ON RELATIONS BETWEEN WEAK APPROXIMATION PROPERTIES AND THEIR INHERITANCES TO SUBSPACES

JU MYUNG KIM

ABSTRACT. It is shown that for the separable dual X^* of a Banach space X, if X^* has the weak approximation property, then X^* has the metric weak approximation property. We introduce the properties W*D and MW*D for Banach spaces. Suppose that M is a closed subspace of a Banach space X such that M^{\perp} is complemented in the dual space X^* , where $M^{\perp} = \{x^* \in X^* : x^*(m) = 0 \text{ for all } m \in M\}$. Then it is shown that if a Banach space X has the weak approximation property and W*D (respectively, metric weak approximation property and MW*D), then M has the weak approximation property (respectively, bounded weak approximation property).

1. INTRODUCTION AND MAIN RESULTS

A Banach space X is said to have the *approximation property* (in short, AP) if for every compact $K \subset X$ and $\epsilon > 0$, there is a bounded and finite rank operator T on X such that $||Tx - x|| < \epsilon$ for all $x \in K$. Also a Banach space X is said to have the λ -bounded approximation property (in short, λ -BAP) if for every compact $K \subset X$ and $\epsilon > 0$, there is a bounded and finite rank operator T on X with $||T|| \leq \lambda$ such that $||Tx - x|| < \epsilon$ for all $x \in K$. In particular, if $\lambda = 1$, then we say that X has the *metric approximation property* (in short, MAP). If X has the λ -bounded approximation property for some $\lambda > 0$, then we say that X has the bounded approximation property (in short, BAP). The AP, already appeared in Banach's book [1], is one of the fundamental properties in the Banach space theory. Grothendieck [4] initiated the investigation of the variants of the AP and Casazza [2] summarized various results on the AP. Recently Choi and Kim [3] introduced weak versions of the AP. A Banach space X is said to have the weak approximation property (in short, WAP) if for every compact operator T on X, compact $K \subset X$, and $\epsilon > 0$, there is a bounded and finite rank operator T_0 on X such that $||T_0x - Tx|| < \epsilon$ for all $x \in K$. A Banach space X is said to have the bounded weak approximation property (in short, BWAP) if for every compact operator T on X, there is a $\lambda_T > 0$ such that for every compact $K \subset X$ and $\epsilon > 0$, there is a bounded and finite rank operator T_0 on X such that $||T_0|| \leq \lambda_T$ and $||T_0x - Tx|| < \epsilon$ for all $x \in K$. In the definition of the BWAP, if for every compact operator T on X with $||T|| \leq 1, \lambda_T = 1$, then we say that X has the *metric* weak approximation property (in short, MWAP). A Banach space X is said to have the quasi approximation property (in short, QAP) if for every compact operator T

²⁰⁰⁰ Mathematics Subject Classification. Primary 46B28; Secondary 46B10.

Key words and phrases. approximation property, weak approximation property, bounded weak approximation property, metric weak approximation property.

The author was supported by BK21 project.

on X and $\epsilon > 0$, there is a bounded and finite rank operator T_0 on X such that $||T_0 - T|| < \epsilon$. In [3] the authors observed the following implications :

$$BAP \Longrightarrow AP \Longrightarrow QAP \Longrightarrow BWAP \Longrightarrow WAP.$$

To simplify above definitions, we need a topology on $\mathcal{B}(X)$, the Banach space of all bounded operators on a Banach space X. For compact $K \subset X$, $\epsilon > 0$, and $T \in \mathcal{B}(X)$, we put

$$N(T,K,\epsilon) = \{R \in \mathcal{B}(X) : \sup_{x \in K} \|Rx - Tx\| < \epsilon\}.$$

Let S be the collection of all such $N(T, K, \epsilon)$'s. We denote by τ the topology on $\mathcal{B}(X)$ generated by S. It is easy to check that τ is a locally convex topology and for a net (T_{α}) and T in $\mathcal{B}(X)$,

$$T_{\alpha} \xrightarrow{\tau} T \Longleftrightarrow \text{for each compact } K \subset X \quad \sup_{x \in K} \|T_{\alpha}x - Tx\| \longrightarrow 0.$$

Let X be a Banach space and $\lambda > 0$. Throughout this paper, we use the following notations :

 T^* : The adjoint of an operator T.

 w^* : The weak^{*} topology on the dual space X^* of X.

 $\mathcal{F}(X)$: The collection of bounded and finite rank operators on X.

 $\mathcal{K}(X)$: The collection of compact operators on X.

 $\mathcal{K}(X^*, w^*)$: The collection of compact and w^* -to- w^* continuous operators on X^* .

 $\mathcal{K}(X,\lambda)$: The collection of compact operators T on X satisfying $||T|| \leq \lambda$.

 $\mathcal{K}(X^*, w^*, \lambda)$: The collection of compact and w^* -to- w^* continuous operators T on X^* satisfying $||T|| \leq \lambda$.

We similarly define $\mathcal{F}(X^*, w^*)$, $\mathcal{F}(X, \lambda)$, and $\mathcal{F}(X^*, w^*, \lambda)$.

Notice that every w^* -to- w^* continuous operator on X^* is an adjoint operator.

The next remark follows from the definitions.

Remark 1.1. Let X be a Banach space.

(a) X has the AP iff $I_X \in \overline{\mathcal{F}(X)}^{\tau}$, where I_X is the identity in $\mathcal{B}(X)$.

- (b) X has the λ -BAP iff $I_X \in \overline{\mathcal{F}(X,\lambda)}^{\tau}$.
- (c) X has the WAP iff $\mathcal{K}(X) \subset \overline{\mathcal{F}(X)}^{\tau}$.

(d) X has the BWAP iff for every $T \in \mathcal{K}(X)$, there is a $\lambda_T > 0$ such that $T \in \overline{\mathcal{F}(X,\lambda_T)}^{\tau}$.

(e) X has the MWAP iff $\mathcal{K}(X,1) \subset \overline{\mathcal{F}(X,1)}^{\tau}$.

(f) X has the QAP iff $\mathcal{K}(X) \subset \overline{\mathcal{F}(X)}$, where the closure is the operator norm closure.

Now we state main results in this paper.

Theorem 1.2. Let X be a Banach space such that X^* is separable. If X^* has the WAP, then X^* has the MWAP.

The proof of Theorem 1.2 is presented in Section 2. If a Banach space X has the MWAP, then X has the BWAP. In fact, if X has the MWAP, then for every $T \in \mathcal{K}(X)$,

$$T \in \mathcal{K}(X, \|T\|) = \|T\|\mathcal{K}(X, 1) \subset \|T\|\overline{\mathcal{F}(X, 1)}^{\mathsf{T}} = \overline{\mathcal{F}(X, \|T\|)}^{\mathsf{T}}$$

 $\mathbf{2}$

Hence X has the BWAP. Since clearly the BWAP implies the WAP, we have the following corollary.

Corollary 1.3. Let X be a Banach space such that X^* is separable. Then the following are equivalent.

- (a) X^* has the WAP.
- (b) X^* has the BWAP.
- (c) X^* has the MWAP.

In [3], by simple calculations it was shown that the WAP, BWAP, and QAP are inherited to the complemented subspaces. But their inheritances to general subspaces are much harder. Suppose that M is a closed subspace of a Banach space X and $M^{\perp} = \{x^* \in X^* : x^*(m) = 0 \text{ for all } m \in M\}$. It is a well known fact that if M is complemented in X, then M^{\perp} is complemented in X^* . But the converse is false in general. In this paper we are concerned with the subspace M such that M^{\perp} is complemented in X^* .

Theorem 1.4. Suppose that M is a closed subspace of a Banach space X and M^{\perp} is complemented in X^* .

(a) If X has the WAP and W^*D , then M has the WAP.

(b) If X has the MWAP and MW*D, then $\mathcal{K}(M,1) \subset \overline{\mathcal{F}(M,\mu)}^{r}$ for some $\mu > 0$. In particular, M has the BWAP.

In Section 3 we introduce the properties W*D and MW*D, and prove Theorem 1.4.

2. Proof of Theorem 1.2

By the locally convex space version of the Hahn-Banach theorem, we have the following lemma 2.1 (See Megginson [6, Corollary 2.2.20]).

Lemma 2.1. Let X be a Banach space and $(\mathcal{B}(X), \mathcal{T})$ a locally convex space. Suppose that \mathcal{Z} is a subspace of $\mathcal{B}(X)$ and $T \in \mathcal{B}(X)$. Then the following are equivalent.

(a) T belongs to the \mathcal{T} -closure of \mathcal{Z} .

(b) For every $f \in (\mathcal{B}(X), \mathcal{T})^*$ such that f(S) = 0 for all $S \in \mathcal{Z}$, we have f(T) = 0.

The following lemma 2.2 is due to [6, Theorem 2.2.28]. A concrete proof is in [3, Lemma 3.8].

Lemma 2.2. Let X be a Banach space and $(\mathcal{B}(X), \mathcal{T})$ a locally convex space. Suppose that C is a balanced convex set in $\mathcal{B}(X)$ and $T \in \mathcal{B}(X)$. Then the following are equivalent.

(a) T belongs to the \mathcal{T} -closure of \mathcal{C} .

(b) For every $f \in (\mathcal{B}(X), \mathcal{T})^*$ such that $|f(S)| \leq 1$ for all $S \in \mathcal{C}$, we have $|f(T)| \leq 1$.

The following proposition is a result of Lemmas 2.1 and 2.2.

Proposition 2.3. Let X be a Banach space.

(a) X has the WAP if and only if for every $f \in (\mathcal{B}(X), \tau)^*$ such that f(T) = 0 for all $T \in \mathcal{F}(X)$, we have f(T) = 0 for all $T \in \mathcal{K}(X)$.

(b) X has the MWAP if and only if for every $f \in (\mathcal{B}(X), \tau)^*$ such that $|f(S)| \leq 1$ for all $S \in \mathcal{F}(X, 1)$, we have $|f(T)| \leq 1$ for all $T \in \mathcal{K}(X, 1)$.

JU MYUNG KIM

For a Banach space X, we consider the subspace \mathcal{Y}_X of $\mathcal{B}(X^*)$ given by

$$\mathcal{Y}_{X} = \{ T \in \mathcal{B}(X^{*}) : \text{ there exist } (x_{k})_{k=1}^{m} \subset X \text{ and } (x_{k}^{*})_{k=1}^{m} \subset X^{*}$$
(2.1)
such that $Tx^{*} = \sum_{k=1}^{m} x^{*}(x_{k})x_{k}^{*} \text{ for } x^{*} \in X^{*} \}.$

To prove Theorem 1.2, we need two lemmas. The following lemma 2.4 is found in Lindenstrauss and Tzafriri [5]. A concrete proof is in [3, Lemma 3.5].

Lemma 2.4. Let X be a Banach space and $\mathcal{Y} = \mathcal{Y}_X$ be as in (2.1). Then \mathcal{Y} is τ -dense in $\mathcal{F}(X^*)$.

The following lemma 2.5 is in the proof of [5, Theorem 1.e.15].

Lemma 2.5. Suppose that X is a Banach space such that X^* is separable. Let $\mathcal{Y} = \mathcal{Y}_X$ be as in (2.1). Let $\varphi \in (\mathcal{B}(X^*), \tau)^*$ satisfying $|\varphi(T)| \leq 1$ for $T \in \mathcal{Y}$, $||T|| \leq 1$, and $\epsilon > 0$. Then there is a $\psi_{\epsilon} \in (\mathcal{B}(X^*), \tau)^*$ such that $\psi_{\epsilon}(S) = \varphi(S)$ for every $S \in \mathcal{Y}$ and $|\psi_{\epsilon}(T)| \leq 1 + \epsilon$ for every $T \in \mathcal{B}(X^*)$ with $||T|| \leq 1$.

Now we can prove Theorem 1.2.

Proof of Theorem 1.2. To apply Proposition 2.3(b), Assume $\varphi \in (\mathcal{B}(X^*), \tau)^*$ satisfying $|\varphi(S)| \leq 1$ for $S \in \mathcal{F}(X^*, 1)$ and let $\epsilon > 0$. Then by Lemma 2.5 there is a $\psi_{\epsilon} \in (\mathcal{B}(X^*), \tau)^*$ such that $\psi_{\epsilon}(S) = \varphi(S)$ for every $S \in \mathcal{Y}$ and $|\psi_{\epsilon}(T)| \leq 1 + \epsilon$ for every $T \in \mathcal{B}(X^*)$ with $||T|| \leq 1$. By Lemma 2.4 $\psi_{\epsilon}(S) = \varphi(S)$ for every $S \in \mathcal{F}(X^*)$. Since X^* has the WAP, $\psi_{\epsilon}(S) = \varphi(S)$ for every $S \in \mathcal{K}(X^*)$. In particular, $\psi_{\epsilon}(T) = \varphi(T)$ for every $T \in \mathcal{K}(X^*, 1)$. It follows that $|\varphi(T)| \leq 1 + \epsilon$ for every $T \in \mathcal{K}(X^*, 1)$. Since ϵ was arbitrary, $|\varphi(T)| \leq 1$ for every $T \in \mathcal{K}(X^*, 1)$. Hence X^* has the MWAP by Proposition 2.3(b).

3. Proof of Theorem 1.4

We introduce two other topologies on $\mathcal{B}(X)$ or $\mathcal{B}(X^*)$, which are induced by subspaces of $\mathcal{B}(X)^{\sharp}$ or $\mathcal{B}(X^*)^{\sharp}$, the vector space of all linear functionals on $\mathcal{B}(X)$ or $\mathcal{B}(X^*)$.

Definition 3.1. Let \mathcal{Z}_1 be the space of all linear functionals φ on $\mathcal{B}(X)$ of the form

$$\varphi(T) = \sum_{n} x_n^*(Tx_n)$$

where $(x_n) \subset X$ and $(x_n^*) \subset X^*$ with $\sum_n ||x_n|| ||x_n^*|| < \infty$. Let \mathcal{Z}_2 be the space of all linear functionals φ on $\mathcal{B}(X^*)$ of the form

$$\varphi(T) = \sum_{n} (Tx_n^*)x_n$$

where $(x_n) \subset X$ and $(x_n^*) \subset X^*$ with $\sum_n ||x_n|| ||x_n^*|| < \infty$.

Then the ν topology (in short, ν) on $\mathcal{B}(X)$ is the topology induced by \mathcal{Z}_1 and the weak^{*} topology (in short, weak^{*}) on $\mathcal{B}(X^*)$ is the topology induced by \mathcal{Z}_2 .

From elementary facts about topologies induced by spaces of linear functionals on vector spaces, ν and $weak^*$ are locally convex topologies. Also $(\mathcal{B}(X), \nu)^* = \mathcal{Z}_1$, $(\mathcal{B}(X^*), weak^*)^* = \mathcal{Z}_2$, and for a net (T_α) and T in $\mathcal{B}(X)$,

$$T_{\alpha} \xrightarrow{\nu} T$$
 iff $\sum_{n} x_{n}^{*}(T_{\alpha}x_{n}) \longrightarrow \sum_{n} x_{n}^{*}(Tx_{n})$

4

for each $(x_n) \subset X$ and $(x_n^*) \subset X^*$ with $\sum_n ||x_n|| ||x_n^*|| < \infty$; similarly, for a net (T_α) and T in $\mathcal{B}(X^*)$,

$$T_{\alpha} \xrightarrow{weak^*} T$$
 iff $\sum_{n} (T_{\alpha} x_n^*) x_n \longrightarrow \sum_{n} (T x_n^*) x_n$

for each $(x_n) \subset X$ and $(x_n^*) \subset X^*$ with $\sum_n \|x_n\| \|x_n^*\| < \infty$.

The name, the *weak*^{*} topology, comes from the fact that $\mathcal{B}(X^*)$ can be identified with $(X^* \hat{\otimes}_{\pi} X)^*$, the dual of the completed projective tensor product of X^* and X.

Definition 3.2. Let X be a Banach space.

(a) X is said to have the *weak*^{*} density (in short, W*D) if $\mathcal{K}(X^*) \subset \overline{\mathcal{K}(X^*, w^*)}^{weak^*}$. (b) X is said to have the *metric weak*^{*} density (in short, MW*D) if $\mathcal{K}(X^*, 1) \subset \overline{\mathcal{K}(X^*, w^*, 1)}^{weak^*}$.

The following lemma comes from [4].

Lemma 3.3. Let X be a Banach space. Then $(\mathcal{B}(X), \tau)^*$ consists of all functionals f of the form $f(T) = \sum_n x_n^*(Tx_n)$, where $(x_n) \subset X$ and $(x_n^*) \subset X^*$ with $\sum_n ||x_n|| ||x_n^*|| < \infty$.

Therefore $(\mathcal{B}(X), \nu)^* = (\mathcal{B}(X), \tau)^*$. Then Remark 1.1 can also be stated as the following.

Remark 3.4. Let X be a Banach space.

- (a) X has the AP iff $I_X \in \overline{\mathcal{F}(X)}^{\nu}$.
- (b) X has the λ -BAP iff $I_X \in \overline{\mathcal{F}(X,\lambda)}^{\nu}$.
- (c) X has the WAP iff $\mathcal{K}(X) \subset \overline{\mathcal{F}(X)}^{\nu}$.

(d) X has the BWAP iff for every $T \in \mathcal{K}(X)$, there is a $\lambda_T > 0$ such that $T \in \overline{\mathcal{F}(X, \lambda_T)}^{\nu}$.

(e) X has the MWAP iff $\mathcal{K}(X,1) \subset \overline{\mathcal{F}(X,1)}^{\nu}$.

To prove Theorem 1.4, we need two more lemmas

Lemma 3.5. Let X be a Banach space.

(a)
$$\mathcal{F}(X^*) \subset \overline{\mathcal{F}(X^*, w^*)}' \subset \overline{\mathcal{F}(X^*, w^*)}^{weak}$$
.
(b) $\mathcal{F}(X^*, \lambda) \subset \overline{\mathcal{F}(X^*, w^*, \lambda)}' \subset \overline{\mathcal{F}(X^*, w^*, \lambda)}^{weak^*}$ for each $\lambda > 0$.

Lemma 3.5(a) is deduced from (b) which is found in [3].

Lemma 3.6. Suppose that M is a closed subspace of a Banach space X and M^{\perp} is complemented in X^* . Then there is a bounded operator U from M^* into X^* such that $(Um^*)m = m^*m$ for all $m \in M$ and $m^* \in M^*$.

Proof. Since M^{\perp} is complemented in X^* , there is a projection $P: X^* \longrightarrow M^{\perp}$ onto M^{\perp} . Define a map $U: M^* \longrightarrow X^*$ by

$$Um^* = x^* - Px^*$$

where x^* is any linear functional in X^* with $x^* = m^*$ on M. Since P is a projection on M^{\perp} , one easily checks that U is well-defined and

$$(Um^*)m = m^*m$$

for all $m^* \in M^*$ and $m \in M$. Of course, U is a bounded operator.

5

Now we can prove Theorem 1.4.

Proof of Theorem 1.4. (a) Since X has the WAP, $\mathcal{K}(X) \subset \overline{\mathcal{F}(X)}^{\tau}$. It follows from this that $\mathcal{K}(X^*, w^*) \subset \overline{\mathcal{F}(X^*, w^*)}^{weak^*}$. Since X has the W*D, $\mathcal{K}(X^*) \subset$ $\overline{\mathcal{F}(X^*, w^*)}^{weak^*}$. Now let $T \in \mathcal{K}(M)$, let U be the operator in Lemma 3.6 and I_M the inclusion from M into X. Then $UT^*I^*_M \in \mathcal{K}(X^*) \subset \overline{\mathcal{F}(X^*, w^*)}^{weak^*}$. Thus there is a net $(T^*_{\alpha}) \subset \mathcal{F}(X^*, w^*)$ such that $T^*_{\alpha} \xrightarrow{weak^*} UT^*I^*_M$. That is,

$$\sum_{n} x_n^* T_\alpha x_n \longrightarrow \sum_{n} (UT^* I_M^* x_n^*) x_n$$

for every $(x_n) \subset X$ and $(x_n^*) \subset X^*$ satisfying $\sum_n \|x_n\| \|x_n^*\| < \infty$. Consider a net $(I_M^* T_\alpha^* U) \subset \mathcal{F}(M^*)$ and assume that sequences $(m_n) \subset M$ and $(m_n^*) \subset M^*$ satisfy $\sum_n \|m_n\| \|m_n^*\| < \infty$. Then $(I_M(m_n)) \subset X, (U(m_n^*)) \subset X^*$, and $\sum_n \|I_M(m_n)\| \|U(m_n^*)\| \le \|U\| \sum_n \|m_n\| \|m_n^*\| < \infty$. Therefore we have

$$\sum_{n} ((I_{M}^{*}T_{\alpha}^{*}U)(m_{n}^{*}))(m_{n}) = \sum_{n} U(m_{n}^{*})T_{\alpha}I_{M}(m_{n})$$
$$\longrightarrow \sum_{n} ((UT^{*}I_{M}^{*})U(m_{n}^{*}))(I_{M}(m_{n}))$$
$$= \sum_{n} (UT^{*}m_{n}^{*})(m_{n})$$
$$= \sum_{n} (T^{*}m_{n}^{*})(m_{n}).$$

From this and Lemma 3.5(a) $T^* \in \overline{\mathcal{F}(M^*, w^*)}^{weak^*}$. It follows that $T \in \overline{\mathcal{F}(M)}^{\nu}$. Hence M has the WAP by Remark 3.4(c).

(b) Since X has the MWAP, $\mathcal{K}(X,1) \subset \overline{\mathcal{F}(X,1)}^{\tau}$. It follows from this that $\mathcal{K}(X^*, w^*, 1) \subset \overline{\mathcal{F}(X^*, w^*, 1)}^{weak^*}.$ Since X has the MW*D, $\mathcal{K}(X^*, 1) \subset \overline{\mathcal{F}(X^*, w^*, 1)}^{weak^*}.$ Now let $T \in \mathcal{K}(M, 1)$. Then $UT^*I^*_M \in \mathcal{K}(X^*, ||U||) \subset \overline{\mathcal{F}(X^*, w^*, ||U||)}^{weak^*}$. As in the proof of (a), applying Lemma 3.5(b) we can check $T^* \in \overline{\mathcal{F}(M^*, w^*, \|U\|^2)}^{weak^*}$. It follows from this that $T \in \overline{\mathcal{F}(M, \|U\|^2)}^{\nu} = \overline{\mathcal{F}(M, \|U\|^2)}^{\tau}$. Hence $\mathcal{K}(M, 1) \subset$ $\overline{\mathcal{F}(M, \|U\|^2)}^{\tau}.$ \square

Acknowledgments. The author is grateful to the referee for the valuable comments. The author also thanks Professor C. Choi for his kind comments on this paper.

References

6

^[1] S. Banach, Théorie des opérations linéaires, Monografje Matematyczne, Warsaw, 1932.

^[2] P. G. Casazza, Approximation Properties, Handbook of the geometry of Banach spaces, Vol. 1, W. B. Johnson and J. Lindenstrauss, eds, Elsevier, Amsterdam (2001), 271-316.

^[3] C. Choi and J. M. Kim, Weak and quasi approximation properties in Banach spaces, J. Math. Anal. Appl. 316 (2006), 722-735.

^[4] A. Grothendieck, Produits tensoriels topologiques et espaces nucleires, Mem. Amer. Math. Soc. 16 (1955), 1-140.

[5] J. Lindenstrauss and L. Tzafriri, *Classical Banach Spaces I, Sequence Spaces*, Springer, Berlin, 1977.

[6] R. E. Megginson, An Introduction to Banach Space Theory, Springer, New York, 1998.

Division of Applied Mathematics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea

E-mail address: kjm21@kaist.ac.kr