks and the number of parameters.

In section 2, we introduce the various model selection criteria based on statistics and
VC dimension based approaches. Section 3 describes the model selection criteria based
on the modulus of continuity. Section 4 describes how we can estimate the modulus of
continuity for various estimation functions. In section 5, we compare the optimality of
estimation models in the L1 and L2 sense. Section 6 describes the simulation results for
function approximation based on various model selection criteria including the suggested
method. Finally, section 7 presents the conclusion.

2 Model Selection Criteria for Regression Models

Consider the regression problem of estimating a function f in C1(X,R) or C2(X,R),
where X is the compact subset of Euclidean space R

d (d > 1) and Ck(X,R) is a class of
functions having continuous kth derivative on X. The observed output y for x ∈ X can
be represented by

y(x) = f(x) + ε (1)
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where f(x) is the target function and ε is a random noise with mean zero and variance
σ2. Here, the input and output samples (xi, yi), i = 1, · · · , N are randomly generated
according to the distribution P (x), x ∈ X:

yi = f(xi) + εi, xi ∈ X (2)

where εi, i = 1, · · · , N are independent and identically distributed (i. i. d.) random
variables with zero mean and variance σ. For these samples, our goal is to construct an
estimation network (or function) fn(x) which minimizes the expected risk (or true risk)

R(fn) =

∫

X×R

L(y, fn(x))dP (x, y) (3)

with respect to the number of parameters n, where L(y, fn(x)) is a given loss functional,
usually the square loss function L(y, fn(x)) = (y − fn(x))

2 for regression problems. In
general, we can construct an estimation function as

fn(x) =
n∑

k=1

wkφk(x) (4)

where wk and φk represent the kth weight value and kernel function respectively.
To minimize the expected risk (3), we have to identify the distribution P (x, y) but it

is usually unknown. Rather, the parameters to minimize the empirical risk

Remp(fn) =
1

N

N∑

i=1

L(yi, fn(xi)) (5)

are obtained for the given samples. If we increase the number of parameters, the empirical
risk of (5) is decreased but the variance term related to the complexity of regression
models is increased or vice versa. So we have to make the reasonable trade-off between
the under-fitting and over-fitting of regression models. This problem is referred to as
the model selection, that is, we have to determine the optimal number of parameters
(or complexity) while avoiding the under-fitting or over-fitting of regression models. To
check whether under-fitting or over-fitting of regression models happens in the course of
learning, we have to analyze the expected risks for the given parameters in regression
models. Here, let us represent the estimate of the expected risk as

R̂(fn) = Remp(fn)T (n, l) (6)

where T (n, l) is a penalty (correction) term, n is the number of parameters (or model
complexity), and l is the number of sample.

The well known statistical model selection criteria such as AIC and BIC can be de-
scribed using the form of (6), they are

TAIC(n, l) =
1 + n

l

1− n
l

and (7)

TBIC(n, l) = 1 +
ln l

2

n
l(

1− n
l

) (8)
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where TAIC and TBIC represent the penalty factors of the AIC and BIC criteria respec-
tively. These model selection criteria come from the asymptotic analysis for linear models
in L2 sense.

A good measure of model complexity in nonlinear models is the VC dimension of the
hypothesis space associated with the estimation network. The VC dimension can represent
the capacity of the estimation network from the view point of the number of samples. As
the hypothesis space is increased, the empirical risk can be decreased but the confidence
interval associated with the complexity of the estimation network, is increased. In this
sense, we need to make the proper trade-off between these two terms. The structural
risk minimization (SRM) principle considers both the empirical risk and the complexity
of the regression model to decide the optimal structure of the regression model. In this
approach, the estimate of expected risks for the VC dimension d associated with the
hypothesis space defined by fn, holds the following inequality with a probability of at
least 1− δ[7, 9]:

R̂(fn) 6 Remp(fn)


1− c

√
d
(
1 + ln l

d

)
− ln δ

l



−1

+

(9)

where c is a constant dependent on the norm and tails of the loss function distribution
and u+ = max{u, 0}.

In the case of nonlinear estimation network, there is some difficulty in determining
the VC dimension. If the class of basis function {φk(x)}, k = 1, · · · , n is orthogonal with
respect to the probability measure P (x), the form of (9) can be described in a way that is
easier form to calculate. For instance, if φk(x) represents the kth orthogonal polynomial
and a continuous target function f(x) in some Hilbert space with respect to the basis
functions {φ1(x), · · · , φn(x)} is given to be approximated, the estimated expected risk[8]
can be determined by

E[R(fn)] = E[Remp(fn)]

(
1 +

E[
∑n

i=1 1/λi]

l

)(
1− d

l

)−1
(10)

where {λ1, · · · , λn} are the eigenvalues of the n×n covariant matrix C in which the pqth
entry is given by 1

l

∑l
i=1 φp(xi)φq(xi).

Furthermore, for the experimental set up, Chapelle et al.[8] suggest the following
bound with the confidence parameter δ = 0.1:

E[R(fn)] 6 E[Remp(fn)]TSEB(n, l) (11)

where

TSEB(n, l) =
1 + n

lk

1− n
l

and (12)

k =


1−

√
n
(
1 + ln 2l

n

)
+ 4

l



+

. (13)

The risk function of (11) was applied to the model selection of regression problems and
they showed that their method outperformed the model selection using the statistical
criteria such as AIC or BIC.
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3 Model Selection Criteria Based on the Modulus of

Continuity

The modulus of continuity is a measure of continuity for a given function. First, we will
suggest the bounds on expected risks based on this measure. Here, we assume that X
is a compact subset of Euclidean space R. Then, the measure of continuity w(f, h) of a
function f ∈ C(X) can be described by the following form:

ω(f, h) = max
x,x+t∈X,|t|6h

|f(x+ t)− f(x)| (14)

where h is a positive constant. This modulus of continuity of f has the following proper-
ties:

• ω(f, h) is continuous at h > 0 for each f ,

• ω(f, h) is positive and increasing for h > 0, and

• ω(f, h) is sub-additive, that is, ω(f, h1 + h2) 6 ω(f, h1) + ω(f, h2) for each f .

As a function of f , the modulus of continuity has the properties of a semi-norm:

ω(af, h) 6 |a|ω(f, h) and

ω(f1 + f2, h) 6 ω(f1, h) + ω(f2, h).

The famous example of modulus of continuity of a function f is that f is defined on
A = [a, b] and satisfies a Lipschitz condition with constant M > 0 and exponent α,
denoted by LipMα, 0 < α 6 1, that is,

|f(x)− f(y)| 6M |x− y|α, x, y ∈ A. (15)

In this case, the modulus of continuity is given by

ω(f, h) 6Mhα. (16)

One of applications of the modulus of continuity is the analysis of a degree of approxima-
tion. For example, the n-th degree of approximation of a function f ∈ C∗[−π, π], a set
of all periodic and continuous functions on [−π, π], by trigonometric polynomials Tn of
degree n is defined by

E∗n(f) = min
Tn

‖f − Tn‖∞. (17)

For the above degree of approximation, Jackson[11, 12] suggested the following theorem:
Theorem (degree of approximation for trigonometric polynomials)
There is a constant M > 0 such that the following inequality

E∗n(f) 6Mω

(
f,

1

n

)
, n = 1, 2, · · ·

holds true for every function f ∈ C∗[−π, π].
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For some algebraic polynomials Pn(x), a similar result can be obtained for some f
satisfying ω(f, h), that is,

|f(x)− Pn(x)| 6Mω

(
f,

1

n

)
, − 1 6 x 6 1 (18)

from Jackson’s theorem.
With these properties of the modulus of continuity, we will describe the relationship

between the expected (or true) and empirical risks using the modulus of continuity. Here,
let us consider the loss function for the observed model y and the estimation function
fn(x) with n parameters as L(y, fn) = |y− fn(x)|, that is, the expected and the empirical
risks are defined by the following L1 measure:

R(fn)L1
=

∫

X×R

|y − fn(x)|dP (x, y) and (19)

Remp(fn)L1
=

1

N

N∑

i=1

|yi − fn(xi)|. (20)

For these risks, we suggest the following theorem based on the modulus of continuity:

Theorem 1 Let us consider that the target function f of (1) is approximated by the
estimation function fn of (4), that is, a linear combination of weight parameters wk, k =
1, · · · , n and basis functions φk, k = 1, · · · , n for the given samples (xi, yi), i = 1, · · · , N
generated by (2). Then, the expected risk in the L1 sense is bounded by the following
inequality with a probability of at least 1− δ1 − δ2:

R(fn)L1
6 Remp(fn)L1

+
1

N2

N∑

i,j=1

(|yi − yj|+ |fn(xi)− fn(xj)|)

+ (ω(fn, h0) + C)

√
1

2N
ln

2

δ1
and (21)

C = |fn(x0)− fn(x
′

0)|+ 2‖f‖∞ + 2σ

√
1

δ2
for x0, x

′

0 ∈ {x1, · · · , xN} (22)

where w(fn, h0) represents the modulus of continuity of the estimation function fn, h0
represents a constant independent upon the target and estimation functions.

Proof. Before the description of main proof, let us introduce the Hoeffding inequality[14]:
Given i. i. d. random variables Y1, . . . , YN , let us define a new random variable

SN =
1

N

N∑

i=1

Yi

and we assume that there exist real numbers ai and bi for i = 1, . . . , N such that Pr{Yi ∈
[ai, bi]} = 1. Then, for any ε > 0 we have

Pr{E[SN ]− SN > ε} 6 exp

(
− 2ε2N2

∑N
i=1(bi − ai)2

)
.
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First, let us consider the noiseless case, that is, y = f(x) in (1). For the input samples
x1, · · · , xN , an event A is defined by

1

N

N∑

i=1

∫

X

|fn(x)− fn(xi)|dP (x)− 1

N

N∑

j=1

1

N

N∑

i=1

|fn(xj)− fn(xi)| > ε

where the first and second terms represent the average over the expectation of |fn(x) −
fn(xi)| and the unbiased estimator of the first term respectively.

Then, from the Hoeffding inequality, the probability of an event A is bounded by

Pr{A} 6 exp




−2ε2N
(
maxx∈X

1
N

∑N
i=1 |fn(x)− fn(xi)|

)2


 .

For the denominator in the argument of the exponent, we can consider the following
inequality:

max
x∈X

1

N

N∑

i=1

|fn(x)− fn(xi)| 6
1

N

N∑

i=1

max
x∈X

|fn(x)− fn(xi)|

6 max
i

max
x∈X

|fn(x)− fn(xi)|.

Let x′i = argmaxx∈X |fn(x) − fn(xi)|, xi′ = argminj d(xj, x
′
i), and hi = d(x′i, xi′) where

d(x, y) represents the distance measure defined by d(x, y) = |x− y|. Then,

max
x∈X

1

N

N∑

i=1

|fn(x)− fn(xi)| 6 max
i

(|fn(x′i)− fn(xi′)|+ |fn(xi′)− fn(xi)|)

6 max
i

(ω(fn, hi) + |fn(xi′)− fn(xi)|)
6 ω(fn, h0) + |fn(x′0)− fn(x0)|

where h0 ∈ {h1, . . . , hN} and x0, x
′
0 ∈ {x1, . . . , xN} satisfy

ω(fn, hi) + |fn(xi)− fn(xj)| 6 ω(fn, h0) + |fn(x0)− fn(x
′
0)| (23)

for i, j = 1, · · · , N . For the illustration of this concept, refer to Figure 1.
Thus, the probability of an event A is bounded by

Pr{A} 6 exp

( −2ε2N
(ω(fn, h0) + |fn(x0)− fn(x′0)|)2

)
.

Here, let us set
δ1
2

= exp

( −2ε2N
(ω(fn, h0) + |fn(x0)− fn(x′0)|)2

)
.

Then, with probability at least 1− δ1/2, we have

1

N

N∑

i=1

∫

X

|fn(x)− fn(xi)|dP (x) 6
1

N2

N∑

i,j=1

|fn(xi)− fn(xj)|

+

√
1

2N
ln

2

δ1
(ω(fn, h0) + |fn(x0)− fn(x

′
0)|) . (24)
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0

|fn(x′

i) − fn(xi′)| ≤ ω(fn, hi)

xi xi′ x′

i

hi

|fn(x) − fn(xi)|

x· · ·· · · xi′−1 xi′+1

Figure 1: The plot of |fn(x)− fn(xi)| versus x: the value of |fn(x)− fn(xi)| is maximum
at x′i and this maximum value is decomposed by two factors: one is the value of |fn(x)−
fn(xi)| at a sample point xi′ and another is the modulus of continuity ω(fn, hi) with
respect to hi. The value hi is chosen by the distance d(x′i, xi′).

On the other hand, for the target function f , we can apply a similar method. As a result,
with a probability of at least 1− δ1/2, the following inequality holds:

1

N

N∑

i=1

∫

X

|f(x)− f(xi)|dP (x) 6
1

N2

N∑

i,j=1

|f(xi)− f(xj)|

+ 2‖f‖∞
√

1

2N
ln

2

δ1
. (25)

Let us consider the difference between the expected and empirical errors of |f(x)−fn(x)|:
∫

X

|f(x)− fn(x)|dP (x) − 1

N

N∑

i=1

|f(xi)− fn(xi)|

=
1

N

N∑

i=1

∫

X

(|f(x)− fn(x)− f(xi) + fn(xi) + f(xi)− fn(xi)|

−|f(xi)− fn(xi)|)dP (x)

6
1

N

N∑

i=1

∫

X

|f(x)− fn(x)− f(xi)− fn(xi)|dP (x)

6
1

N

N∑

i=1

∫

X

(|f(x)− f(xi)|+ |fn(x)− fn(xi)|)dP (x).
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Then, from (24) and (25), the difference between the true and empirical risks is bounded
by the following inequality with a probability of at least 1− δ1:

∫

X

|f(x)− fn(x)|dP (x)− 1

N

N∑

i=1

|f(xi)− fn(xi)|

6
1

N2

N∑

i,j=1

(|f(xi)− f(xj)|+ |fn(xi)− fn(xj)|)

+

√
1

2N
ln

2

δ1
(ω(fn, h0) + |fn(x0)− fn(y0)|+ 2‖f‖∞) . (26)

Second, let us consider the noisy condition, that is, y = f(x) + ε in (1). Here, we
assume that for the output samples y1, · · · , yN , the noise terms εi, . . . , εN are i. i. d.
random variables with mean 0 and variance σ. We will define the event B as

|ε| > a

where a is a positive constant. Then, from the Chebyshev inequality,

Pr{B} 6 σ2

a2
.

Let us set

δ2 =
σ2

a2
.

Then, with a probability of at least 1− δ2,

|ε| 6 σ

√
1

δ2
.

This implies that with a probability of at least 1− δ2,

|y| 6 |f(x)|+ |ε| 6 ‖f‖∞ + σ

√
1

δ2
.

Here, let us define the event C as

1

N

N∑

i=1

∫

R

|y − yi|dP (y)− 1

N

N∑

i=1

1

N

N∑

j=1

|yj − yi| > ε.

Then, from the Hoeffding inequality, we obtain

Pr{C|Bc} 6 exp





−2ε2N
(
maxy∈R

1
N

∑N
i=1 |y − yi|

)2





6 exp

{
−ε2N

2(‖f‖∞ + σ
√

1/δ2)2

}
.
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Let us set
δ1
2

= exp

{
−ε2N

2(‖f‖∞ + σ
√

1/δ2)2

}
.

Then, with a probability of at least 1− δ1/2− δ2,

1

N

N∑

i=1

∫
|y − yi|dP (y)− 1

N2

N∑

i,j=1

|yi − yj| 6
√

2

N
ln

2

δ1

(
‖f‖∞ + σ

√
1

δ2

)
(27)

since

Pr{Cc} > Pr{Cc, Bc}
> Pr{Cc|Bc}Pr{Bc}

>

(
1− δ1

2

)
(1− δ2)

> 1− δ1
2
− δ2.

Similar to (26), the difference between the expected and empirical risks of |y − fn(x)| is
bounded by

∫

X×R

|y − fn(x)|dP (x, y) − 1

N

N∑

i=1

|yi − fn(xi)|

6
1

N

N∑

i=1

∫

X×R

|y − yi|+ |fn(x)− fn(xi)|dP (x, y).

Finally, from (24) and (27), with a probability of at least 1− δ1 − δ2

∫

X×R

|y − fn(x)|dP (x, y) − 1

N

N∑

i=1

|yi − fn(xi)|

6
1

N2

N∑

i,j=1

(|yj − yi|+ |fn(xj)− fn(xi)|)

+ (ω(fn, h0) + C)

√
1

2N
ln

2

δ1
(28)

where C = |fn(x0)− fn(y0)|+ 2‖f‖∞ + 2σ
√

1/δ2.
This completes the proof. ¤

This theorem states that the expected risk R(fn)L1
is bounded by the empirical risk

Remp(fn)L1
, the second term of (21) describing the variation of output samples and es-

timation functions for the given input samples, and the third term dependent upon the
modulus of continuity of estimation function plus some coefficients associated with target
function, noise variance and the number of samples.

First, let us consider the second term. This term can be further break down to the
empirical risk and the term depends on the target function. The next corollary shows the
bounds on expected risks including this decomposition:
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Corollary 1 Let Hy be the N ×N matrix in which the ij-th entry is given by |yi − yj|.
Then, the following inequality holds with probability at least 1− δ1 − δ2:

R(fn)L1
6 3Remp(fn)L1

+
2

N
max{λi}+ (ω(fn, h0) + C)

√
1

2N
ln

2

δ1
(29)

where λi represents the ith eigenvalue of the matrix Hy.

Proof. Let the Hy be a matrix in which the ijth element is given by |yi − yj| and an N
dimensional vector a be given by

a =
1√
N

(1, · · · , 1)T .

Then,

1

N

N∑

i,j=1

|yi − yj| = aTHya.

Here, the matrix Hy can be decomposed by

Hy = EΛET =
N∑

i=1

λieie
T
i

where E represents a matrix in which the ith column vector is the ith eigenvector ei and
Λ represents the diagonal matrix in which the ith diagonal element is the ith eigenvalue
λi. Thus,

1

N

N∑

i=1

|yi − yj| =
N∑

i=1

λi(a
Tei)

2
6 max

i
{λi}.

Now, let us consider the following inequality:

1

N2

N∑

i,j=1

|fn(xi)− fn(xj)| 6
1

N2

N∑

i,j=1

|fn(xi)− yi|

+
1

N2

N∑

i,j=1

|yi − yj|+
1

N2

N∑

i,j=1

|yj − fn(xj)|

= 2Remp(fn)L1
+

1

N2

N∑

i,j=1

|yi − yj|

6 2Remp(fn)L1
+

1

N
max
i
{λi}.

Therefore, from (21) of theorem 1 and the above inequality, the following inequality holds
with a probability of at least 1− δ1 − δ2:

R(fn) 6 3Remp(fn) +
2

N
max
i
{λi}+ (ω(fn, h0) + C)

√
1

2N
ln

2

δ1
.

This completes the proof. ¤

11



This corollary states that the terms dependent upon estimation function fn in (29) is
the empirical risk Remp(fn) and the modulus of continuity w(fn, h0) since the eigenvalue
λi of Hf and a constant C have insignificant influence to the shape of expected risks in
accordance with varying the number of parameters n. The bounds on expected risks of
(29) seem to be overestimated since the empirical risk is multiplied by 3. However, for
our purpose of finding the model selection criteria, the estimation of the tight bound on
the expected risk is not essential. Rather, the coefficient ratio between the empirical risk
and modulus of continuity terms plays an important role for model selection since the
optimal number of parameters can be determined by the minimum value of the estimated
expected risks which are dependent upon these two terms. From this point of view, we can
consider the model selection criteria referred to as the modulus of continuity information
criteria (MCIC) as follows:

MCIC(n) = Remp(fn)L1
+
ω(fn, h0)

3

√
1

2N
ln

2

δ1
. (30)

Suppose we have fixed number of samples N . Then, as the number of parameters n
increases, the empirical risk Remp(fn) decreases while the modulus of continuity ω(fn, h0)
increases since the estimation function fn becomes more complex function. From this
point of view, we need to make a trade-off between over-fitting and under-fitting of re-
gression models using the MCIC(n) for the optimization of regression models.

When we use the MCIC(n), a constant h0 in (30) can be determined by the distance
hi between the point x′i = argmaxx∈X |fn(x) − fn(xi)| and the nearest sample point
xi′ ∈ {x1, . . . , xN} satisfying the condition of (23). In general, h0 lies within the following
bound:

1

2
min
i

min
j 6=i

d(xi, xj) 6 h0 6
1

2
max
i

min
j 6=i

d(xi, xj). (31)

If samples are evenly distributed in [a, b], we can set h0 as

h0 =
1

2

b− a

N + 1
. (32)

That is, the half length of the equidistance of N + 1 intervals on [a, b].
In general, the modulus of continuity term in (30) increases as n increases. However, if

the selected estimation function fn is optimal for every n, we can show that the modulus of
continuity term decreases as n increases. The following theorem states this phenomenon:

Theorem 2 Let fn ∈ Tn be the polynomials of degree n approximating a function f ∈
C∗[−π, π], that is, ‖f−fn‖∞ = inffn∈Tn

‖f−fn‖∞ = E∗n(f). Then, the following inequality
holds with a probability of at least 1− δ1,

R(fn)L1
6 Remp(fn)L1

+ ω

(
f,

1

n

)√
1

2N
ln

1

δ1
. (33)

Furthermore, the same result can be obtained provided that fn is the algebraic polynomials
Pn approximating a function f ∈ C[−1, 1].
Proof. In the classes of both algebraic and trigonometric polynomials of order n, the L∞
norm of f − fn is bounded by

E∗n(f) = inf
fn

‖f − fn‖∞ 6 ω(f,
1

n
)

12



where fn represents the polynomials of the best approximation of f ∈ C∗[−π, π] or
C[−1, 1].

From the Hoeffding inequality, we obtain

Pr

{∫

X

|f(x)− fn(x)|dP (x)− 1

N

N∑

i=1

|f(xi)− fn(xi)| > ε

}

6 exp

{
− 2ε2N

(max |f(x)− fn(x)|)2
}

6 exp

{
− 2ε2N

ω(f, 1/n)2

}
.

Here, we set

δ1 = exp

{
− 2ε2N

ω(f, 1/n)2

}
.

Then, with a probability of at least 1− δ1, the following inequality holds:

∫

X

|f(x)− fn(x)|dP (x) 6
1

N

N∑

i=1

|f(xi)− fn(xi)|+ ω(f,
1

n
)

√
1

2N
ln

1

δ1
.

This completes the proof. ¤

Note that the modulus of continuity term in (33) is dependent upon the target function
f , not the estimation function fn when fn is the best approximation polynomial. There-
fore, as we increase the number of parameters n, the modulus of continuity term in (33)
tends to decrease, that is, the larger the hypothesis space is, the smaller the confidence
interval of the expected risk is.

The distinctive characteristics of the suggested model selection criteria MCIC(n) can
be described as follows:

• The suggested MCIC can be applied to nonlinear models with an arbitrary sample
distribution while the AIC and BIC are good measures of linear models with a large
number of samples.

• The suggested MCIC depends on the modulus of continuity for a specific hypothesis
generated by a learning algorithm and also on the sample distribution, while the VC
dimension or degree of freedoms based methods consider the structural information
only, that is, the complexity of a hypothesis space and the number of samples, and
does not depend on a specific hypothesis and the sample distribution.

Considering these characteristics, the MCIC can be a good measure for model selection
when the regression model is trained using a certain learning algorithm for the given
distribution of training samples, since the regression model is selected using the modulus
of continuity (or in a sense, the smoothness) for the estimation function generated by
a learning algorithm, and the term h0 in the argument of the modulus of continuity is
dependent upon the sample distribution.

13



4 Modulus of Continuity for Estimation Functions

For regression models, we will suggest a method of estimating the modulus of continuity.
First, let f satisfy the Lipschitz condition Lipα, 0 < α 6 1, that is, the condition of
(15). Then, for every f ∈ C1(a, b), we have ω(f, h) 6 ‖f ′‖∞h. For this class of functions,
Marchaud[13] showed the following theorem:
Theorem (modulus of continuity for f ∈ C1)
Let l be the length of domain X. Then, the modulus of continuity for f ∈ C1 is bounded
by the following inequality:

ω(f, h) 6 h

∫ l
2

h

ω2(f, u)

u2
du+

2h

l
‖f‖∞. (34)

where ω2(f, u) is defined by

ω2(f, u) = max
x,x±t∈X,|t|6u

|f(x+ t)− 2f(x) + f(x− t)|. (35)

If the given function f is Lip1, then f is qusi-smooth, that is, ω2(f, h) = O(h), and it
follows that

ω(f, h) 6 O
(
h

∣∣∣∣ln
1

h

∣∣∣∣
)
. (36)

From the bounds of modulus of continuity described in (15) or (34), the modulus of
continuity for f ∈ C1 can be obtained by the Lip1 condition or Marchaud theorem, that
is,

ω(f, h) 6 ‖f ′‖h or

ω(f, h) 6 2h‖f ′‖ ln l

2h
+

2h

l
‖f‖∞.

If we compare the two methods, we can identify that the bound of the modulus of con-
tinuity w(f, h) using the Lipschitz condition is less than that of using the Marchaud’s
method when h is small as illustrated in Figure 2: w(f, h) using the Lipschitz condition
is less than that of using the Marchaud’s method for h < h′ in which h′ is a constant
between 0 and l/2 satisfying

‖f ′‖h′ = 2h′‖f ′‖ ln l

2h′
+

2h′

l
‖f‖∞.

However, the Marchaud method has a useful sample property which is dependent on the
given domain length of X. Here, we assume that the samples are densely distributed in
X so that we can take h0 as a small value. In this case, the modulus of continuity using
the Lipschitz condition can be a good candidate for estimating the modulus of continuity
for regression models.

The modulus of continuity for the estimation function fn is dependent upon the basis
function φk in (4). Here, we consider the cases of estimating w(fn, h) when the basis
functions are trigonometric polynomials, Gaussian functions, and sigmoid functions:
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Figure 2: A plot of w(f, h) versus h: the modulus of continuity using the Lipschitz
condition is tighter than the modulus of continuity using the Marchaud method when
h < h′ and the point h′ is dependent upon the ratio value ‖f‖

‖f ′‖
.

Case 1: Consider the case of the estimation function fn with trigonometric polynomials:

{
1

2
, cos px, sin px

}
.

Applying the mean value theorem to φk, we get

ω(φk, h) 6 ‖φ′k‖∞h

6

⌊
k

2

⌋
h, for k = 1, · · · , n.

Therefore, the modulus of continuity for fn can be determined by

ω(fn, h) 6
n∑

k=0

h|wk| ·
⌊
k

2

⌋
. (37)

Case 2: Consider the case of the estimation function fn with radial basis functions:

φk(x) = exp

(
−(x− tk)

2

2σ2k

)
for k = 1, · · · , n

where tk and σ
2
k represent the center and width of the basis function φk respectively.

Applying the mean value theorem to φk, we get

ω(φk, h) 6 ‖φ′k‖∞h

6
h

σk
exp

(
−1

2

)
for k = 1, · · · , n

since φ′k has the maximum and minimum at x = tk−σk and x = tk+σk respectively.

Therefore, the modulus of continuity for fn can be determined by

ω(fn, h) 6 h
n∑

k=1

1

σk
exp(−1/2)|wk|. (38)

Case 3: Consider the case of the estimation function fn with sigmoid functions:

φk(x) =
1

1 + exp(−akx+ bk)
for k = 1, · · · , n

where ak(> 0) and bk represent the adaptable parameters of the basis function φk.
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Applying the mean value theorem to φk, we get

w(φk, h) 6 ‖φ′k‖∞h

6
h

4
ak for k = 1, · · · , n

since φ′k has the maximum value at x = bk/ak.

Therefore, the modulus of continuity for fn can be determined by

ω(fn, h) 6
h

4

n∑

k=1

|wk|ak. (39)

5 Model Selection Using R(fn)L1 versus R(fn)L2

The modulus of continuity explained in theorem 1 is derived in the L1 sense, that is,
the loss function L(y, f(x)) = |y − f(x)|. In general, we can consider the modulus of
continuity in the Lp sense as explained in the following definition:
Definition (the modulus of continuity in the Lp sense)
If the Lebesgue measurable function f(x) ∈ Lp[a, b], then Lp integral modulus of continuity
is defined by

ω(f, h)Lp[a,b] = sup
|t|6h

(∫ b

a

|f(x+ t)− f(x)|pdx
)1/p

(40)

since we consider the domain Ω to be a probability space, we need the new definition of
modulus of continuity of f replacing Lebesgue measure. Let (Ω,B, P ) be a probability
space. Then, the Lp-modulus of f ∈ Lp(Ω) on the space Ω is defined by

ω(f, h)Lp,P = sup
|t|6h

(∫

Ω

|f(x+ t)− f(x)|pdP (x)

)1/p
. (41)

For convenience’s sake, we will describe ω(f, h)Lp,P as ω(f, h)Lp
. Here, we can describe

the distance between f and fn in the Lp measure using ω(f, h)Lp
in the following theorem:

Theorem 3 Let the value h satisfy the condition that xi+ t ∈ X, i = 1, ..., N, and |t| 6
h. Then, the distance between f and fn in the Lp (p > 1) sense is bounded by

‖f − fn‖p 6 O


ω(f − fn, h)Lp

+

(
1

N

n∑

i=1

|f(xi)− fn(xi)|p
)1/p

+

(
1√
N

)1/p

 .

Proof. The following inequality holds from the Minkowski inequality:

‖f − fn‖p 6 ‖f − fn − (f(·+ t)− fn(·+ t))‖p + ‖f(·+ t)− fn(·+ t)‖p
6 ω(f − fn, h)Lp

+ ‖f(·+ t)− fn(·+ t)‖p.
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For i. i. d. random variables xi + t ∈ X, i = 1, . . . , N , the following inequality holds
from the Hoeffding inequality:

Pr

{∫

X

|f(x+ t)− fn(x+ t)|pdP (x)− 1

N

N∑

i=1

|f(xi + t)− fn(xi + t)|p > ε

}

6 exp

{ −ε2N
maxx∈X |f(x+ t)− fn(x+ t)|2p

}

6 exp

{ −ε2N
‖f(·+ t)− fn(·+ t)‖2p∞

}
.

Let us set
M = max {‖f − fn‖∞, ‖f(·+ t)− fn(·+ t)‖∞} and

δ1 = exp

{−ε2N
M2p

}
.

Then, with a probability of at least 1− δ1/2, the following inequality holds:

‖f(x+ t)− fn(x+ t)‖p 6
(

1

N

N∑

i=1

|f(xi + t)− fn(xi + t)|p +
√

1

N
ln

2

δ1
Mp

)1/p
.

The empirical part of the above equation can be redescribed in the following form with a
probability of at least 1− δ1/2:

1

N

N∑

i=1

|f(xi + t)− fn(xi + t)|p

6
1

N

N∑

i=1

[|f(xi)− fn(xi)|+ |f(xi + t)− fn(xi + t)− (f(xi)− fn(xi))|]p

6
2p

N

N∑

i=1

[|f(xi)− fn(xi)|p + |f(xi + t)− fn(xi + t)− (f(xi)− fn(xi))|p]

6
2p

N

N∑

i=1

|f(xi)− fn(xi)|p + 2pω(f − fn, h)
p
Lp

+ 2p+1Mp

√
− ln(δ1/2)

2N

for p > 1 and 0 < |t| 6 h.
Therefore, with a probability of at least 1− δ1, the following inequality holds:

‖f − fn‖p 6 O


ω(f − fn, h)Lp

+

(
1

N

n∑

i=1

|f(xi)− fn(xi)|p
)1/p

+

(
1√
N

)1/p

 .

This completes the proof. ¤

This theorem states that the distance between f and fn in the Lp sense is represented
by the newly defined modulus of continuity ω(f − fn, h)Lp

whose value changes with
respect to fn as n varies. However, it is difficult to calculate the modulus of continuity
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in the Lp sense because the probability distribution P in (41) is not known in general.
From this point of view, we consider the model selection criteria of (30) based on the
modulus of continuity in the L1 sense. In some cases, the regression models of the L1
sense optimality are also consistent with the L2 sense optimality. The next theorem
explains the relationship between the L1 and L2 sense optimality:

Theorem 4 Let

E[|g|] =
∫
|g|dµ 6 E[|h|] =

∫
|h|dµ. (42)

Then,

E[|g|2] =
∫
|g|2dµ 6 E[|h|2] =

∫
|h|2dµ (43)

under the following condition:

(a) V ar(|g|) 6 V ar(|h|) or (44)

(b) V ar(|g|) > V ar(|h|) and

E[|h|]− E[|g|] > −
∫
|g|dµ+

√(∫
|g|dµ

)2
+ V ar(|g|)− V ar(|h|). (45)

Proof. (a) Let us consider the difference between two variances, V ar(|h|) and V ar(|g|):

V ar(|h|)− V ar(|g|) =

∫
(|h| − E[|h|])2dµ−

∫
(|g| − E[|g|])2dµ

=

∫
|h|2dµ−

∫
|g|2dµ− E2[|h|] + E2[|g|].

This implies that

∫
|h|2dµ−

∫
|g|2dµ = V ar(|h|)− V ar(|g|) + E2[|h|]− E2[|g|] > 0

from the given conditions.

(b) Let us consider

c = E[|h|]− E[|g|] =
∫

(|h| − |g|)dµ.

Then,

∫
|h|2 − |g|2dµ = Var(|h|)−

∫
|g|2dµ+

(∫
|h|dµ

)2

= Var(|h|)−
∫
|g|2dµ+

(∫
|g|dµ+ c

)2

= Var(|h|)− Var(|g|) + 2c

∫
|g|dµ+ c2

=

(
c+

∫
|g|dµ

)2
−
((∫

|g|dµ
)2

+Var(|g|)− Var(|h|)
)
.
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Therefore, if

c > −
∫
|g|dµ+

√(∫
|g|dµ

)2
+Var(|g|)− Var(|h|),

then the following inequality holds:
∫
|h|2dµ−

∫
|g|2dµ > 0.

This completes the proof. ¤

In the regression models, square loss functions, that is, L(y, fn(x)) = (y − fn(x))
2

are usually used since the minimization of the risk in the L2 sense is optimal under the
assumption that the estimation function is unbiased and the error term y − fn(x) has
normal distribution. Under this assumption, we can show that the optimality in the L1
sense is also optimal in the L2 sense, that is, the optimization of regression model in the
L1 sense is also the maximum likelihood estimate. Here, let us assume that

g = y − fn ∼ N(0, σ2n) and

h = y − fm ∼ N(0, σ2m).

Then, the expectations for |g| and |h| are given by

E[|g|] =
∫ +∞

−∞

|x|√
2πσn

exp(
−x2
2σ2n

)dx =
2
√
2σn√
π

and

E[|h|] =
∫ +∞

−∞

|x|√
2πσm

exp(
−x2
2σ2m

)dx =
2
√
2σm√
π

respectively. Therefore, if E[|g|] 6 E[|h|], then σn 6 σm and the condition of (a) in
theorem 4 is satisfied.

If E[|g|] is smaller than E[|h|] but V ar(|g|) is larger than V ar(|h|), the optimality in
the L1 or L2 sense can be different. In the case that the difference between E[|h|] and
E[|g|] is larger than the square root of the difference between V ar(|g|) and V ar(|h|), we
can guarantee that the optimality in the L1 or L2 sense is the same since the inequality
of (45) is satisfied.

6 Simulation

The simulation for function approximation was performed using the regression model with
trigonometric polynomial functions. In this regression, various model selection methods
such as the AIC, BIC, VC dimension, and the suggested MCIC based methods were tested.
As the VC dimension based method, we choose the smallest eigenvalue based (SEB)
method[8] suggested by Chapelle et al. Here, the trigonometric polynomial functions
were selected as the basis functions since this network could be considered as a linear
regression model so that the VC dimension of the network was easy to find out and the
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optimization of the network parameters could be easily solved. This makes it easier to
compare the suggested method with other methods. In this simulation, the data (xi, yi)
were generated by (1). Here, the input value xi was uniformly distributed within the
interval of [−π, π] and the noise has the normal distribution of mean 0 and standard
variance σ = 0, 0.025, 0.05, and 0.1 respectively. As the target functions, we considered
the following functions:

1) the step function defined by

f(x) =

{
1 if x > 0

0 otherwise,
(46)

2) the sine square function defined by

f(x) = sin2(x), (47)

3) the sinc function defined by

f(x) =
sin(πx)

πx
, (48)

4) and the combined function defined by

f(x) = 2x exp(−x
2

2
) cos(2πx). (49)

The target functions are illustrated in Figure 3. The first target function was dis-
continuous while the other functions were continuous. The second and third functions
showed a similar complexity while the fourth function was more complex than the other
functions. For these target functions, we generated N (= 50) training samples randomly
to train the estimation network. We also generated 300 test samples separately according
to same input and noise distributions. For the estimation network, the basis functions of
trigonometric polynomial network were given by

φ0(x) =
1

2
, φ2j−1(x) = sin jx, and φ2j(x) = cos jx,

where 2π/j represents the period of the sinusoidal function. Here, the estimation function
fn(x) was given by

fn(x) =
n∑

k=0

wkφk(x). (50)

For N samples, the observation vector defined by y = (y1, · · · , yN)T can be approximated
by the following vector form:

y = Φnw (51)

where Φn was a matrix in which the ij-th element was given by φj(xi) and w was a weight
vector defined by w = (w0, · · · , wn)T . From the empirical risk minimization of the square
loss function, the estimated weight vector ŵ could be determined by

ŵ = (ΦT
nΦn)

−1ΦT
ny. (52)
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Figure 3: The target functions for the simulation of model selection:(a), (b), (c), and (d)
represent the step, sin-square, sinc, and combined functions respectively.
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By substituting the estimated weight vector for (51), we obtained the empirical risk

Remp(fn) evaluated by the training samples, and the estimated risk R̂(fn) could be de-
termined by the AIC, BIC, SEB, and MCIC based methods. In the case of the MCIC
method, only the terms of Remp(fn) and the modulus of continuity for the estimation
function fn were considered to select the optimal number of nodes as indicated in the
model selection criteria of (30). Here, the model selection criteria based on the modulus
of continuity for the trigonometric polynomial function was determined by

MCIC(n) = Remp(fn) +
h0
3

√
1

2N
ln

2

δ

n∑

i=0

|ŵi|
⌊
i

2

⌋
(53)

from (30) and (37). Here, we set h0 as π/(N + 1) (assuming uniform distribution) and δ
as 0.05.

To compare the performance of model selection methods, the estimated optimal num-
ber of nodes (or basis functions) was determined by

n̂ = argmin
n

R̂(fn). (54)

The expected risks obtained for the estimated optimal number of nodes n̂ were compared
with the expected risks for the minimum number of nodes obtained from the test samples,
that is, we computed the log ratio of two risks [8]

rR = log
R(fn̂)

minnR(fn)
(55)

where R(fn) represented the expected risk for the squared error loss function L(y, fn) =
(y − fn(x))

2 evaluated by the test samples. This risk ratio represented the quality of
distance between the optimal and the estimated optimal risks. We also computed the
log ratio of the estimated optimal number of nodes n̂ to the minimum number of nodes
obtained from the test samples, that is,

rn = log
n̂

argminnR(fn)
. (56)

This node ratio represented the quality of distance between the optimal and the estimated
optimal number of nodes. After all experiments had been repeated 1000 times, the risk
ratios of (55) and the node ratios of (56) were plotted using the box-plot method. The
simulation results of model selection using the AIC, BIC, SEB and MCIC based methods
are illustrated in Figures 4 through 7. These simulation results showed us that 1) the
SEB based method outperformed the AIC and BIC based methods from the view point of
risk ratios in the case of the first, second, and third target functions but not in the more
complicated fourth function, 2) while the MCIC based method demonstrated the top level
performance from the view points of risk and node ratios for all four target functions. In
general, the SEB method showed good performance when the ratio of the optimal number
of nodes to the number of samples n∗/l was small as illustrated in Figure 8. Note that
the fourth target function required high n∗/l compared to other target functions due to
the complexity of function as shown in Figure 3. In this case, the SEB method did not
show good performance as shown in Figure 7.
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To see the risk prediction of the model selection methods, we plotted the estimated
error versus the number of nodes n for the AIC, BIC, SEB, and MCIC methods. The
predicted results were compared with test errors with respect to the L1 or L2 sense as
shown in Figures 9 and 10. These figures showed that the trends of the error curves in
the L1 and L2 senses were similar although the exact comparison of the two L1 and L2
error values was not possible. These results showed that 1) the risk prediction using the
AIC and BIC methods fit well except for the sudden change in risk functions at large n,
2) the risk prediction using the SEB method had a tendency to fit well when the number
of nodes n was small, and 3) the risk prediction using the MCIC method was well suited
with the test errors in overall range of the number of nodes. In these predicted results,
it is interesting to note that the MCIC method was able to predict the sudden change of
test errors while the other methods weren’t.

In summary, the performance of the MCIC method showed the better performance for
various types of target functions from the view points of risk and node ratios compared to
other methods. We also demonstrated that the risk prediction using the MCIC method
was able to predict the trend of test errors. They are mainly due to the fact that the
MCIC represent the risk estimates for trained regression models (not the structure of
regression models).
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Figure 4: The left box-plots of risk ratios rR and the right box-plot of node ratios rn for
the regression of step function.
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Figure 5: The left box-plots of risk ratios rR and the right box-plot of node ratios rn for
the regression of sine-square function.
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Figure 6: The left box-plots of risk ratios rR and the right box-plot of node ratios rn for
the regression of sinc function.
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Figure 7: The left box-plots of risk ratios rR and the right box-plot of node ratios rn for
the regression of combined function.
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Figure 8: The box-plots for the optimal number of nodes to the number of samples n∗/l:
(a), (b), (c), and (d) represent the box-plots of n∗/l in the regression of step, sine-square,
sinc, and combined functions respectively.
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Figure 9: Performance predictions of model selection methods in the case of the sinc
function: (a) represents the estimated error in the L2 sense versus the number of nodes
using the AIC, BIC, and SEB methods and (b) represents the estimated error in the L1
sense versus the number of nodes using the MC method.
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Figure 10: Performance predictions of model selection methods in the case of the combined
function: (a) represents the estimated error in the L2 sense versus the number of nodes
using the AIC, BIC, and SEB methods and (b) represents the estimated error in the L1
sense versus the number of nodes using the MC method.
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7 Conclusion

We have suggested a new method of model selection in regression problems based on the
modulus of continuity. The risk function bounds are investigated from the view point of
the modulus of continuity for both the target and estimation functions. The final form
of the risk function bounds incorporate the information of learned results such as the
parameter values of regression models. To verify the validity of the suggested bound, the
model selection in regression with the trigonometric polynomials was applied to function
approximation problems. As a result, the suggested method showed a better performance
for various types of target functions from the view points of risk and node ratios compared
to other model selection methods such as AIC, BIC, and SEB. We also demonstrated that
the risk prediction using the MCIC method was able to predict the trend of test errors.
They are mainly due to the fact that the MCIC represent the risk estimates for trained
regression models (not the structure of regression models). Furthermore, the suggested
MCIC method can be easily extended to various types of regression models with nonlinear
kernel functions which have some smoothness constraints.

For the extension of this work, we are considering the derivation of the bounds on
expected risks using the MC in the regression of multi-dimensional estimation functions.
To apply the MC to the multi-dimensional input space X ⊂ R

d (d > 1), we have to
consider two important issues: the first one is selecting the proper definition of the MC
from various definitions of the MC associated with the input space X[15] so that the
better prediction of optimal models is possible, and the second one is to determine h0
which makes good relationship between the MC and expected risk. This will be remained
as our future work.
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