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Abstract. We present a discontinuous Galerkin (DG) method to solve elliptic interface problems
for which discontinuities in the solution and in its normal derivatives are prescribed on an interface
inside the domain. Standard ways to solve interface problems with finite element methods consist
in enforcing the prescribed discontinuity of the solution in the finite element space. Here, we show
that the DG method provides a natural framework to enforce both discontinuities weakly in the DG
formulation provided that the triangulation of the domain is fitted to the interface. The resulting
discretization leads to a symmetric system that can be efficiently solved with standard algorithms.
The method is shown to be optimally convergent in the L2-norm and numerical experiments are
presented to confirm this theoretical result. We apply our method to the numerical study of electro-
poration, a widely-used medical technique with applications to gene therapy and cancer treatment.
Mathematical models of electroporation involves elliptic problems with dynamic interface conditions.
We discretize such problems into a sequence of elliptic interface problems that can be solved by our
method. We obtain numerical results that agree with known exact solutions.
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1. Introduction. We consider Ω a convex polygonal domain in R2 and Ω1 a
domain with C2 boundary such that Ω1 ⊂ Ω (see Figure 1.1). We set ΓI = ∂Ω1 and
Ω2 = Ω \ Ω1. The domains Ω1 and Ω2, and the curve ΓI are usually referred as the
interior domain, the exterior domain and the interface, respectively. We consider the
following elliptic interface problem:

−∇ · β∇u = f in Ω1 ∪ Ω2, (1.1)
u = g on ∂Ω, (1.2)

[u] = an on ΓI, (1.3)
[β∂nu] = bn on ΓI . (1.4)

where β is a positive constant on Ω1 and Ω2, separately (possibly discontinuous across
ΓI). Here n is the outward unit normal to ΓI. The operator ∂n is the normal derivative
defined by ∂nu = ∇u ·n. We shall emphasize here that [·] takes the standard meaning
in discontinuous Galerkin (DG) methods, that is, if we consider K and K ′ two sub-
domains of Ω such that ∂K ∩ ∂K ′ 6= ∅, then for a sufficiently regular scalar function
v and vector function r defined on K ∪K ′, we define [v] and [r] on ∂K ∩ ∂K ′ by

[v] = v|K nK + v|K′ nK′ ,

[r] = r|K ·nK + r|K′ ·nK′ ,
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Fig. 1.1: Domain and interface

where nK is the outward unit normal to ∂K. On the boundary ∂Ω, we set [v] = vn
and [r] = r · n.1 We also recall the definition of the average operator {·}:

{v} =
1
2
(v|K+v|K′) on ∂K ∩ ∂K ′ and {v} = v on ∂Ω.

Several methods exist already to address this problem. The immersed interface
method [10] is a finite difference scheme that enforces the jump conditions by an
appropriate choice of stencil. The resulting discretization is not symmetric but has
second order accuracy. It manages to obtain a sharp solution at the interface contrary
to approaches based on singular source terms. Moreover it allows discontinuities in
the solution itself, not only in the coefficients. The boundary capturing method [12]
is another finite difference scheme with first order accuracy which results in a sym-
metric system that can be solved with fast Poisson solvers. In fact the resulting linear
system is the same as one from a standard discretization of the Poisson equation in
the absence of interface (the coefficient β is, however, replaced by an “effective” β to
take into account the sub-grid discontinuities). The convergence of the method was
shown in [13]. The method was later extended to achieve second order accuracy as
described in [8].

There has been also considerable research to solve this problem using finite ele-
ment methods. In [3], a method is proposed to solve the problem on unfitted meshes
(which means the interface is not assumed to exactly lie on the mesh lines), and a
complete analysis in the context of variational crimes showed that optimal conver-
gence is achieved thanks to a proper transfer of the boundary conditions from the
exact interfaces and boundaries to the approximate ones. The discontinuity in the
derivative of u is naturally enforced in the weak formulation while the discontinuity
in u is enforced in the finite element space.

In this paper, we present a discontinuous Galerkin method to solve this problem.
This is quite a natural approach in the case of a fitted mesh since the approximate
solution in a DG discretization is discontinuous across element boundaries. Similarly
to the boundary capturing method, the method presented here has the following prop-
erty: the stiffness matrix resulting from the discretization is the same as one obtained

1Usually the jump conditions are given using a different jump operator defined by [v] =
v|Ω1−v|Ω2 , which is equivalent to ours since one can easily check that on ΓI

[u] = (u|Ω1−u|Ω2 )n,

[β∂nu] = (β ∂n(u|Ω1 )− β ∂n(u|Ω2 ))n.
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by a standard DG discretization of the Poisson problem without jump conditions (the
discontinuity terms all appear as extra terms on the right-hand side). Therefore, the
resulting linear system can be solved efficiently with standard techniques. It differs
from [3] in the sense that both jump conditions are implemented weakly. Moreover,
we show that the method can be written in the usual DG form provided we introduce
a special choice of fluxes. In this form the convergence of the method can be easily
proved using the framework developed in [2].

The standard weak formulation of the problem (1.1)–(1.4) is given below. It can
be easily obtained by multiplying (1.1) by a test function v in H1

0 (Ω), integrating
separately on Ω1 and Ω2, adding the resulting equations and enforcing the second
jump condition (1.4) weakly.

Find u in H1(Ω1 ∪ Ω2) such that u = g on ∂Ω and [u] = an on ΓI satisfying
∫

Ω

β∇u · ∇v dx =
∫

Ω

f v dx +
∫

ΓI

b v ds ∀v ∈ H1
0 (Ω). (1.5)

Here, for a bounded open set G in R2, if {Dj}m
j=1 are its connected components, we

denote by Hk(G) the Sobolev space of functions w such that w|Dj∈ Hk(Dj), with
the usual broken norm and semi-norm. The source term f is assumed to be in L2(Ω),
a and g are taken in H3/2(ΓI) and H3/2(∂Ω), respectively, and b is in H1/2(ΓI). We
will denote by C a generic constant depending on Ω, ΓI and β. Further dependencies
will be denoted by subscripts. We cite without proof the following result obtained
in [15] that asserts that problem (1.5) is well-posed:

Theorem 1.1. There exists a unique solution of the weak problem (1.5) in
H2(Ω1 ∪ Ω2) which satisfies

‖u‖2,Ω1∪Ω2 ≤ C
(
‖f‖0,Ω + ‖g‖ 3

2 ,ΓI
+ ‖a‖ 3

2 ,ΓI
+ ‖b‖ 1

2 ,ΓI

)
. (1.6)

2. Discontinuous Galerkin weak formulation. We start by rewriting the
problem (1.1)–(1.4) into a first order system as it is usually done in DG methods for
elliptic problems. We introduce the auxiliary variable q in the formulation to obtain
the equivalent problem:

−∇ ·
(√

β q
)

= f in Ω1 ∪ Ω2, (2.1)

q = ∇
(√

β u
)

in Ω1 ∪ Ω2, (2.2)

u = g on ∂Ω, (2.3)
[u] = an across ΓI, (2.4)[√

β q
]

= b across ΓI. (2.5)

Next, we consider Th =
⋃

K, a quasi-uniform triangulation of the domain Ω, and we
denote by Γ the union of the boundaries of the elements K in Th. We assume that ΓI

is included in Γ (the triangulation is then said to be fitted to the interface). We will
write Γ0 for the set of interior edges in Γ that are not interface edges. Therefore, we
have the decomposition Γ = Γ0 ∪ ΓI ∪ ∂Ω.

In the first part of this section, we show that the jumps in u and its normal
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derivative appear naturally when considering the discontinuous Galerkin formulation
of the first order system. This enables us to enforce both jump conditions weakly.
In the second part, we show that this amounts to choose fluxes that incorporate the
jumps at the interface. The resulting weak problem takes the form of a DG formulation
for a standard elliptic problem with a special choice of fluxes. The analysis of the
discretization of this weak formulation is the subject of the next section.

2.1. Weakly enforced jump conditions. We start with equation (2.1), multi-
plying it by a test function v, integrating the result over K ∈ Th and using integration
by parts to obtain

∫

K

∇v ·
√

β q dx−
∫

∂K

v
√

β q · nK ds =
∫

K

f v dx. (2.6)

Summing over all elements K in Th, we get

∑

K∈Th

∫

K

∇v ·
√

β q dx−
∑

K∈Th

∫

∂K

v
√

β q · nK ds =
∫

Ω

f v dx. (2.7)

We need the following result in [2, eq. (3.3)] in order to transform integrals like
the second term in the above equality:

Proposition 2.1. If ϕ and Ψ are functions in H1(Th) and [H1(Th)]2, respec-
tively, then

∑

K∈Th

∫

∂K

ϕΨ · nK ds =
∫

Γ

[ϕ] · {Ψ} ds +
∫

Γ0∪ΓI

{ϕ} [Ψ] ds.

We apply this result to (2.7) setting ϕ := v and Ψ :=
√

β q to obtain
∫

Ω

∇v ·
√

β q dx−
∫

Γ

[v] ·
{√

β q
}

ds−
∫

Γ0∪ΓI

{v}
[√

β q
]

ds =
∫

Ω

f v dx.

Finally, incorporating the jump condition (2.5), we get

∫

Ω

∇v ·
√

β q dx−
∫

Γ

[v] ·
{√

β q
}

ds−
∫

Γ0

{v}
[√

β q
]

ds

=
∫

Ω

f v dx +
∫

ΓI

b {v} ds. (2.8)

The last step consists in introducing a numerical trace that will approximate the trace
of
√

β q on Γ. We use the local discontinuous Galerkin (LDG) trace2 [6] given below:

√̃
β q e(u,q) =

{√
β q

}
− αe ([u]) +





0 if e ⊆ Γ0

αe (an) if e ⊆ ΓI

αe (gn) if e ⊆ ∂Ω
.

The penalization term αe is defined for Ψ in R2 by

αe (Ψ) =
η

he
Ψ,

2At this point, one could choose any consistent and conservative DG trace, but we favor the LDG
trace because it leads to a symmetric discretization with appropriate stability properties (see [5]).
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where η is the penalization parameter and he the length of edge e. The penalization
term has been modified for interface edges in order to take into account the discon-
tinuity in u. We also assume that the term βe in the LDG method (see [6]) is taken
to be 0. We omit it for the sake of clarity since the stability of the standard LDG
method does not depend upon it. This numerical trace is conservative, which means
it is single-valued on Γ, and consequently

[√̃
β q

]
= 0 and

{√̃
β q

}
=

√̃
β q.

Then (2.8) becomes
∫

Ω

∇v
√

β q dx−
∫

Γ

[v] ·
√̃

β q ds =
∫

Ω

f v dx +
∫

ΓI

b {v} ds. (2.9)

We now proceed in the same way for (2.2), that is, we multiply it by a test function
r, integrate over K and use integration by parts to obtain

∫

K

q · r dx +
∫

K

u∇ ·
√

β r dx−
∫

∂K

u
√

β r · nK ds = 0. (2.10)

Next, summing over all K in Th and using Proposition 2.1 with ϕ := u and Ψ :=
√

β r,
we get

∫

Ω

q · r dx +
∫

Ω

u∇ ·
√

β r dx−
∫

Γ

[u] ·
{√

β r
}

ds−
∫

Γ0∪ΓI

{u}
[√

β r
]

ds = 0.

Incorporating the jump condition (2.4), we obtain

∫

Ω

q · r dx +
∫

Ω

u∇ ·
√

β r dx−
∫

Γ0∪∂Ω

[u] ·
{√

β r
}

ds

−
∫

Γ0∪ΓI

{u}
[√

β r
]

ds =
∫

ΓI

an ·
{√

β r
}

ds.

Finally, we replace u on the edges by the LDG numerical trace:

ũe(u) =

{
{u} if e ⊆ Γ0 ∪ ΓI

g if e ⊆ ∂Ω
.

Here again ũ is conservative so that [ũ] = 0 on Γ0 ∪ ΓI, [ũ] = gn on ∂Ω, and {ũ} =
ũ on Γ. Therefore, the last equation can be rewritten as

∫

Ω

q · r dx +
∫

Ω

u∇ ·
√

β r dx−
∫

Γ0∪ΓI

ũ
[√

β r
]

ds

=
∫

ΓI

an ·
{√

β r
}

ds +
∫

∂Ω

g n ·
{√

β r
}

ds. (2.11)

2.2. Modification of the numerical traces. In this section we answer the
question on how to modify ũ and

√̃
β q so that when we replace u and

√
β q in

the edge integrals in (2.6) and (2.10) by their modified numerical traces, we obtain
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Fig. 2.1: Consistency of û

two equations that lead to (2.9) and (2.11), respectively. It is easy to check using
Remark 2.3 that a possible choice of traces is given by

ûK,e(u) = ũe(u) +





0 if e ⊆ Γ0 ∪ ∂Ω
1
2

a if e ⊆ ΓI and K ⊆ Ω1

−1
2

a if e ⊆ ΓI and K ⊆ Ω2

and

√̂
β qK,e(u,q) =

√̃
β qe(u,q) +





0 if e ⊆ Γ0 ∪ ∂Ω
1
2

bn if e ⊆ ΓI and K ⊆ Ω1

−1
2

bn if e ⊆ ΓI and K ⊆ Ω2

.

Note that these traces are identical to the LDG traces whenever the edge e is not a
part of the interface. If e is a part of the interface, then a term independent of u and
q is added to take into account the prescribed discontinuities. This choice of fluxes
satisfies a certain form of consistency that is contained in the following remarks.

Remark 2.2. If u is the solution of the problem as given by Theorem 1.1 then

ûK,e (u) = u,
√̂

β qK,e

(
u,

√
β∇u

)
= β∇u when e ⊆ Γ0 ∪ ∂Ω,

ûK,e (u) = u|Ωi|e ,
√̂

β qK,e

(
u,

√
β∇u

)
· n = (β∇u · n) |Ωi|e when e ⊆ ΓI .

These relations can be checked by straightforward computations, and Figure 2.1 gives
a graphical interpretation.

Remark 2.3. It follows directly from the definition of û and
√̂

β q that

[û] =





0 on Γ0

g n on ∂Ω
an on ΓI

and
[√̂

β q
]

=





0 on Γ0√
β q · n on ∂Ω

b on ΓI

.
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In addition, {û} = {u} on Γ0 ∪ ΓI and

{√̂
β q

}
=

{√
β q

}
− αe ([u]) +





0 on Γ0

αe (g n) on ∂Ω
αe (an) on ΓI

.

With this definition of numerical traces, the weak formulation takes the standard
form:

Find u in H1(Th) and q in
[
H1(Th)

]2 such that for all K in Th

∫

K

q · r dx +
∫

K

u∇ ·
√

β r dx−
∫

∂K

û
√

β r · nK ds = 0 ∀r ∈ [
H1(K)

]2
,

∫

K

∇v ·
√

β q dx−
∫

∂K

v
√̂

β q · nK ds =
∫

K

f v dx ∀v ∈ H1(K).

3. Primal form and error estimates. In this section, we analyze the DG
discretization of the weak problem obtained in the previous section. As usual in DG
methods, we approximate H1(Th) and [H1(Th)]2 by the spaces Vh and Mh defined
by

Vh = {v ∈ L2(Ω) : v|K∈ P(K) for all K in Th},
Mh = {r ∈ [

L2(Ω)
]2

: r|K∈ [P(K)]2 for all K in Th},

where P(K) = Pl(K) is the space of polynomial functions of degree at most l ≥ 1 on
K. The discrete problem is then given by:

Find uh in Vh and qh in Mh such that for all K in Th

∫

K

qh · r dx +
∫

K

uh∇ ·
√

β r dx−
∫

∂K

û
√

β r · nK ds = 0 ∀r ∈ [P(K)]2 , (3.1)
∫

K

∇v ·
√

β qh dx−
∫

∂K

v
√̂

β q · nK ds =
∫

K

f v dx ∀v ∈ P(K). (3.2)

We first derive the primal form associated with this discretization. Since it takes
basically the same form as a DG discretization for a standard elliptic problem, the
primal form is easily obtained within the framework developed in [2]. Moreover, only
slight modifications of the proof in [2] of boundedness and stability of the LDG method
are required to show our main result stated below.

Theorem 3.1. If uh ∈ Vh is the piecewise linear solution of (3.1) and (3.2) and
u ∈ H2(Ω1 ∪ Ω2) is the exact solution as given by Theorem 1.1, then

‖u− uh‖0,Ω1∪Ω2 ≤ C h2
(
‖f‖0,Ω + ‖g‖ 3

2 ,ΓI
+ ‖a‖ 3

2 ,ΓI
+ ‖b‖ 1

2 ,ΓI

)
.

The proof of this theorem will be given in the last part of this section.
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3.1. Primal form. We proceed as in Section 2.1 using Proposition 2.1 for equa-
tions (3.1) and (3.2) to obtain

∫

Ω

qh · r dx +
∫

Ω

uh∇ ·
√

β r dx−
∫

Γ

[û] ·
{√

β r
}

ds−
∫

Γ0∪ΓI

{û}
[√

β r
]

ds = 0,

(3.3)∫

Ω

∇v ·
√

β qh dx−
∫

Γ

[v] ·
{√̂

β q
}

ds−
∫

Γ0∪ΓI

{v}
[√̂

β q
]

ds =
∫

Ω

f v dx.

(3.4)

We recall the following integration by parts formula from [2, eq. (3.6)]:
Proposition 3.2. If ϕ and Ψ are functions in H1(Th) and [H1(Th)]2, respec-

tively, then

−
∫

Ω

ϕ∇ ·Ψ dx =
∫

Ω

∇ϕ ·Ψ dx−
∫

Γ

[ϕ] · {Ψ} ds−
∫

Γ0∪ΓI

{ϕ} [Ψ] ds.

We apply this proposition with ϕ := uh and Ψ :=
√

β r to (3.3) to obtain
∫

Ω

qh · r dx =
∫

Ω

∇uh ·
√

β r dx +
∫

Γ

[û− uh] ·
{√

β r
}

ds. (3.5)

where we have used the fact that {û(uh)− uh} = 0 on Γ0 ∪ ΓI by definition of û. We
need the following lifting operator l to get rid of the edge integral in (3.5).

Definition 3.3. For τ in
[
L2(Γ)

]2, we define l(τ) to be the function in Mh such
that

∫

Ω

l(τ) ·Ψ dx = −
∫

Γ

τ · {Ψ} ds for all Ψ in Mh.

Setting τ := [û− uh] and Ψ :=
√

β r, we can rewrite (3.5) as
∫

Ω

qh · r dx =
∫

Ω

∇uh ·
√

β r dx−
∫

Ω

l ([û− uh]) ·
√

β r dx.

For this equation to be true for all r in Mh, we must have

qh =
√

β (∇uh − l ([û− uh])) . (3.6)

Finally, substituting (3.5) into (3.4) with r :=
√

β∇v, we obtain

∫

Ω

β∇uh · ∇v dx +
∫

Γ

[û− uh] · {β∇v} ds−
∫

Γ

[v] ·
{√̂

β q
}

ds

−
∫

Γ0∪ΓI

{v}
[√̂

β q
]

ds =
∫

Ω

f v dx. (3.7)

Now using Remark 2.3 along with (3.6) and the Definition 3.3 of the lifting operator
l, (3.7) can be further simplified to lead to the primal formulation of our problem:

Find uh in Vh such that

A(uh, v) = L(v) ∀v ∈ Vh
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where

A(u, v) =
∫

Ω

β∇u · ∇v dx−
∫

Γ

([u] · {β∇v}+ [v] · {β∇u}) ds

+
∫

Ω

β l ([u]) · l ([v]) dx + α ([u] , [v]) (3.8)

and

L(v) =
∫

Ω

f v dx +
∫

ΓI

b {v} ds−
∫

ΓI

an · {β∇v} ds−
∫

∂Ω

gn · {β∇v} ds

+
∫

Ω

β l (ān + ḡn) · l ([v]) dx− α (ān + ḡn, [v]) (3.9)

with the jump operator α defined by

α(Ψ1,Ψ2) =
∑

e∈Γ

∫

e

η

he
Ψ1 ·Ψ2.

In (3.9), ā and ḡ are extensions of a and g, respectively, to the whole Γ obtained by
setting ā := 0 on Γ \ ΓI and ḡ := 0 on Γ \ ∂Ω, so that we can use the lifting operator
l and the jump operator α.

3.2. Boundedness and stability. Because the bilinear form A is the same as
the bilinear form of the LDG method in [2] with β := 1, most of the analysis carried
in [2] works for A as well. However, special care should be taken in order to have the
boundedness of A in a space that includes the exact solution u given by Theorem 1.1
if we wish to obtain a priori error estimates. We consider the space X given by

X = Vh + H2(Ω1 ∪ Ω2)

with the norm

‖v‖2X = |v|21,Th
+

∑

K∈Th

h2
K |v|22,K + |v|2∗

where

|v|2∗ =
∑

e∈Γ

h−1
e ‖ [v] ‖20,e.

Noticing that |v|∗ = 0 implies v|∂Ω= 0 and [v] = 0 on Γ0 ∪ ΓI, from which one can
easily prove that v ∈ H1(Ω), we conclude that ‖ · ‖X is indeed a norm on X. We will
also need the following norm on Vh:

‖v‖2h = |v|21,Th
+ |v|2∗ .

We will obtain stability on Vh in ‖·‖h and boundedness on X in ‖·‖X (note that these
norms are equivalent on the approximation space Vh as can be seen from a standard
inverse inequality). We start to show that A is a bounded bilinear functional for this
last norm, proceeding term by term. It is clear that for u, v in X

∣∣∣∣
∫

Ω

β∇u · ∇v dx

∣∣∣∣ ≤ C |u|1,Th
|v|1,Th

(3.10)
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and

|α ([u] , [v])| ≤ η |u|∗ |v|∗ . (3.11)

We need the following lemma in order to bound the third term in (3.8):
Lemma 3.4. If Ψ is in

[
L2(Γ)

]2 then

‖l(Ψ)‖20,Ω ≤ C
∑

e∈Γ

h−1
e ‖Ψ‖20,e.

Proof. Using the arguments in [2, p. 1763], we obtain the results.
Applying this lemma to Ψ := [v] gives

‖l([v])‖0,Ω ≤ C |v|∗ , (3.12)

which implies
∣∣∣∣
∫

Ω

l ([u]) · l ([v]) dx

∣∣∣∣ ≤ C |u|∗ |v|∗ . (3.13)

For the remaining term, we need the following inequality in [1, eq. (2.5)] for a
function ϕ in H2(K):

‖∂nϕ‖20,e ≤ C
(
h−1

e |ϕ|21,K + he |ϕ|22,K

)
, (3.14)

where C depends on the minimum angle bound of the mesh. First, observe that

|{∇v} · [u]| = |{∂nv}| |[u]|
because [u] is collinear to n, and therefore

∣∣∣∣
∫

Γ

{β∇v} · [u] ds

∣∣∣∣ ≤ C
∑

e∈Γ

∫

e

|{∂nv}| |[u]| ds

where β has been incorporated in the constant C. Next, apply Cauchy-Schwarz
inequality to get

∣∣∣∣
∫

Γ

{β∇v} · [u] ds

∣∣∣∣ ≤ C
∑

e∈Γ

‖ {∂nv} ‖0,e‖ [u] ‖0,e

≤ C
∑

e∈Γ

(‖∂n(v|K)‖0,e + ‖∂n(v|K′)‖0,e) ‖ [u] ‖0,e

where K and K ′ are the two adjacent triangles with common edge e. The last in-
equality results from the definition of {·}. Using (3.14), it follows that

∣∣∣∣
∫

Γ

{β∇v} · [u] ds

∣∣∣∣ ≤ C
∑

e∈Γ


‖ [u] ‖0,e

∑

K∈Th,e⊂∂K

(
h−1

e |v|21,K + he |v|22,K

) 1
2


 .

Factorizing h−1
e , noting that he ≤ hK (hK being the maximum of all he when e

belongs to ∂K) and using the Cauchy-Schwarz inequality again, we finally obtain
∣∣∣∣
∫

Γ

{β∇v} · [u] ds

∣∣∣∣
2

≤ C

(∑

e∈Γ

h−1
e ‖ [u] ‖20,e

)( ∑

K∈Th

|v|21,K + h2
K |v|22,K

)

≤ C |u|2∗ ‖v‖2X .

(3.15)
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Combining (3.10), (3.11), (3.13) and (3.15), we have the boundedness of A in X:

∀u, v ∈ X |A (u, v)| ≤ C‖u‖X‖v‖X .

We now recall from [2] how to obtain the coercivity of A in Vh for arbitrary η > 0.
First, we remark that for any v in Vh, we have

A (v, v) =
∫

Ω

β |∇v + l([v])|2 dx + α([v] , [v]).

Hence,

A (v, v) ≥ C

(
|v|21,Th

+
∫

Ω

∇v · l([v]) dx + ‖l([v])‖20,Ω

)
+ η |v|2∗ .

For any 0 < ε < 1, apply the arithmetic-geometric mean inequality to the second
term in the parenthesis to obtain

A (v, v) ≥ C

(
|v|21,Th

(1− ε) + ‖l([v])‖20,Ω

(
1− 1

ε

))
+ η |v|2∗ ,

and using (3.12) we have

A (v, v) ≥ C |v|21,Th
(1− ε) +

(
C

(
1− 1

ε

)
+ η

)
|v|2∗ .

Since the above inequality is valid when ε is taken arbitrarily close to 1, we conclude
the stability of A in Vh for any η > 0:

A (v, v) ≥ Cη‖v‖2h.

3.3. Error estimates. We first start by noting that if u in H2(Ω1 ∪ Ω2) is the
exact solution of the problem as given by Theorem 1.1, then we have the consistency
result:

A (u, v) = L(v) ∀v ∈ Vh.

This can be easily obtained using Remark 2.2. Hence the Galerkin orthogonality
property holds:

A (u− uh, v) = 0 ∀v ∈ Vh.

We quote the following approximation property from [2, eq. (4.22)]:
Proposition 3.5. For p ≥ 0, if u is a function in Hp+1(Th) and uI is its

piecewise polynomial interpolant of degree at most p, then

‖u− uI‖X ≤ Chp |u|p+1,Th

where C depends on the minimum angle of the elements in the partition Th.
If we assume that the solution u is in Hp+1(Th) for some p ≥ 1 then

C1‖uI − uh‖2X ≤ A(uI − uh, uI − uh) = A(uI − u, uI − uh)
≤ C2‖uI − u‖X‖uI − uh‖X .



12 G. Guyomarc’h and C.-O. Lee

Hence,

‖u− uh‖X ≤ ‖u− uI‖X + ‖uI − uh‖X

≤ C‖u− uI‖X ,

and finally by Proposition 3.5, we have

‖u− uh‖X ≤ Chp |u|p+1,Th
. (3.16)

Using the standard duality argument, we obtain L2-error estimates. If ϕ is the solution
of

{
−∇ · β∇ϕ = u− uh in Ω

ϕ = 0 on ∂Ω

then it must satisfy

A (ϕ, v) =
∫

Ω

(u− uh) v dx ∀v ∈ X

because A is in fact the bilinear form for the standard elliptic problem (without jump
conditions). We denote by ϕI the piecewise linear interpolant of ϕ, setting v := u−uh

in the above inequality, we have

‖u− uh‖20,Ω = A(ϕ, u− uh)

= A(ϕ− ϕI , u− uh)
≤ C‖ϕ− ϕI‖X‖u− uh‖X (boundedness of A in X)
≤ Ch |ϕ|2,Ω ‖u− uh‖X (Proposition 3.5)

≤ Ch‖u− uh‖0,Ω‖u− uh‖X (elliptic regularity)

≤ Ch2‖u− uh‖0,Ω |u|2,Th
(see (3.16))

≤ Ch2‖u− uh‖0,Ω |u|2,Ω1∪Ω2
. (u is in H2(Ω1 ∪ Ω2))

Theorem 3.1 is then a direct consequence of this last inequality and the regularity
estimate (1.6).

4. Numerical experiments. We performed a number of numerical experiments
to check the theoretical order of convergence. We present some of the examples pre-
sented in [12] and [8]. The triangular meshes used in these simulations were generated
using the constraint Delaunay triangulation capabilities of the software Triangle which
can be obtained freely on its web site [16].

4.1. Standard example. This example can be found in [12] and was actually
proposed in [11]. It shows the case of a rather complex interface. Here and in the
following examples, we give only the domain, the description of the interface as a
parametric curve, the coefficient β in both Ω1 and Ω2, and the exact solution u. It is
then easy to derive the corresponding jump conditions a and b, the Dirichlet condition
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Fig. 4.1: Numerical solution for Example 4.1

Table 4.1: Convergence of the method for Example 4.1

Element
Degrees of
freedom

Relative L2-error in u Relative H1-error in u

Error Reduction order Error Reduction order

P1

222 9.1889e-03 - 1.1085e-01 -

792 1.5478e-03 2.569 4.4439e-02 1.318

3066 4.2667e-04 1.859 2.2576e-02 0.977

12246 1.1081e-04 1.945 1.1329e-02 0.994

48840 2.6515e-05 2.063 5.4103e-03 1.066

P2

444 2.3174e-04 - 5.5694e-03 -

1584 3.1645e-05 2.872 1.6743e-03 1.733

6132 6.5529e-06 2.271 6.2315e-04 1.425

24492 7.6568e-07 3.097 1.5223e-04 2.033

97680 8.3150e-08 3.202 3.5610e-05 2.095

g and the source term f .

Ω = [−1, 1]× [0, 3]

ΓI(θ) =
(

0.6 cos θ − 0.3 cos 3θ
1.5 + 0.7 sin θ − 0.07 sin 3θ + 0.2 sin 7θ

)
for θ in [0, 2π]

u(x, y) =
{

ex(y2 + x2 sin y) in Ω1

−(x2 + y2) in Ω2

β =
{

1 in Ω1

10 in Ω2

We also give in Figure 4.1 a plot of the numerical solution. The convergence results
are gathered in Table 4.1. We used a sequence of mesh where each time the number
of elements was multiplied by 4 approximately. This roughly amounts to divide the
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Fig. 4.2: Numerical solution for Example 4.2

Table 4.2: Convergence of the method for Example 4.2

Element
Degrees of
freedom

Relative L2-error in u Relative H1-error in u

Error Reduction order Error Reduction order

P1

318 2.0171e-02 - 3.4851e-01 -

1332 4.5803e-03 2.138 1.4959e-01 1.220

5250 1.1583e-03 1.983 7.5754e-02 0.981

21276 2.5614e-04 2.177 3.6423e-02 1.056

84390 6.4070e-05 1.999 1.8144e-02 1.005

P2

636 2.9975e-03 - 8.6147e-02 -

2664 2.5744e-04 3.541 1.8791e-02 2.196

10500 3.2786e-05 2.973 4.8007e-03 1.968

42552 4.0515e-06 3.016 1.1864e-03 2.016

168780 4.9652e-07 3.028 2.9531e-04 2.006

mesh size h by 2. We note that the results are as expected, we get order 2 in the
L2-norm with piecewise linear approximation and order 3 with piecewise quadratic
approximation, and one order less in the H1-norm.

4.2. Strong discontinuity in the coefficient β. This example is adapted
from [8]. We consider a strong discontinuity in the coefficient β across the interface
ΓI. This leads to a poorly conditioned linear system that requires significantly more
preconditioned conjugate gradient iterations to converge. However, as can be seen
from Table 4.2, the orders of convergence are the same and agree with the theoretical
analysis.
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Cell �


2

1

�I

Fig. 5.1: Model of a cell in an electric field

Ω = Circle of radius 1 with center at origin

ΓI = Circle of radius
1
2

with center at origin

u(x, y) =
{

2y2 − 2x2 + 2 in Ω1

(sin 3x)2 in Ω2

β =
{

1000 in Ω1

1 in Ω2

5. Computation of the transmembrane voltage of a biological cell. We
use our method for the computation of the induced voltage in a cell when a strong
electric pulse is applied. This has important applications in the study of electropo-
ration, a widely-use technique for the introduction of chemical species in biological
cells. After briefly describing the electroporation phenomenon, we present the math-
ematical model used in our simulation and suggest a discretization that reduces this
model to a sequence of elliptic interface problems that can be solved by our method.
Finally, we present numerical results for the potential induced by a spherical cell when
exposed to a rectangular pulse.

5.1. Electroporation. The goal of electroporation is to make the cell mem-
brane temporarily permeable to allow chemical species (drugs or engineered genes) in
the extracellular medium to pass through and enter the cytoplasm. This is achieved
by exposing the cell to a strong electric pulse (rectangular or exponentially decaying).
This process is illustrated in Figure 5.1. The fundamental biophysics of electropo-
ration is not yet completely understood, and mathematical models are still under
development. Recent models are difficult to solve analytically and therefore require
numerical experiments for their validation. A concise review of electroporation and a
rather comprehensive source of references can be found in [7].

5.2. A mathematical model. Our main interest is the study of the time evo-
lution of the sub-threshold transmembrane potential (the discontinuity of the electric
potential across the membrane). That is, we assume that electroporation has not yet
started and we may only consider the physical behavior of the cell. Indeed, when
we expose a cell to an electric pulse Ea, the induced electric field Ei is such that
the potential Vi, from which this electric field is derived, is discontinuous across the
membrane. When this discontinuity reaches a certain threshold, the electrical behav-
ior of the cell membrane is no longer one of a conductor because of the formation
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Table 5.1: Electrical and geometrical parameters

Symbol Value Definition

r 10−6 m Cell radius

Rm 1.66 10−2 Ω ·m2 Membrane resistivity

Cm 0.88 10−2 F/m2 Membrane capacitance

σ1 3.00 10−1 S/m Cytoplasmic conductivity

σ2 3.00 10−1 S/m Extracellular medium conductivity

Ea 105 V/m Amplitude of electric pulse

of nano-scale pores in the membrane. However, until this critical time, the Maxwell
theory of electromagnetism can be applied to determine Ei.

Due to a significant difference of magnitude between the membrane thickness d
(typically of the order of 5nm) and the cell radius r (around 10µm for a spherical
cell), it is advantageous to consider a macroscale model of the membrane. In the limit
case of a very thin membrane (d ¿ r), the macroscale model [4] is given by

−∇ · σ∇V = 0 in Ω1 ∪ Ω2, (5.1)
V = Va on ∂Ω, (5.2)

[σ∂nV ] = 0 on ΓI, (5.3)

Cm
∂ [V ]
∂t

+
1

Rm
[V ] = −σ1 ∂n (V |Ω1) n on ΓI, (5.4)

[V ](t=0) = 0 on ΓI, (5.5)

where V is the electric potential (the sum of the applied potential Va and the induced
potential Vi), σ is the conductivity and is divided into σ1, the cytoplasmic conductiv-
ity, and σ2, the extracellular medium conductivity, Cm is the membrane capacitance,
and Rm is the membrane resistivity. Here we consider that ∂Ω is sufficiently far from
the cell where we may assume that the applied electrical field Ea is not perturbed
and we can take the Dirichlet boundary condition V = Va on ∂Ω where Va is such
that −∇Va = Ea. The values for electrical and geometrical parameters are given in
Table 5.1 and are adapted from [9]. Note that (5.1) is the conservation of current

∇ · j =
∂ρ

∂t
(5.6)

in the absence of sources (the right-hand side of (5.6) is taken to be zero), where
j = σE is the electric current and ρ the charge density. The current j is continuous
across the membrane as expressed by (5.3) but the potential is discontinuous and
the discontinuity is driven by the evolution equation (5.4). This equation is strongly
coupled with the Laplace equation (5.1) through its right-hand side and cannot be
solved independently.

5.3. Discretization. The problem (5.1)–(5.4) can be viewed as a sequence of
elliptic problems with interface, provided we discretize (5.4) with a forward Euler
time-step:

Cm

[
V p+1

]− [V p]
∆t

+
1

Rm
[V p] = −σ1 ∂n (V p|Ω1) n. (5.7)
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Fig. 5.2: Cell response to a rectangular electric pulse

We start by solving (5.1) with our method using the initial condition (5.5) to get
V 0, then use V 0 to update the jump condition (5.7) and get

[
V 1

]
, and again solve

the Laplace problem with this new interface condition to obtain V 1, and so on. As
mentioned in the previous section, for the Dirichlet condition (5.2) to be valid, the
boundary ∂Ω should be chosen far enough from the cell, hence we choose a mesh
with width 5 times larger than the diameter of the cell with refinement around the
membrane. Another important choice is the time-step ∆t, we used the same rules as
in [14] which results in a choice of time-step of 0.3ns when the time constant of the
electric pulse is about 5µs.

5.4. Numerical results. In the case of a spherical cell exposed to a rectangular
electric pulse, it is possible to obtain the exact solution for the time evolution of the
transmembrane voltage [V ] by means of the Laplace transform [9]. We computed
numerically the potential V for a rectangular pulse of duration 5µs and compared
our result with the exact solution in [9] (see Figure 5.2). The relative error in the
maximum norm was 0.0154, and 0.0131 in the L2-norm. This suggests that despite
the fact that we used a straightforward discretization in time, the results are accurate
provided we choose a small time-step.

In Figure 5.3, we represent the induced potential (V − Va) at different times
during the polarization of the cell. We can clearly see that the maximum values of
transmembrane potential (where electroporation would occur) are at the cathodic and
anodic poles, this fact has also been observed experimentally. In fact it can be shown
analytically that the transmembrane voltage has a distribution proportional to cos θ.

6. Conclusion. We presented a discontinuous Galerkin method for elliptic in-
terface problems. Assuming that the interface lies on the mesh lines, we showed that
the method is symmetric and optimally convergent in the L2-norm, and confirmed the
theoretical results by numerical experiments. In the case of static interface problems,
there are several reasons why one may prefer a DG type approach over finite difference
schemes. Firstly, just like boundary conditions, interface conditions play a significant
role in the physical phenomenon. On the one hand, finite difference schemes usually
have poor adaptivity and may fail to capture such phenomena completely. On the
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t = 0.1ns t = 0.5µs t = 4.0µs

Fig. 5.3: Induced potential for a rectangular pulse

other hand, DG methods allow great flexibility in mesh adaptivity making it easy to
refine the mesh whenever necessary. This suggests that DG methods may be valuable
and may provide better solutions than standard schemes to that respect. Secondly,
finite difference schemes are to our knowledge limited so far to second order accuracy
while the method presented here provides higher order approximation as suggested
by numerical experiments. Even though this method may be unpractical for moving
interface problems, we have seen that interesting problems arise in computational
biology in the form of elliptic interface problems with dynamic boundary conditions
like the mathematical models of electroporation. The simulation made in this paper
considered a model that did not include the biological phenomenon itself which occurs
only when the threshold for the transmembrane potential is reached. However, recent
mathematical models that take into account the formation of pores in the membrane
take the same form as the one we studied. Furthermore, the discretization suggested
in this paper can be easily extended to such models.

Acknowledgments. We would like to thank professor Schewchuk to make freely
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which we generated all triangulations used in our experiments.
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