ON RELATIONS BETWEEN WEAK APPROXIMATION
PROPERTIES AND THEIR INHERITANCES TO SUBSPACES
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ABSTRACT. It is shown that for the separable dual X* of a Banach space X,
if X* has the weak approximation property, then X* has the metric weak
approximation property. We introduce the properties W*D and MW*D for
Banach spaces. Suppose that M is a closed subspace of a Banach space X
such that M~ is complemented in the dual space X*, where M+ = {z* €
X* :z*(m) = 0 for all m € M}. Then it is shown that if a Banach space
X has the weak approximation property and W*D (respectively, metric weak
approximation property and MW*D), then M has the weak approximation
property (respectively, bounded weak approximation property).

1. INTRODUCTION AND MAIN RESULTS

A Banach space X is said to have the approzimation property (in short, AP) if
for every compact K C X and € > 0, there is a bounded and finite rank operator
T on X such that [|[Tz — x| < € for all z € K. Also a Banach space X is said to
have the A-bounded approximation property (in short, A-BAP) if for every compact
K C X and € > 0, there is a bounded and finite rank operator T on X with
IT| < A such that | Tz — z|| < € for all z € K. In particular, if A = 1, then
we say that X has the metric approzimation property (in short, MAP). If X has
the A-bounded approximation property for some A > 0, then we say that X has
the bounded approzimation property (in short, BAP). The AP, already appeared
in Banach’s book [1], is one of the fundamental properties in the Banach space
theory. Grothendieck [4] initiated the investigation of the variants of the AP and
Casazza [2] summarized various results on the AP. Recently Choi and Kim [3]
introduced weak versions of the AP. A Banach space X is said to have the weak
approximation property (in short, WAP) if for every compact operator 7' on X,
compact K C X, and € > 0, there is a bounded and finite rank operator T on
X such that | Toz — Tz| < € for all z € K. A Banach space X is said to have
the bounded weak approximation property (in short, BWAP) if for every compact
operator 7" on X, there is a Ay > 0 such that for every compact K C X and
e > 0, there is a bounded and finite rank operator Ty on X such that | Tp|| < Ap
and ||Tox — Tz|| < € for all x € K. In the definition of the BWAP, if for every
compact operator T on X with ||T|| < 1, Ay = 1, then we say that X has the metric
weak approrimation property (in short, MWAP). A Banach space X is said to have
the quasi approzimation property (in short, QAP) if for every compact operator T
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on X and e > 0, there is a bounded and finite rank operator Ty on X such that
ITo — T|| < e. In [3] the authors observed the following implications :

BAP = AP = QAP =— BWAP = WAP.

To simplify above definitions, we need a topology on B(X), the Banach space of
all bounded operators on a Banach space X. For compact K C X, ¢ > 0, and
T € B(X), we put

N(T,K,e) ={R € B(X) : sup |Rx — Tz|| < €}.
zeK

Let S be the collection of all such N(T, K,¢e)’s. We denote by 7 the topology on
B(X) generated by S. Tt is easy to check that 7 is a locally convex topology and
for a net (T,) and T in B(X),

T, — T <= for each compact K C X sup |Toz — Tx| — 0.
zeK

Let X be a Banach space and A > 0. Throughout this paper, we use the following
notations :

T* . The adjoint of an operator 7.

w* : The weak™ topology on the dual space X* of X.

F(X) : The collection of bounded and finite rank operators on X.

K(X) : The collection of compact operators on X.

K(X*,w*) : The collection of compact and w*-to-w* continuous operators on
X*.

K(X, ) : The collection of compact operators T on X satisfying ||T|| < .

K(X*,w*,A) : The collection of compact and w*-to-w* continuous operators 7'
on X* satisfying ||T]| < A.

We similarly define F(X*, w*), F(X,A), and F(X*, w*,\).

Notice that every w*-to-w* continuous operator on X* is an adjoint operator.

The next remark follows from the definitions.

Remark 1.1. Let X be a Banach space.
(a) X has the AP iff Ix € WT, where Ix is the identity in B(X).
(b) X has the A-BAP iff Iy € F(X,\) .
(¢) X has the WAP iff K(X) C F(X) .
(d) X has the BWAP iff for every T € K(X), there is a Ay > 0 such that T €
F(X, A1) .
(e) X has the MWAP iff K(X,1) c F(X,1) .

(f) X hasthe QAP iff £(X) C F(X), where the closure is the operator norm closure.

Now we state main results in this paper.

Theorem 1.2. Let X be a Banach space such that X™* is separable. If X* has the
WAP, then X* has the MWAP.

The proof of Theorem 1.2 is presented in Section 2. If a Banach space X has
the MWAP, then X has the BWAP. In fact, if X has the MWAP, then for every
T € K(X),

T e K(X,|T)) = |TIK(X,1)  |TIIFX,1)" = FX,[T]) "
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Hence X has the BWAP. Since clearly the BWAP implies the WAP, we have the
following corollary.

Corollary 1.3. Let X be a Banach space such that X* is separable. Then the
following are equivalent.
(a) X* has the WAP.
(b) X* has the BWAP.
(¢) X* has the MWAP.

In [3], by simple calculations it was shown that the WAP, BWAP, and QAP
are inherited to the complemented subspaces. But their inheritances to general
subspaces are much harder. Suppose that M is a closed subspace of a Banach
space X and M+ = {z* € X* : 2*(m) = 0 for all m € M}. It is a well known
fact that if M is complemented in X, then M~ is complemented in X*. But the
converse is false in general. In this paper we are concerned with the subspace M
such that M~ is complemented in X*.

Theorem 1.4. Suppose that M is a closed subspace of a Banach space X and M=+
is complemented in X*.

(a) If X has the WAP and W*D, then M has the WAP.

(b) If X has the MWAP and MW*D, then IC(M,1) C F(M, u)T for some pn > 0. In
particular, M has the BWAP.

In Section 3 we introduce the properties W*D and MW*D, and prove Theorem
1.4.

2. PROOF OF THEOREM 1.2

By the locally convex space version of the Hahn-Banach theorem, we have the
following lemma 2.1 (See Megginson [6, Corollary 2.2.20]).

Lemma 2.1. Let X be a Banach space and (B(X),T) a locally convex space.
Suppose that Z is a subspace of B(X) and T € B(X). Then the following are
equivalent.

(a) T belongs to the T -closure of Z.

(b) For every f € (B(X),T)* such that f(S) =0 for all S € Z, we have f(T) = 0.

The following lemma 2.2 is due to [6, Theorem 2.2.28]. A concrete proof is in [3,
Lemma 3.8].

Lemma 2.2. Let X be a Banach space and (B(X),7T) a locally convex space.
Suppose that C is a balanced convex set in B(X) and T € B(X). Then the following
are equivalent.
(a) T belongs to the T -closure of C.
(b) For every f € (B(X),T)* such that |f(S)| <1 forall S € C, we have | f(T)| < 1.

The following proposition is a result of Lemmas 2.1 and 2.2.

Proposition 2.3. Let X be a Banach space.
(a) X has the WAP if and only if for every f € (B(X),7)* such that f(T) = 0 for
all T € F(X), we have f(T) =0 for all T € K(X).
(b) X has the MWAP if and only if for every f € (B(X),7)* such that |f(S)] <1
for all S € F(X,1), we have |f(T)| <1forall T € £(X,1).
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For a Banach space X, we consider the subspace Vx of B(X™*) given by
Yx ={T € B(X"): there exist (zy)jr; C X and (z})jL, C X~ (2.1)
such that Tz* =37 a*(zg)x} for a* e X*}

To prove Theorem 1.2, we need two lemmas. The following lemma 2.4 is found
in Lindenstrauss and Tzafriri [5]. A concrete proof is in [3, Lemma 3.5].

Lemma 2.4. Let X be a Banach space and Y= Yx be as in (2.1). Then Y is
T-dense in F(X*).

The following lemma 2.5 is in the proof of [5, Theorem 1.e.15].

Lemma 2.5. Suppose that X is a Banach space such that X* is separable. Let Y=
Vx be as in (2.1). Let ¢ € (B(X™*),7)* satisfying |o(T)| <1 for T € Y, |T| <1,
and € > 0. Then there is a Y. € (B(X*),7)* such that ¥.(S) = ¢(S) for every
SeY and |Y.(T)| <1+ € for every T € B(X*) with ||T|| < 1.

Now we can prove Theorem 1.2.

Proof of Theorem 1.2. To apply Proposition 2.3(b), Assume ¢ € (B(X*),7)*
satisfying |¢(S)| <1 for S € F(X*,1) and let € > 0. Then by Lemma 2.5 there is
a e € (B(X*),7)* such that 9.(S) = ¢(S) for every S € Y and [¢.(T)] < 1+e¢
for every T € B(X*) with |T]| < 1. By Lemma 2.4 ¢.(S) = ¢(S) for every
S € F(X*). Since X* has the WAP, ¢.(S) = ¢(S5) for every S € K(X*). In
particular, ¥.(T) = ¢(T) for every T € K(X*,1). It follows that |p(T)] < 14 €
for every T € K(X™*,1). Since € was arbitrary, |p(T)| < 1 for every T € IC(X*,1).
Hence X* has the MWAP by Proposition 2.3(b). O

3. PROOF OF THEOREM 1.4

We introduce two other topologies on B(X) or B(X*), which are induced by
subspaces of B(X)*! or B(X*)*, the vector space of all linear functionals on B(X)
or B(X™).

Definition 3.1. Let Z; be the space of all linear functionals ¢ on B(X) of the

form
o(T) =Y ah(Tay)

where (z,) C X and (x}) C X* with ) |||z} || < oco.
Let Z; be the space of all linear functionals ¢ on B(X™*) of the form

p(T) = (T} )an

where (z,) C X and (x},) C X* with ) [|@,]|[|2; | < oo
Then the v topology (in short, v) on B(X) is the topology induced by Z; and
the weak* topology (in short, weak™) on B(X™*) is the topology induced by Zs.

From elementary facts about topologies induced by spaces of linear functionals
on vector spaces, v and weak* are locally convex topologies. Also (B(X),v)* = 23,
(B(X™*), weak*)* = Z5, and for a net (T,,) and T in B(X),

T, 2 T iff ZwZ(Tamn) — Zx;(Txn)

n
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for each (z,) C X and (x},) C X* with > |lz,|/||2}] < oo; similarly, for a net
(T) and T in B(X™),

auﬂ iff ZTx xn—>ZTrﬂ

for each (z,) C X and (z}) C X* Wlth >on ||xn||Han < 0.

The name, the weak™ topology, comes from the fact that B(X™*) can be identified
with (X*®,X)*, the dual of the completed projective tensor product of X* and
X.

Definition 3.2. Let X be a Banach space.

(a) X is said to have the weak* density (in short, W*D) if £(X*) C K(X*, w*)
(b) X is said to have the metric weak® density (in short, MW*D) if K(X* 1) C

————————weak”™
K(X*, w*, 1)

weak™

The following lemma comes from [4].
Lemma 3.3. Let X be a Banach space. Then (B(X),T)* consists of all func-
tionals f of the form f(T) =Y, «k(Tx,), where (x,) C X and (x}) C X* with
2o lznllllzg ]l < oo

Therefore (B(X),v)* = (B(X),7)*. Then Remark 1.1 can also be stated as the

following.

Remark 3.4. Let X be a Banach space.
(a) X has the AP iff Ix € F(X )
(b) X has the A-BAP iff Iy € F(X
(c
(d

)IJ

€ K(X), there is a Ay > 0 such that T €

X has the WAP iff £(X) Cc F(X

)

) X has the BWAP iff for every
F(X, A1) )\T) .
(e) X has the MWAP iff K(X,1) C F(X,1) .

To prove Theorem 1.4, we need two more lemmas
Lemma 3.5. Let X be a Banach space.
T weak™

(a) F(X*) Cc F(X*,w*) C F(X*,w*)
(b) F(X*,\) € F(XHw,A) € FX5uw, N for each A > 0.
Lemma 3.5(a) is deduced from (b) which is found in [3].

Lemma 3.6. Suppose that M is a closed subspace of a Banach space X and M’ is
complemented in X*. Then there is a bounded operator U from M™* into X* such
that (Um*)m = m*m for allm € M and m* € M*.

Proof. Since M~ is complemented in X*, there is a projection P : X* — M=t
onto M*. Define a map U : M* — X* by

Um* =z* — Px*

where x* is any linear functional in X* with £* = m* on M. Since P is a projection
on M+, one easily checks that U is well-defined and

(Um™)m =m™m

for all m* € M* and m € M. Of course, U is a bounded operator. [
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Now we can prove Theorem 1.4.

Proof of Theorem 1.4. (a) Since X has the WAP, (X)) C }"(X)T. It follows
from this that K(X* w*) C ]—'(X*,w*)weak . Since X has the W*D, K(X*) C
f(X*,w*)weak . Now let T € K(M), let U be the operator in Lemma 3.6 and Iy,

weak™

the inclusion from M into X. Then UT*I;, € K(X*) C F(X*, w*) . Thus
there is a net (77) C F(X*,w*) such that T weak UT*I3,. That is,

> apTowy — Y (UT Iiah)zn

for every (z,) C X and () C X* satisfying > ||z, ||z} ] < oc.

Consider a net (I;,T:U) C F(M*) and assume that sequences (m,) C M and
(m}) € M* satisty >, [|mn||||m}| < oo. Then (Ip(my)) C X, (U(m})) C X*,
and 3, [T (man)[[[|U (mp)[| < [UN 22, mn[[[my]] < oo. Therefore we have

D (TR0 mi))(mn) = Y U(mi) Tala (my)

n

— > ((UT;)U (m},)) (I ()
=Y (UT*m;,)(my)
=Y (T"m})(m).

From this and Lemma 3.5(a) T* € F(*,w) """ . Tt follows that T € Z(M)".
Hence M has the WAP by Remark 3.4(c). i

(b) Since X has the MWAP, K(X,1) C F(X,1) . It follows from this that
KX, w, 1) € FOX o, 1" Since X has the MW*D, K(X*, 1) € F(X*,w", 1)
Now let T € K(M,1). Then UT*I3, € K(X*, |U|l) € FX* w0, [UN"™ . As in
the proof of (a), applying Lemma 3.5(b) we can check T* € fT(M*, w*, HU||2)UJeak*.
It follows from this that T € F(M,|U||?) = F(M,|U]||?) . Hence K(M,1) C
FOLTT?) O

weak™
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