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Abstract

We show that the ‘centered’ Battle-Lemarié scaling function and
wavelet of order n converge in L?(2 < ¢ < 00), uniformly in particular,
to the Shannon scaling function and wavelet as n tends to the infinity.
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1 Introduction

The Battle-Lemarié scaling function is obtained by applying the orthogonal-
ization trick to the B-spline functions. In order to get the symmetry about
the origin, we will take the centered B-spline of order n as

Bi(z) == X[—1/2,1/2) (z),
B, (z) := Bp_1 % Bi(x), n=2,3,--- . (1.1)

The Fourier transform of B,, then has the form

; _(Sw2)" cosw/4)" By (w
Buw) = (252 ) = (cosu/a)" B (w/2). (12)
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We note

O (w) =Y [Bn(w + 27k)[”
keZ

= (cosw/4)®, (w/2) + (sinw/4)*"®, (w/2 + 7). (1.3)

and apply the orthonormalization trick to B, to get the Battle-Lemarié
scaling function ¢, of order n defined by

Pn(w) := Nl i (w/2)Pn(w/2), (1.4)
where
my(w) = (cosw/2) By (20) (1.5)

The filter m,, is 2w-periodic if n is even and 4m-periodic if n is odd. We note
that m,, is a CQF filter in the sense that

M (w)]? + |mn (w + ) |* = 1. (1.6)
The corresponding wavelet is given by

U (2w) = e My () (w), (1.7)
where

Py (w + )

M, (w) = |(sinw/2)]" w)

= |mp(w + 7). (1.8)

Note that M, is 2w-periodic. Therefore, if n is even, the function ¢,, defines
an orthonormal scaling function for a multiresolution analysis. If n is odd,
o, does not define a scaling function of a multiresolution analysis, but they
have the same asymptotic behavior as will be seen in the main theorem
in this article. See [1, 4, 7] for the standard Battle-Lemarié wavelet. In
this short article, we show that the Battle-Lemarié scaling function ¢, and
its corresponding wavelet 1, tend, in LI(R)(2 < ¢ < o0), in particular
uniformly, to the Shannon scaling function pgr and Shannon wavelet ¥ggr
as n approaches to the infinity, where

P (W) = Xz (w)



and
w/

b (W) == e 2N ar ) Uman (W)

It is known that the centered B-spline B, tends to the Gaussian distribution
as n — oo [8, 11]. For the asymptotic behavior of Daubechies filters and
scaling functions, see [5, 9, 10]. The idea of the proof also appears in [3, 6]
for the analogous asymptotic behaviors of other family of wavelets.

2 Main result

We need the following property of the Euler-Frobenius polynomials.

Proposition 2.1 ([2]) Let n be any positive integer and let Ean_1 be the
Euler-Frobenius polynomial of degree 2n — 2 defined by

2n—2
Eon-1(2) := (20— 1)! > Bon(-n+k+1)z".
k=0
Then the 2n—2 roots, {\n; : j =1,--- ,2n—2}, of Eap—1 has the properties
that

>\n,2n—2 < )\n,2n—3 e < )\n,n <-1< )\n,n—l <---< /\n,l < 0;

An,j)\n,anlfj =1, (.7 =12 ,n— 1)

giw(n=1) P 12X\ pcosw 4 A2

, 1 n
E . —lw —
on— P = 5T kl;[l Moo

D, (w) =

Therefore, ®p(x + ) < @, (z) on [—7/2,7/2] and @ (z) < Pp(z + 7) on
[—7,—7/2) J(7/2,7].

The 27-periodic filters for the Shannon scaling function and wavelet are
given, respectively, as

L fw| <m/2;

mp (w) ::{ 0 m/2 < ol <. (2.1)

and

H _ 0w <7/2
mgy (w) .—{ 1 n/2< | < (2.2)
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We also define a 4m-periodic filter m},; € L*([—2m,27]) by

1,  |w| <7w/2;
0, w/2<|w|<m

1 .
0, 3r/2 < |w| < 2.
Notice that
Gsu(w) = Xrm(w) = [ [ mu(w/27) = T mbw(w/27). (2.4)
j=1 j=1

Lemma 2.2 Asn approaches 0o,
(a) mon(w) converges to m%(w) for every w € [—m, 7]\ {£n/2};
(b) mant1(w) converges to m (w) for everyw € [—2m, 2rn]\{£7/2, £37/2};
and so, M,(w) converges to mi, (w) for every w € [—m, 7]\ {£n/2}.
Proof. For w € (=37/2,—7/2) (7 /2,37/2), ®p(w) < @, (w+7) by Propo-
sition 2.1. By use of (1.3), we see that
(cosw/2)?"®,,(w)
D, (2w)
_ (cosw/2)* (sinw/2)*"®,, (w)
~ (sinw/2)2" (cosw/2)2n®,, (w) + (sinw/2)2"®,, (w + )
< 1 (sinw/2)*"®,, (w)
~ (tanw/2)?" (sinw/2)?"®,,(w + )
1
[
~ (tanw/2)%"
Now, let w € (=27, —37/2) | J(—7/2,7/2) U(37/2,27). Note that |m,, (w)[*+
|mn(w + )2 =

[ (w)[* =

— 0 asn — oo,

= 1. Hence lim,_. |mp(w)| = 1. Since ma,(w) is 27-
periodic and positive by the definition of may,, lim,, . mo,(w) = 1. There-
fore, (a) is satisfied. For (b), note that moy,41 is 4m-periodic. If w €

(—m/2,7/2), then ma,y1(w) is positive. Hence lim;, .o mopt1(w) = 1.
If we (—2m,—37/2)J(37/2,27), then map4+1(w) is negative. Therefore
limy, 00 Mop41(w) = —1. O

We define an auxiliary 27-periodic continuous function M, via

_IL lw| < 5;
M{w) = { 2%/2(cosz/2)3, T <|w| <,

for the domination of m,, in the following Lemma.

(2.5)



Lemma 2.3 (a) 0 < |my(w)| < M(w), n=3,4,---.
(b) M(w) = (cosw/2)3S(w), and sup,, |S(w)| = 23/2, where

COoS w 3 w Y
Sta) = { Yol fol < v/

23/2, /2 < |z| <.

Therefore, ¢(w) := []32, M(w/27) has the decay |p(w)| < C(1 + |w])=3/2.

2, for all w,
(c) frmn(w) = 1] < { 2wl /7, |w] < /2.

Proof. The estimates of (a) and (b) are trivial. The decay of ¢(w) follows
from Theorem 5.5 of [2]. For (c), we note that

[ (w) — 1] < |my(w)] +1 < 2.

For |w| < 7/2 and for n > 1, [tanw/2*" < |tanw/2| < 2|w|/7. Therefore,
we have for |w| < 7/2,

() — 1] = 5:((213) (cosw/2)" — 1
D, (w)(cosw/2)" — /Pp(2w)

b, (2w)
B P, (w)(cosw/2)?" — @, (2w) ‘
V@ (2w) (1/®p(w) (cosw/2)" + /@y, (2w))
(sinw/2)?"®,,(w + )
- @, (2w)
_ (sinw/2)?" (cos w/2)*"®, (w + )
(cosw/2)?n ,, (2w)

(cosw/2)?"®, (w + )
(cosw/2)?"®, (w) + (sinw/2)?" P, (w + )
D, (w+ )

P (w)

= (tanw/2)*"

< (tanw/2)*"

2
*|’U)|,
7T

IN

where we used the fact that @, (w + 7) < ®,(w) on [—7/2,7/2]. O

Lemma 2.4 (a) For each fized w, $n(w) = [[}2; my,(w/27) converges
uniformly on n.



(b) @n(w) — Gsg(w) pointwise a.e. as n — oo.
(¢) thn(w) — Ygr(w) pointwise a.e. as n — co.

Proof. (a) Fix w and choose jy so that |w/2/°| < 7/2. By Lemma 2.3(c),

0o 7o w 00 w
Z|mn(27)_1‘ —Z|mn(§)—1\+ Z ’mn(g)_”
Jj=1 Jj=1 Jj=jo+1
<24 Z |“’| 90 + 210l
Jo 20’

_Jo+1

uniformly on n. Therefore, the product ¢, (w) converges uniformly on n.
(b) Fix w ¢ U2 ©,2/(£m + 27Z) and let € > 0. By (a) we can choose j
(independent of n) so that

Hmn )| < e,

and
]1

[psr(w HmSH 2])\ <6
j=1
for ¢ = 0,1. Therefore, we have

[Bn(w) = s (w)] < [gn(w) — [T ma(57)
J1 w_ i w
1T mnt) = Tk (5701
j=1 i=1

J1
. w R
T msn(55) — @sm(w)]
j=1

<26+|Hmn H misp 2]

J=1
We choose i := i(n) = 0 (n=even), 1 (n=odd). Note that w/2’/ ¢ +7/2 +
2nZ for any j > 1. Since Man(w/27) — mYy (w/27) and mopi1(w/27) —
mby(w/27) as n — oo, we can choose ng € N so that
J1 ‘ J1 A A
| T mn(w/27) — [ miss (w/29)] < e for n > no.

Jj=1 Jj=1



(d) (e) ()
Figure 1: (a) 4 (b) 10 (c) wsm (d) ¥4 (e) P10 (f) Ysu.

Therefore, ¢, (w) — ¢psm(w) pointwise as n — oo for w ¢ Uﬁ12j(iﬂ+2WZ).
(¢c) The proof follows from (b) in view of the definition of 1, in (1.7). It is
also proved in [7] with a different proof.

g

Now, we state and prove our main result.

Theorem 2.5 (a) For 1 <p < oo, ||¢n — Psul|pr@) — 0 and

[¥n — YsallLe®) — 0 as n — occ.
(b) For 2 < q < oo, |l¢n — sullLaw) — 0 and |[¢Yn — YsullLaw) — 0, as
n — 0.
In particular, ©, — s and ¥, — Vs uniformly on R as n — oo.



Proof. Note that
i w
enw) = T Ima(5)]

j=1
[e.9] w . B

< [TIMGH)I = 1¢(w)] < C+[w) =2,
j=1

[hn(w)] = [ M (w/2)[|¢n(w/2)| < C(1 + w/2) =2,

Therefore (a) follows from Lemma 2.4 by the dominated convergence theo-
rem. (b) follows from (a) by Hausdorff-Young inequality:

||f‘|Lq(R) < ”fHLp(R)a for 1 <p<2,

where ¢ is the conjugate exponent to p. O

Remark. We illustrate the convergence of the Battle-Lemarié scaling func-
tions and wavelets (for n = 4 and 10) to the Shannon scaling function and
wavelet in Figure 1.
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