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It is shown that for the separable dual X∗ of a Banach space X if X∗ has the weak
approximation property, then X has the metric quasi approximation property. Using
this it is shown that for the separable dual X∗ of a Banach space X the quasi approx-
imation property and metric quasi approximation property are inherited from X∗ to
X and for a separable and reflexive Banach space X X having the weak approxima-
tion property, bounded weak approximation property, quasi approximation property,
metric weak approximation property, and metric quasi approximation property are
equivalent. Also it is shown that the weak approximation property, bounded weak
approximation property, and quasi approximation property are not inherited from a
Banach space X to X∗.
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1. Introduction and main results

Notation 1.1. Throughout this paper we use the following notations :

X : a Banach space
X∗ : the dual space of X
w∗ : the weak∗ topology on X∗

B(X) : The collection of bounded linear operators on X.
F(X) : The collection of bounded and finite rank linear operators on X.
K(X) : The collection of compact operators on X.
K(X∗, w∗) : The collection of compact and w∗-to-w∗ continuous operators on X∗.
K(X, λ) : The collection of compact operators T on X satisfying ‖T‖ ≤ λ.
K(X∗, w∗, λ) : The collection of compact and w∗-to-w∗ continuous operators T on X∗ satisfying

‖T‖ ≤ λ.
Similarly we define F(X∗, w∗), F(X, λ), F(X∗, w∗, λ), B(X∗, w∗), B(X, λ), and B(X∗, w∗, λ).

We say that X has the approximation property (in short, AP) if for every compact K ⊂ X and
ε > 0 there is a T ∈ F(X) such that ‖Tx − x‖ < ε for all x ∈ K. Also we say that X has the
λ-bounded approximation property (in short, λ-BAP) if for every compact K ⊂ X and ε > 0 there
is a T ∈ F(X,λ) such that ‖Tx − x‖ < ε for all x ∈ K, in particular, if λ = 1, then we say that
X has the metric approximation property (in short, MAP). If X has the λ-bounded approximation
property for some λ > 0, then we say that X has the bounded approximation property (in short, BAP).
Recently Choi and Kim [CK] introduced weak versions of the approximation property. We say that
X has the weak approximation property (in short, WAP) if for every T ∈ K(X), compact K ⊂ X,
and ε > 0 there is a T0 ∈ F(X) such that ‖T0x − Tx‖ < ε for all x ∈ K. Also we say that X has
the bounded weak approximation property (in short, BWAP) if for every T ∈ K(X) there is a λT > 0
such that for every compact K ⊂ X and ε > 0 there is a T0 ∈ F(X, λT ) such that ‖T0x − Tx‖ < ε
for all x ∈ K. We say that X has the quasi approximation property (in short, QAP) if for every
T ∈ K(X) and ε > 0 there is a T0 ∈ F(X) such that ‖T0 − T‖ < ε. We say that X has the metric
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weak approximation property (in short, MWAP) if for every T ∈ K(X, 1), compact K ⊂ X, and ε > 0
there is a T0 ∈ F(X, 1) such that ‖T0x− Tx‖ < ε for all x ∈ K. We say that X has the metric quasi
approximation property (in short, MQAP) if for every T ∈ K(X, 1) and ε > 0 there is a T0 ∈ F(X, 1)
such that ‖T0 − T‖ < ε.

The purpose of this paper is to study inheritance from X (respectively, X∗) to X∗ (respectively,
X) (in short, dual problem) of above weak versions of the approximation property and some relations
of the weak versions.

It is well known that the AP and λ-BAP are inherited from X∗ to X (See Casazza [C]). In [CK] it
was shown that the WAP and BWAP are inherited from X∗ to X. For the MWAP we have the same
result.

Theorem 1.2. If X∗ has the MWAP, then X has the MWAP. Hence, if X is reflexive, then X has
the MWAP if and only if X∗ has the MWAP.

For the QAP and MQAP we need an additional assumption.

Theorem 1.3. Suppose that X∗ is separable. If X∗ has the WAP, then X has the MQAP.

From Theorem 1.3, (2.1), and (2.2) we have the following corollaries.

Corollary 1.4. Suppose that X∗ is separable. If X∗ has the QAP, then X has the MQAP. In
particular, if X∗ has the MQAP, then X has the MQAP, and if X∗ has the QAP, then X has the
QAP.

Corollary 1.5. Suppose that X is a separable and reflexive Banach space. Then the following are
equivalent.

(a) X has the WAP.
(b) X has the BWAP.
(c) X has the QAP.
(d) X has the MWAP.
(e) X has the MQAP.

Remark 1.6. Long ago Lindenstrauss and Tzafriri had the following question ([LT], p.37, Problem
1.e.9) :

If a Banach space X has the QAP, then does X have the AP ?

This question has not been solved yet. It is well-known [C] that for a reflexive Banach space X X
has the AP if and only if X has the MAP. Hence if for a separable and reflexive Banach space X the
above question had answer “Yes”, then X having the MAP, AP, MQAP, MWAP, QAP, BWAP, and
WAP would be equivalent.

Now some parts of Corollary 1.5 need not the assumption of separability.

Corollary 1.7. Suppose that X is a reflexive Banach space. Then the following are equivalent.
(a) X has the WAP.
(b) X has the BWAP.
(c) X has the MWAP.

To prove Corollary 1.7 we need the following interesting result of Lindenstrauss [L1, Proposition
1].

Lemma 1.8. Let X be a reflexive Banach space. If X0 is a separable subspace of X, then there is a
separable space Z satisfying X0 ⊂ Z ⊂ X such that there is a projection of norm 1 from X onto Z.
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Now we can prove Corollary 1.7.

Proof of Corollary 1.7. From (2.1) and (2.2) we only need to prove that (a) implies (c). Suppose that
X has the WAP. Let T ∈ K(X, 1), compact K ⊂ X, and ε > 0. Then the linear span 〈T (BX)

⋃
K〉

of a relatively compact set T (BX)
⋃

K is a separable subspace of X, where BX is the unit ball in X.
By Lemma 1.8 there is a separable subspace Z of X such that 〈T (BX)

⋃
K〉 ⊂ Z ⊂ X and there is

a projection P of norm 1 from X onto Z. Since the WAP is inherited to complemented subspaces
(See [CK, Theorem 4.1]), Z has the WAP. Since Z is separable and reflexive, by Corollary 1.5 Z has
the MWAP. Now consider PTIZ ∈ K(Z, 1), where IZ is the inclusion from Z into X. Then there is a
T0 ∈ F(Z, 1) such that for all x ∈ K ‖T0x−PTIZx‖ < ε. Since T (K) ⊂ 〈T (BX)〉 ⊂ Z, for all x ∈ K

‖T0x− Tx‖ < ε.

Now T0P ∈ F(X, 1) and for all x ∈ K

‖T0Px− Tx‖ = ‖T0x− Tx‖ < ε.

Hence X has the MWAP. �

It is well known that the AP and BAP are not inherited from X to X∗ (See [C]). For the WAP,
BWAP, and QAP we have the same results.

Theorem 1.9. There is a Banach space Y with a boundedly complete basis such that Y ∗ is separable
and does not have the WAP. In particular Y has the WAP, BWAP, and QAP but Y ∗ does not have
the WAP, BWAP, and QAP.

Theorem 1.10. There is a Banach space Z which has the AP but does not have the bounded compact
approximation property such that Z∗, Z∗∗, ... are all separable and Z∗ does not have the WAP. In
particular Z has the WAP, BWAP, and QAP but Z∗ does not have the WAP, BWAP, and QAP.

2. Preliminaries and proofs of Theorem 1.9 and 1.10

At first, we introduce an topology on B(X), which is an important tool to study the approximation
properties. For compact K ⊂ X, ε > 0, and T ∈ B(X) we put

N(T,K, ε) = {R ∈ B(X) : sup
x∈K

‖Rx− Tx‖ < ε}.

Let S be the collection of all such N(T,K, ε)’s. Now we denote by τ the topology on B(X) generated
by S. Grothendieck [G] initiated the study of the approximation properties and the relations between
them. One important tool he used was the τ - topology. We can check that τ is a locally convex
topology and for a net (Tα) ⊂ B(X) and T ∈ B(X)

Tα −→ T in (B(X), τ) ⇐⇒ for each compact K ⊂ X sup
x∈K

‖Tαx− Tx‖ −→ 0.

Remark 2.1. From the definitions of the approximation properties and τ we see the following :
(a) X has the AP iff I ∈ F(X)

τ
, where I is the identity in B(X).

(b) X has the λ-BAP iff I ∈ F(X, λ)
τ
.

(c) X has the WAP iff K(X) ⊂ F(X)
τ
.

(d) X has the BWAP iff for every T ∈ K(X) there is a λT > 0 such that T ∈ F(X, λT )
τ
.

(e) X has the QAP iff K(X) ⊂ F(X), where the closure is the operator norm closure.

(f) X has the MWAP iff K(X, 1) ⊂ F(X, 1)
τ
.

(g) X has the MQAP iff K(X, 1) ⊂ F(X, 1).

In [CK] the following implications are shown :

BAP =⇒ AP =⇒ QAP =⇒ BWAP =⇒ WAP (2.1)
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Proposition 2.2 yields the following implications :

MAP =⇒ MQAP =⇒ MWAP

MQAP =⇒ QAP and MWAP =⇒ BWAP (2.2)

Proposition 2.2.
(a) If X has the MAP, then X has the MQAP, and if X has the MQAP, then X has the MWAP.
(b) If X has the MQAP, then X has the QAP, and if X has the MWAP, then X has the BWAP.

Proof. (a). Suppose that X has the MAP and let T ∈ K(X, 1) and ε > 0. Since T (BX) is compact,
there is a T0 ∈ F(X, 1) such that

‖T0T − T‖ = sup
x∈T (BX)

‖T0x− x‖ < ε.

Since T0T ∈ F(X, 1), X has the MQAP. If X has the MQAP, then from Remark 2.1, (f) and (g) X
has the MWAP.

(b). Note that X has the MQAP iff K(X, 1) ⊂ F(X, 1) iff λK(X, 1) ⊂ λF(X, 1) for each λ > 0

iff K(X, λ) ⊂ F(X, λ) for each λ > 0. Suppose that X has the MQAP and let T ∈ K(X). Then

T ∈ K(X, ‖T‖) ⊂ F(X, ‖T‖) ⊂ F(X). Hence X has the QAP by Remark 2.1, (e). Other part is
similar. �

The following lemma can be found in [C, Proposition 1.3] which is due to Lindenstrauss [L2].

Lemma 2.3. If V is a separable Banach space, then there is a separable Banach space W such that
W ∗∗ has a boundedly complete basis, W ∗∗/W ∼= V , and W ∗∗∗ ∼= W ∗ ⊕

V ∗.

Now we can prove Theorem 1.9.

Proof of Theorem 1.9. Let V be the Willis space (See Willis [W]). Then V is a separable and
reflexive Banach space and does not have the WAP [CK, Example 2.3]. By Lemma 2.3 there is a
separable Banach space W such that W ∗∗ has a boundedly complete basis and W ∗∗∗ ∼= W ∗ ⊕

V ∗.
Let Y = W ∗∗. Since W ∗ and V ∗ are separable, Y ∗ = W ∗∗∗ is separable. Suppose that Y ∗ has the
WAP. Since the WAP is inherited to complemented subspaces [CK, Theorem 4.1], V ∗ has the WAP.
So V has the WAP. This is a contradiction, that is, Y ∗ should not have the WAP. Hence Y is a
desired Banach space. Since a Banach apace having a basis has the AP, (2.1) shows other part of the
theorem. �

We say that X has the compact approximation property (in short, CAP) if for every compact
K ⊂ X and ε > 0 there is a T ∈ K(X) such that ‖Tx − x‖ < ε for all x ∈ K. Also we say that X
has the λ-bounded compact approximation property(in short, λ-BCAP) if for every compact K ⊂ X
and ε > 0 there is a T ∈ K(X, λ) such that ‖Tx − x‖ < ε for all x ∈ K, in particular, if λ = 1,
then we say that X has the metric compact approximation property (in short, MCAP). If X has the
λ-bounded compact approximation property for some λ > 0, then we say that X has the bounded
compact approximation property (in short, BCAP). From the definitions of the CAP, BCAP, and τ
we see the following :

X has the CAP iff I ∈ K(X)
τ

and
X has the λ-BCAP iff I ∈ K(X, λ)

τ
. (2.3)

We need a lemma of Kim [Ki1].

Lemma 2.4. Suppose that X∗ is separable. Then X∗ has the WAP if and only if X∗ has the MWAP.

We also need a lemma due to Casazza and Jarchow [CJ, Theorem 2.5].
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Lemma 2.5. There is a Banach space Z which has the AP but does not have the BCAP such that
Z∗, Z∗∗, ... are all separable and have the MCAP.

Now we can prove Theorem 1.10.

Proof of Theorem 1.10. Let Z be the Banach space of Lemma 2.5. Suppose that Z∗ has the WAP.
Then by Lemma 2.4 Z∗ has the MWAP. From Remark 2.1,(f) and (2.3)

I ∈ F(Z∗, 1)
τ
.

, where I is the identity in B(Z∗). It follows that Z∗ has the MAP. Thus Z has the MAP. Since the
MAP implies the MCAP, this is a contradiction. Hence Z is a desired Banach space. (2.1) shows
other part of the theorem. �

3. Proofs of Theorem 1.2 and 1.3

The following lemma is in [CK, Lemma 3.11] which is essentially due to Johnson [J, Lemma 1].

Lemma 3.1. For each λ > 0 F(X∗, λ)
τ

= F(X∗, w∗, λ)
τ
.

The following lemma comes from [Ki3].

Lemma 3.2. If C is a bounded convex set in B(X), then Cτ
= Cwo

where wo means the weak operator
topology on B(X).

Now we can prove Theorem 1.2.

Proof of Theorem 1.2. Suppose that X∗ has the MWAP and let T ∈ K(X, 1). Then T ∗ ∈ K(X∗, 1)
where T ∗ is the adjoint of T . Since X∗ has the MWAP, By Remark 2.1,(f) and Lemma 3.1

T ∗ ∈ F(X∗, w∗, 1)
τ
.

Then there is a net (Tα) in F(X∗, w∗, 1) such that Tα −→ T ∗ in (B(X∗), τ). Since each Tα is w∗-to-w∗

continuous and ‖Tα‖ ≤ 1, for each α there is a Sα ∈ F(X, 1) such that S∗
α = Tα. So S∗

α −→ T ∗ in
(B(X∗), τ). In particular, for each x ∈ X and x∗ ∈ X∗

x∗Sαx −→ x∗Tx.

Thus Sα −→ T in (B(X), wo), where wo means the weak operator topology on B(X). By Lemma 3.2

T ∈ co({Sα})
τ
⊂ F(X, 1)

τ
. We have shown that K(X, 1) ⊂ F(X, 1)

τ
. Hence X has the MWAP by

Remark 2.1,(f). �

We need a result due to Kalton [K, Corollary 3].

Lemma 3.3. Suppose that (Tn) is a sequence in K(X) and T ∈ K(X). If for each x∗ ∈ X∗ and
x∗∗ ∈ X∗∗ x∗∗T ∗

nx∗ −→ x∗∗T ∗x∗, then there is a sequence (Sn) of convex combinations of {Tn} such
that ‖Sn − T‖ −→ 0.

Now we can prove Theorem 1.3.

Proof of Theorem 1.3. Suppose that X∗ has the WAP and let T ∈ K(X, 1). Then by Lemma 2.4
X∗ has the MWAP since X∗ is separable. Since T ∗ ∈ K(X∗, 1), by Lemma 3.1

T ∗ ∈ F(X∗, w∗, 1)
τ
.
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If a Banach space Y is separable, then for each bounded subset A of B(Y ) the relative τ -topology
of A has a countable basic neighborhood [Ki2, Theorem 1.18]. Thus there is a sequence (Tn) in
F(X∗, w∗, 1) such that

Tn −→ T ∗

in (B(X∗), τ). Since each Tn is w∗-to-w∗ and ‖Tn‖ ≤ 1, for each n there is a Sn ∈ F(X, 1) such that
S∗

n = Tn. So S∗
n −→ T ∗ in (B(X∗), τ). In particular, for each x∗ ∈ X∗ and x∗∗ ∈ X∗∗

x∗∗S∗
nx

∗ −→ x∗∗T ∗x∗.

By Lemma 3.3 there is a sequence (Rn) of convex combinations of {Sn} such that

‖Rn − T‖ −→ 0

and (Rn) ⊂ F(X, 1). This shows T ∈ F(X, 1). We have shown that K(X, 1) ⊂ F(X, 1). Hence X
has the MQAP by Remark 2.1,(g). �
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