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Abstract. Sharp type and cotype of Lebesgue spaces and Schatten classes
with respect to quantized orthonormal systems are investigated. This paper
complements the question of sharp Fourier type and cotype with respect to
compact groups partially solved by recent paper of J. Garcia-Cuerva et al.

1. Introduction

Orthonormal systems can be used to classify Banach spaces according to their
geometric properties. Let (Ω,M, µ) be a probability space and A = {a1, a2, · · · } ⊆
L2(Ω) be an orthonormal system. For 1 ≤ p ≤ 2 and 2 ≤ p′ ≤ ∞ with 1

p
+ 1

p′
= 1,

a Banach space X is said to be A-type p if

[ ∫

Ω

∥∥∥∥∥

n∑

k=1

ak(ω)xk

∥∥∥∥∥

p′

X

dµ(ω)
] 1

p′

≤ C
[ n∑

k=1

‖xk‖
p

X

] 1

p

and A-cotype p′ if

[ ∫

Ω

∥∥∥∥∥

n∑

k=1

ak(ω)xk

∥∥∥∥∥

p

X

dµ(ω)
] 1

p

≥ C ′
[ n∑

k=1

‖xk‖
p′

X

] 1

p′

for some C,C ′ > 0 and any finite subset {x1, x2, · · · } ⊆ X.
In other words, X has A-type p if

sup
n∈N

∥∥F−1
A ⊗ IE

∥∥
L(lnp (X),Lp′ (Ω,X))

< ∞

and A-cotype p′ if

sup
n∈N

‖FA ⊗ IE‖L(Ln
p′

(Ω,X),lnp (X)) < ∞,

where Ln
p (Ω, X) = span{a1, a2, · · · , an} ⊗ X ⊆ Lp(Ω, X) and

FA(f)(n) =

∫

Ω

f(ω)an(ω)dµ(ω) and F−1
A ((xk))(ω) =

∑

k

ak(ω)xk
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for appropriate f : Ω → C and finite sequence (xk) in X. When we consider the
classical Rademacher system R = {r1, r2, · · · }, where rk(t) = sign(sin(2kπt)), t ∈
[0, 1] and k = 1, 2, · · · , we get the usual type and cotype, and the trigonometric
system E = {e2πin : n ∈ Z} gives the Fourier type([5]).

As a noncommutative analogue of the above, the notion of type and cotype of
operator spaces with respect to quantized orthonormal systems was introduced
and investigated in the recent paper [2] of J. Garcia-Cuerva et al.

Definition 1. For a probability space (Ω,M, µ) with no atoms and a family
of positive integers dΣ = {dπ : π ∈ Σ} indexed by Σ, a collection of matrix-
valued functions A = {ϕπ : Ω → Mdπ

}π∈Σ with measurable entries is said to
be a uniformly bounded quantized orthonormal system(u.b.q.o.s. for short) if the
following conditions holds:

(1)

∫

Ω

ϕπ
ijϕ

π′

i′j′(ω)dµ(ω) =
1

dπ

δπ,π′δi,i′δj,j′ ;

(2) sup
π∈Σ

‖ϕπ‖
L∞(µ,S

dπ
∞ ) = MA < ∞.

A typical example of u.b.q.o.s. is the dual object Ĝ of a compact group G with

Σ = Ĝ, dπ is the dimension of a irreducible representation π ∈ Ĝ of G and ϕπ = π.
Another important example is the quantized Rademacher system RΣ associated
to the index set Σ in Definition 1, which is the collection of independent random
variables επ : G → O(dπ) where π ∈ Σ and the distribution of επ is exactly the
normalized Haar measure on the orthogonal group O(dπ).

Now for a u.b.q.o.s. A we consider the following transforms as in the commu-
tative case:

FA(f)(π) =

∫

Ω

f(ω)ϕπ(ω)∗dµ(ω) and F−1
A (A)(ω) =

∑

π∈Σ

dπtr(Aπϕπ(ω))

for appropriate f : Ω → C and A ∈
∏

π∈Σ Mdπ
.

Definition 2. For 1 ≤ p ≤ 2 and 2 ≤ p′ ≤ ∞ with 1
p

+ 1
p′

= 1, we say that an

operator space E has A-type p if

‖E|ATp‖ = sup
finiteΓ⊆Σ

∥∥F−1
A ⊗ IE

∥∥
cb(Lp(Γ,E),Lp′(Ω,E))

< ∞

and that E has A-cotype p′ if

‖E|ACp′‖ = sup
finiteΓ⊆Σ

‖FA ⊗ IE‖cb(LΓ
p (Ω,E),Lp′ (Γ,E)) < ∞,
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where LΓ
p (Ω, E) = span{ϕπ

ij : π ∈ Γ} ⊗ E ⊆ Lp(Ω, E) and Lp(Γ, E) is the vector-
valued noncommutative Lp-space defined as follows:

Lq(Γ, E) = {A ∈
∏

π∈Γ

Mdπ
⊗ E : ‖A‖Lq(Γ,E) =

( ∑

π∈Γ

dπ ‖A
π‖q

S
dπ
q (E)

) 1

q

< ∞}

for 1 ≤ q < ∞ and

L∞(Γ, E) = {A ∈
∏

π∈Γ

Mdπ
⊗ E : ‖A‖L∞(Γ,E) = sup

π∈Γ
‖Aπ‖

S
dπ
∞ (E) < ∞}.

See chapter 2 of [6] for the details of Lp(Γ, E).
It is well known that lp and Schatten von-Neumann class Sp (1 ≤ p < ∞) has

(Rademacher) type min(p, 2) and cotype max(2, p′) and can not have better type
and cotype as Banach spaces, that is, min(p, 2) and max(2, p′) are ‘sharp’ type
and cotype of lp and Sp respectively. When p = ∞, l∞ and S∞ does not have
nontrivial type and cotype. It is also well known that lp and Sp (1 ≤ p ≤≤ ∞)
have ‘sharp’ Fourier type min(p, p′).([5]) Thus it is natural to be interested in
whether we can determine sharp A-type and A-cotype for lp and Sp as operator
spaces.

In [1, 2], it is shown that lp and Sp(1 ≤ p ≤ ∞) has A-type min(p, p′) and
A-cotype max(p, p′) for any u.b.q.o.s. A. The sharpness of this type and cotype
is partially answered in [3]. For an infinite compact semisimple Lie group G, it

is shown that lp and Sp can not have Ĝ-cotype q′ and lp′ and Sp′ can not have

Ĝ-type q for 1 ≤ p < q ≤ 2 in [3]. Note that Ĝ-type q and Ĝ-cotype q′ are
exactly the same with Fourier cotype q′ and Fourier type q with respect to G in
[3] respectively.

In this paper, we consider the dual case of the above in more general situation.
We prove that lp can not have A-type q and lp′ can not have A-cotype q′ for
any infinite u.b.q.o.s. A (which means that Σ is infinite) and 1 ≤ p < q ≤ 2 by
checking the same statement for the corresponding quantized Rademacher system
RΣ and reminding the fact that A-type q and A-cotype q′ imply RΣ-type q and
RΣ-cotype q′ respectively (Proposition 3.5 in [2]). Using this result, we prove
that min(p, p′) is the sharp A-type of Sp, and max(p, p′) is the sharp A-cotype
for any infinite u.b.q.o.s. A and 1 ≤ p ≤ ∞, which improves the result in [3]
for Sp. Note that since every infinite dimensional Lp-space on a σ-finite measure
space has the same local structure with lp, we have the same sharp type and
cotype results for such Lp-spaces.

2. Sharp type and cotype of lp

From now on let A be an infinite u.b.q.o.s. as in Definition 1, R = RΣ be
the corresponding quantized Rademacher system and p, p′, q and q′ be the fixed
exponents satisfying 1 ≤ p < q ≤ 2, 1

p
+ 1

p′
= 1, and 1

q
+ 1

q′
= 1.

Theorem 3. lp can not have A-type q and lp′ can not have A-cotype q′.
3



Proof. Suppose that lp has A-type q, then lp has R-type q by Proposition 3.5 in
[2], which is equivalent to

F−1
R ⊗ Ilp : Lq(Γ, lp) → Lq′(Ω, lp)

is uniformly completely bounded for any finite Γ ⊆ Σ, then we have that

F−1
R ⊗ Ilp : Lq(Γ, lp) → Lp(Ω, lp)

is bounded with norm smaller than or equal to ‖lp|RTq‖ since Ω is a probability
space.

Let’s fix Γ = {π1, π2, · · · , πn}, and let N =
∑n

k=1 dπk
=

∑n

k=1 dk. Then we
have for all A ∈ Lq(Γ, lp),∥∥F−1

R ⊗ Ilp(A)
∥∥

Lp(Ω,lp)
≤ ‖lp|RTq‖ · ‖A‖Lq(Γ,lp)

≤ N
1

q
− 1

2 · ‖lp|RTq‖ · ‖A‖L2(Γ,lp) .
(3)

Consider A ∈ L2(Γ, lp) be given by Ak(= Aπk) = diag(αkek,i) ∈ Mdk
(lnp ),

1 ≤ k ≤ n, where αk ≥ 0 will be fixed later, and ek,i’s are distinct unit vectors in
lNp . Then we get

F−1
R ⊗ Ilp(A)(ω) =

n∑

k=1

dktr(A
kεk(ω))

=
n∑

k=1

dk∑

i=1

dkαkε
k
ii(ω)ek,i

for ω ∈ Ω, and by applying the noncommutative version of Khintchine’s inequal-
ity(Corollary 2.12 of [4]), we get for some constant C1 > 0,

∥∥F−1
R ⊗ Ilp(A)

∥∥
Lp(Ω,lp)

=
( n∑

k=1

dk∑

i=1

dp
kα

p
k

[ ∫

Ω

∣∣εk
ii(ω)

∣∣p dµ(ω)
]) 1

p

≥ C1

( n∑

k=1

dk∑

i=1

dp
kα

p
k

[ ∫

Ω

∣∣εk
ii(ω)

∣∣2 dµ(ω)
] p

2

) 1

p

= C1

( n∑

k=1

dk∑

i=1

dp
kα

p
kd

−
p

2

k

) 1

p

= C1

( n∑

k=1

d
1+ p

2

k αp
k

) 1

p

.

(4)

Since Ak’s are diagonal matrices, by Corollary 1.3 in [6], we have that

(5) ‖A‖L2(Γ,lp) =
( n∑

k=1

dk

dk∑

i=1

α2
k

) 1

2

=
( n∑

k=1

d2
kα

2
k

) 1

2

.
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If we choose αk’s such that d
p

2

k αp
k = D for a constant D > 0, then we get

(6)

∥∥F−1
R ⊗ Ilp(A)

∥∥
Lp(Ω,lp)

‖A‖L2(Γ,lp)

≥ C1

( n∑

k=1

dk

) 1

p
− 1

2

= C1N
1

p
− 1

2 .

Combining (3) and (6), we get

‖lp|RTq‖ ≥ C1N
1

p
− 1

q ,

which is contradictory since we can choose finite Γ ⊆ Σ so that N is arbitrarily
large.

We proceed similarly for the lp′ case. Suppose that lp′ has A-cotype q′, then
lp′ has R-cotype q′, and we have that for any finite Γ ⊆ Σ,

FR ⊗ Ilp′
: LΓ

p′(Ω, lp′) → Lq′(Γ, lp′)

is completely bounded with c.b. norm smaller than or equal to ‖lp′ |RCq′‖ since
Ω is a probability space. Thus we have that for all A ∈ Lq′(Γ, lp′),

‖lp′ |RCq′‖ ·
∥∥∥F−1

R ⊗ Ilp′
(A)

∥∥∥
LΓ

p′
(Ω,lp′ )

≥ ‖A‖Lq′ (Γ,lp′ )

≥ N
1

q′
− 1

2 · ‖A‖L2(Γ,lp′ )
.

(7)

Now we consider the same A ∈ L2(Γ, lp′) given by Ak(= Aπk) = diag(αkek,i) ∈
Mdk

(lnp ), 1 ≤ k ≤ n as in the above.
When p′ < ∞, by the same calculation we get for some constant C2 > 0,

(8)
‖A‖L2(Γ,lp′ )∥∥∥F−1

R ⊗ Ilp′
(A)

∥∥∥
LΓ

p′
(Ω,lp′ )

≥ C2

( n∑

k=1

dk

) 1

2
− 1

p′

= C2N
1

2
− 1

p′ .

Combining (7) and (8), we get

‖lp′ |RCq′‖ ≥ C2N
1

q′
− 1

p′ = C2N
1

p
− 1

q ,

which is also contradictory since we can choose finite Γ ⊆ Σ so that N is arbi-
trarily large.

When p′ = ∞, we recall that l∞ contains isomorphic copies of lr for all 1 ≤ r <
∞ as subspaces. Since we used norms of lp only in (4) and (5), and furthermore,
the calculation depends only on the norm of lp as a Banach space, l∞ cannot have
finite cotype.

�

We say that an operator E has Banach-A-type p if

sup
finite Γ⊆Σ

∥∥F−1
A ⊗ IE

∥∥
Lp(Γ,E)→Lp′(Ω,E)

< ∞.
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Banach-A-cotype p′ is defined similarly. If we look at the proof of Proposition
3.5 in [2], we can easily see that Banach-A-type p and Banach-A-cotype p′ imply
Banach-R-type p and Banach-R-cotype p′ respectively. Thus by the same ob-
servation we used for l∞ at the end of the proof of Theorem 3, we can present a
modification of Theorem 3, which will be used in the next section.

Theorem 4. Let E be an operator space such that the underlying Banach space
contains an isomorphic copy of lp. Then

F−1
A ⊗ IE : Lq(Γ, E) → Lq′(Ω, E)

is not uniformly bounded for all finite Γ ⊆ Σ.
Similarly, if the underlying Banach space of E contains an isomorphic copy of
lp′, then

FA ⊗ IE : LΓ
q (Ω, E) → Lq′(Γ, E)

is not uniformly bounded for all finite Γ ⊆ Σ.

3. Sharp type and cotype of Sp

Since Sr(1 ≤ r ≤ ∞) contains lr as a subspace, we have the following half
results easily from Theorem 3.

Theorem 5. Sp can not have A-type q and Sp′ can not have A-cotype q′.

Theorem 4 enables us to answer the remaining half of sharp type and cotype
of Sp.

Theorem 6. Sp can not have A-cotype q′ and Sp′ can not have A-type q.

Proof. Suppose that Sp have A-cotype q′, which is equivalent to

FA ⊗ ISp
: LΓ

q (Ω, Sp) → Lq′(Γ, Sp)

is uniformly completely bounded for all finite Γ ⊆ Σ. Then we have that

ISq′
⊗FA ⊗ ISp

: Sq′(L
Γ
q (Ω, Sp)) → Sq′(Lq′(Γ, Sp))

is uniformly bounded by Lemma 1.7 of [6] and consequently

FA ⊗ ISq′ (Sp) : LΓ
q (Ω, Sq′(Sp)) → Lq′(Γ, Sq′(Sp))

is uniformly bounded by Corollary 1.10 and Proposition 2.1 of [6].
However, Theorem 1.1 of [6] implies that

Sq′(Sp) = R(1/q) ⊗h Sp ⊗h R(1/q′)

= R(1/q) ⊗h R(1/p′) ⊗h R(1/p) ⊗h R(1/q′),

which means that R(1/q) ⊗h R(1/p′) is a subspace of Sq′(Sp), where

R(1/q) ⊗h R(1/p′) = [R ⊗h R(1/p′), C ⊗h R(1/p′)] 1

q

= [[R ⊗h R,R ⊗h C] 1

p′
, [C ⊗h R,C ⊗h C] 1

p′
] 1

q
.
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Since R ⊗h R and C ⊗h C are isometric to S2 and R ⊗h C and C ⊗h R are
completely isometric to S1 and S∞ respectively, we have that R(1/q) ⊗h R(1/p′)
is isometric to Sr with 1

r
= 1

2
( 1

p′
+ 1

q′
) < 1

q′
. This implies

FA ⊗ ISq′ (Sp) : LΓ
q (Ω, Sq′(Sp)) → Lq′(Γ, Sq′(Sp))

is not uniformly bounded for all finite Γ ⊆ Σ by Theorem 4, which lead us to a
contradiction. The type case is obtained similarly.

�

Remark 7. By the same observation in the proof of Theorem 3, l∞ does not
have nontrivial A-type also. However, we don’t know whether lp has A-cotype q′

and lp′(p
′ < ∞) has A-type q even in the case A = R. The best result we can

show is that

F−1
RG

⊗ Ilp′
: L2(Γ, lp′) → L2(Ω, lp′)

and

FRG
⊗ Ilp : LΓ

2 (Ω, lp) → L2(Γ, lp)

are uniformly bounded for all finite Γ ⊆ Σ.
We check the first statement only because lp case is obtained similarly. Now

we consider A ∈ L2(Γ, lp′). Then we have

∥∥∥F−1
RG

⊗ Ilp′
(A)

∥∥∥
L2(Ω,lp′ )

≤
∥∥∥F−1

RG
⊗ Ilp′

(A)
∥∥∥

Lp′ (Ω,lp′ )

=
[ ∫

Ω

∥∥∥∥∥
∑

π∈Γ

dπtr(Aπεπ(ω))

∥∥∥∥∥

p′

lp′

dµ(ω)
] 1

p′

=
[ ∞∑

i=1

∫

Ω

∣∣∣∣∣
∑

π∈Γ

dπtr(Aπ
i επ(ω))

∣∣∣∣∣

p′

dµ(ω)
] 1

p′

,

where Aπ
i implies i-th component of Aπ as an element in lp′(Mdπ

)(= Mdπ
(lp′)).

By applying the noncommutative version of Khintchine’s inequality, we get for
some constant C > 0,

∥∥∥F−1
RG

⊗ Ilp′
(A)

∥∥∥
L2(Ω,lp′ )

≤ C
[ ∞∑

i=1

( ∫

Ω

∣∣∣∣∣
∑

π∈Γ

dπtr(Aπ
i επ(ω))

∣∣∣∣∣

2

dµ(ω)
) p′

2

] 1

p′

= C
[ ∞∑

i=1

( ∑

π∈Γ

dπ ‖A
π
i ‖

2
S2

) p′

2

] 1

p′

= C ‖(Aπ
i )∞i=1‖lp′ (L2(Γ)) ≤ C ‖(Aπ

i )∞i=1‖L2(Γ,lp′ )
.

The last line is by Corollary 1.10 of [6] again.
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