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Abstract

We give an integral representation of the Nevanlinna counting func-
tion Nϕ of a holomorphic self-map ϕ of the unit disk D in terms of its
boundary values ϕ∗. This representation enables us to explicitly com-
pute the averages of Nϕ over the circle and over the small disks around
the origin. As a consequence, we give, for example, a computational
proof of the well known sub-averaging property of Nϕ.
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1 Introduction

We are only concerned with holomorphic self-maps ϕ of the unit disk D on
the complex plane. The Nevanlinna counting function

Nϕ(w) =
∑

ϕ(z)=w

log
1
|z|

plays a very important role in the holomorphic change of variables by w =
ϕ(z) in the integral representation [St] and in the study of the composition
operator Cϕ(f) = f ◦ ϕ. For example, Cϕ is a compact operator on the
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Hardy space H2 if and only if Nϕ(w) = o

(
log

1
|w|

)
. See [Sh1, Sh2]. In this

paper, we obtain a representation of Nϕ in terms of the boundary values

ϕ∗ of ϕ by applying the Jensen’s formula to
a− ϕ

1− aϕ
in Proposition 2.1. It

clarifies the behavior of Nϕ more clearly, and enables us to compute the
averages of Nϕ over the circles and over the small disk around the origin as
in Theorem 3.1. The usefulness of such representations is justified by giving
a computational proof of the well known sub-averaging property of Nϕ and
by other consequences and the representation of the Nevanlinna counting
functions of Rudin’s orthogonal functions in Section 4.

2 Another representation of Nϕ

For a holomorphic self-map ϕ and a ∈ D, the bounded function
a− ϕ

1− aϕ
has

the canonical factorization as follows:

a− ϕ(z)
1− aϕ(z)

= Ba(z)Sa(z)Fa(z), (2.1)

where Ba is the Blaschke product

Ba(z) =
∏

ϕ(zi)=a

|zi|
zi

zi − z

1− ziz
, (multiplicities counted) (2.2)

Sa is the singular inner function

Sa(z) = exp
(
−

∫

∂D

ζ + z

ζ − z
dµa(ζ)

)
(2.3)

with the positive Borel measure µa singular with respect to the normalized
Lebesgue measure dσ on the boundary ∂D of D, and Fa is the outer function
given by

Fa(z) = eiγ exp
(∫

∂D

ζ + z

ζ − z
log

∣∣∣∣
a− ϕ∗(ζ)
1− aϕ∗(ζ)

∣∣∣∣ dσ(ζ)
)

, (2.4)

γ real, with ϕ∗(ζ) = limr↗1 ϕ(rζ) which exists almost every ζ ∈ ∂D. See
[G] for the canonical factorization. Applying the Jensen’s formula to (2.1),
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we have for a 6= ϕ(0)

log
∣∣∣∣

a− ϕ(0)
1− aϕ(0)

∣∣∣∣ +
∑

ϕ(zi)=a
|zi|≤r

log
r

|zi| (2.5)

=
∫

∂D
log

∣∣∣∣
a− ϕ(rξ)
1− aϕ(rξ)

∣∣∣∣ dσ(ξ)

=
∫

∂D
log |Ba(rξ)| dσ(ξ)− µa(∂D)

+
∫

∂D
log

∣∣∣∣
a− ϕ∗(ζ)
1− aϕ∗(ζ)

∣∣∣∣ dσ(ζ).

We applied the Fubini’s theorem to interchange the order of integration for
the last equality. Letting r ↗ 1 on both sides, we obtain

log
∣∣∣∣

a− ϕ(0)
1− aϕ(0)

∣∣∣∣ + Nϕ(a) (2.6)

= −µa(∂D) +
∫

∂D
log

∣∣∣∣
a− ϕ∗(ζ)
1− aϕ∗(ζ)

∣∣∣∣ dσ(ζ).

We note that for the Blaschke product Ba,

lim
r↗1

∫

∂D
log Ba(rξ)dσ(ξ) = 0. (2.7)

See [G]. The representation (2.6) is a refined version of Lemma 2 in [N] or
of Littlewood’s inequality [Sh1, p.187] and is the main part of the following
proposition.

Proposition 2.1 Let ϕ be a holomorphic self-map of D. Then

(a)

Nϕ(a) = log
∣∣∣∣
1− aϕ(0)
a− ϕ(0)

∣∣∣∣

+
∫

∂D
log

∣∣∣∣
a− ϕ∗(ζ)
1− aϕ∗(ζ)

∣∣∣∣ dσ(ζ)− µa(∂D) (2.8)

= − log |a− ϕ(0)|
+

∫

∂D
log |a− ϕ∗(ζ)| dσ(ζ)− µa(∂D) (2.9)
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for a 6= ϕ(0), where µa is the singular measure associated with the

singular factor of
a− ϕ

1− aϕ
. In particular,

Nϕ(a) ≤ log
∣∣∣∣
1− aϕ(0)
a− ϕ(0)

∣∣∣∣ . (2.10)

(b) If ϕ is an inner function, i.e., |ϕ∗(ζ)| = 1 a.e. ζ ∈ D, then

Nϕ(a) = log
∣∣∣∣
1− aϕ(0)
a− ϕ(0)

∣∣∣∣− µa(∂D). (2.11)

(c) µa(∂D) = 0 for nearly all a ∈ D, i.e., for all a in D except for a set
of Logarithmic capacity zero and

µa(∂D) ≤ log
∣∣∣∣
1− aϕ(0)
a− ϕ(0)

∣∣∣∣ . (2.12)

In particular, µa(∂D) → 0 as |a| ↗ 1.

We note that (2.8) is another form of (2.6). Since log |1 − aϕ| is harmonic
in D, we see that

log |1− aϕ(0)| =
∫

∂D
log |1− aϕ∗(ζ)|dσ(ζ). (2.13)

(2.9) follows from (2.8) and (2.13). Since
∣∣∣∣

a− ϕ∗

1− aϕ∗

∣∣∣∣ ≤ 1 and µa(∂D) ≥ 0,

(2.10) follows from (2.8).

For the inner function ϕ,
∣∣∣∣

a− ϕ∗

1− aϕ∗

∣∣∣∣ = 1 and so (2.11) follows from (2.8).

For the proof of (c), we recall the generalized version of Frostman’s theorem
by W. Rudin. See [F, R3, R4]. The theorem is more general but we state it
only for our bounded self-map ϕ.
Theorem A (Rudin) Let ϕ be a bounded self-map of D. Then the least
harmonic majorant of log |a−ϕ| is given by the Poisson integral of log |a−
ϕ∗| for nearly all a ∈ D.
Proof of Proposition 2.1(c): From (2.1), the canonical factorization of
a− ϕ(z) has the form:

a− ϕ(z) = Ba(z)Sa(z)Fa(z)(1− aϕ(z)).
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We note that the outer factor of a− ϕ(z) has the form

Fa(z)(1− aϕ(z))

= eiγ exp
(∫

∂D

ζ + z

ζ − z
log |a− ϕ∗(ζ)|dσ(ζ)

)
.

Therefore, the least harmonic majorant of log |a − ϕ| is given the Poisson
integral of

log |a− ϕ∗(ζ)|dσ(ζ)− dµa(ζ).

See Lemma 5.2 in [G] for example. Therefore, it follows from Theorem A
that µa = 0 for nearly all a ∈ D. Finally, (2.12) follows also from (2.6). This
completes the proof of Proposition 2.1. ¤

3 Averages of Nϕ

The representation (2.9) of Nϕ of enables us to compute the averages of
Nevanlinna counting function Nϕ over the circles and disks around the origin
as in the following theorem, which have very useful consequences. It is very
amusing fact that the averages can be neatly represented by the boundary
values as in the following theorem.

Theorem 3.1 Let ϕ be a holomorphic self-map of D. Then

(a)

∫

∂D
Nϕ(ρη)dσ(η) (3.1)

= − log+ |ϕ(0)|
ρ

+
∫

∂D
log+ |ϕ∗(ζ)|

ρ
dσ(ζ)

= − log+ |ϕ(0)|
ρ

+
∫ 1

ρ

σ{|ϕ∗| > t}
t

dt

= − log+ |ϕ(0)|
ρ

−
∫ 1

ρ
log

t

ρ
dα(t),

where α(t) = σ{|ϕ∗| > t} is a nonincreasing function of t and log+ x =
max(log x, 0).
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(b)

1
R2

∫∫

|a|<R
Nϕ(a)dA(a) (3.2)

= log
1

|ϕ(0)| +
∫

∂D
log |ϕ∗(ζ)|dσ(ζ)

+
1
2

∫

|ϕ∗|<R

{( |ϕ∗(ζ)|
R

)2

− 1

− log
( |ϕ∗(ζ)|

R

)2
}

dσ(ζ),

for 0 < R < |ϕ(0)|. Here, dA = 2ρ dρ dσ(η) denotes the normalized
area measure.

Proof. (a) We first note that µa(∂D) does not contribute to the averages
since it is zero nearly all a ∈ ∂D. Write a = ρη and integrate (2.9) with
respect to dσ(η). Apply Fubini’s theorem to interchange the order of inte-
grations and use the well known integral

∫

∂D
log |ρη − w|dσ(η) = log+ |w|

ρ
,

to obtain

∫

∂D
Nϕ(ρη)dσ(η) = −

∫

∂D
log |ρη − ϕ(0)|dσ(η)

+
∫

∂D

∫

∂D
log |ρη − ϕ∗(ζ)|dσ(η)dσ(ζ)

= − log+ |ϕ(0)|
ρ

+
∫

∂D
log+ |ϕ∗(ζ)|

ρ
dσ(ζ),

for ρ 6= |ϕ(0)|. This relation is true for ρ = |ϕ(0)| by continuity. The
second representation follows by applying Theorem 8.16 in [R2] and the
third follows by applying integration by part to the second representation.
See Exercise 17 on p.141 in [R1] for example.
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(b) Let 0 < R < |ϕ(0)|. We integrate (3.1) against
2ρ

R2
dρ. First, compute

1
R2

∫ R

0
2ρ log+ |ϕ(0)|

ρ
dρ (3.3)

=
1

R2

∫ R

0
2ρ log |ϕ(0)|dρ +

1
R2

∫ R

0
2ρ log

1
ρ

dρ

= log
|ϕ(0)|

R
+

1
2
.

Now, we compute

1
R2

∫ R

0

∫

∂D
2ρ log+ |ϕ∗(ζ)|

ρ
dρ (3.4)

=
1

R2

∫

|ϕ∗|<R

∫ R

0
2ρ log+ |ϕ∗(ζ)|

ρ
dρ dσ(ζ)

+
1

R2

∫

|ϕ∗|≥R

∫ R

0
2ρ log+ |ϕ∗(ζ)|

ρ
dρ dσ(ζ)

=
1

R2

∫

|ϕ∗|<R

∫ |ϕ∗(ζ)|

0
2ρ log

|ϕ∗(ζ)|
ρ

dρ dσ(ζ)

+
1

R2

∫

|ϕ∗|≥R

∫ R

0
2ρ log

|ϕ∗(ζ)|
ρ

dρ

=
1

2R2

∫

|ϕ∗|<R
|ϕ∗|2 dσ(ζ) +

∫

|ϕ∗|≥R
log |ϕ∗(ζ)| dσ(ζ)

+
1
2
σ{|ϕ∗| ≥ R} − σ{|ϕ∗| ≥ R} log R

=
∫

∂D
log

|ϕ∗(ζ)|
R

dσ(ζ) +
1
2
−

1
2

∫

|ϕ∗|<R

{( |ϕ∗(ζ)|
R

)2

− 1− log
( |ϕ∗(ζ)|

R

)2
}

dσ(ζ)

Combining (3.3) and (3.4), we obtain (3.2). This completes the proof.
The usefulness of the averages of Nϕ is seen in the following corollary.

Especially, it gives a new computational proof of the sub-averaging property
of Nϕ.

Corollary 3.2 Let ϕ be a holomorphic self-map of D. Then
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(a) Sub-averaging property. If 0 < R < |ϕ(0)|, then

Nϕ(0) ≤ 1
R2

∫∫

|w|<R
Nϕ(w)dA(w). (3.5)

See [Sh1].

(b)

lim
ρ↗1

1

log
1
ρ

∫

∂D
Nϕ(ρη)dσ(η) = σ{|ϕ∗| = 1}. (3.6)

In particular, (i) |ϕ∗| < 1 a.e. if and only if

lim
ρ↗1

1

log
1
ρ

∫

∂D
Nϕ(ρη)dσ(η) = 0 (3.7)

and (ii) ϕ is inner, i.e., |ϕ∗| = 1 a.e. if and only if

lim
ρ↗1

1

log
1
ρ

∫

∂D
Nϕ(ρη)dσ(η) = 1. (3.8)

(c) ϕ is inner if and only if
∫

∂D
Nϕ(ρζ)dσ(ζ) = log

1
max(|ϕ(0)|, ρ)

(3.9)

for all 0 < ρ < 1.

Proof. For (a), it suffices to note that

Nϕ(0) = log
1

|ϕ(0)| +
∫

∂D
log |ϕ∗|dσ − µa(∂D)

from (2.8) and the quantity
{( |ϕ∗(ζ)|

R

)2

− 1− log
( |ϕ∗(ζ)|

R

)2
}

in (3.2) is nonnegative since x− 1 ≥ log x for x > 0.
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For (b), we note that log+ ϕ(0)
ρ

= 0 for ρ sufficiently close to 1 and that

∫

∂D
log+ |ϕ∗(ζ)|

ρ
dσ(ζ) (3.10)

=
∫

|ϕ∗|=1
log

1
ρ
dσ(ζ) +

∫

ρ<|ϕ∗|<1
log

|ϕ∗(ζ)|
ρ

dσ(ζ)

=σ{|ϕ∗| = 1} log
1
ρ

+
∫

ρ<|ϕ∗|<1
log

|ϕ∗(ζ)|
ρ

dσ(ζ).

(3.6) now follows since the second integral in (3.10) is dominated by

σ{ρ < |ϕ∗| < 1} log
1
ρ

= o

(
log

1
ρ

)
, as ρ ↗ 1.

(c): If ϕ is inner and ρ < |ϕ(0)|, then (3.1) becomes
∫

∂D
Nϕ(ρη)dσ(η) = − log+ |ϕ(0)|

ρ
+ log

1
ρ

= log
1

max(ρ, |ϕ(0)|) .

If ϕ is not inner, then σ{|ϕ∗| < 1} > 0. For ρ > |ϕ(0)|, (3.1) can be written
as

∫

∂D
Nϕ(ρη)dσ(η)

=
∫

|ϕ∗|=1
log

1
ρ
dσ +

∫

ρ<|ϕ∗|<1
log

|ϕ∗(ζ)|
ρ

dσ(ζ)

= (1− σ{|ϕ∗| < 1}) log
1
ρ

+ o

(
log

1
ρ

)

6= log
1

|ϕ(0)| , as ρ ↗ 1.

4 Application

Among the holomorphic self-maps ϕ with ‖ϕ‖∞ ≡ sup{|ϕ(z)| : z ∈ D} = 1,

T. Nakazi characterized the Rudin’s orthogonal functions, i.e., holomorphic
self-maps ϕ for which {ϕn, n = 0, 1, 2, · · · } is orthogonal with respect to
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the usual inner product on H2 as follows. For more on Rudin’s orthogonal
functions, see [B, N].
Theorem B (Nakazi) For a holomorphic self-map of D with ‖ϕ‖∞, the
following are equivalent:

(a) {ϕn, n = 0, 1, 2, · · · } is orthogonal in H2.

(b) Nϕ(z) = Nϕ(|z|) for nearly all z in D.

(c) There exists a positive Borel probability measure ν0 on [0, 1] with 1 ∈
supp ν0 such that

Nϕ(z) =
∫ 1

|z|
log

t

|z| dν0(t)

for nearly all z in D.

We can describe the measure ν0 more precisely in terms of ϕ∗ as an appli-
cation of Theorem 3.1 (a). For Rudin’s orthogonal functions ϕ, ϕ(0) = 0
and Nϕ(z) is the same as the its radialization, i.e., its average over circles
around the origin,

Nϕ(ρζ) =
∫

∂D
Nϕ(ρζ) dσ(ζ) = −

∫ 1

ρ
log

t

ρ
dα(t)

for nearly all z ∈ D by Theorem 3.1 (a). Therefore, the positive Borel
measure in Theorem B(c) is given by dν0 = −dα(t) where α(t) = σ{|ϕ∗| > 0}
as a nonincreasing function. Clearly, 1 ∈ supp ν0 since ‖ϕ‖∞ = 1. We note
that the mass at 1 is given by ν({1}) = σ{|ϕ∗| = 1}.

References

[B] P. S. Bourdon, Rudin’s orthogonality problem and the Nevanlinna
counting function, Proc. AMS., 125 (1997), 1187–1192

[F] O. Frostman, Potentiel d´équilibre et capacité des ensembles, Lunds
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