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Abstract. We suggest a simple parallel random number generation method
for weak approximation of systems of SDE’s by power series expansion expres-
sion. we also give statistical test results for the random numbers and numerical
experiments for approximating SDE’s.

1. Introduction

Let us consider a diffusion process Xt satisfying the following system of sto-
chastic differential equations

(1) dX i
t = ai(t,Xt)dt+

m
∑

j=1

bij(t,Xt)dW
j
t , i = 1 . . . n

with E(|X0|k) < ∞ for k = 1, 2, · · · where W j
t ’s are m independent Brownian

motion and the coefficients a and b are Lipshitz continuous and with differentiable
components ai, bij such that

|a(x)|+ |b(x)| < K(1 + |x|)
for some K <∞ and x ∈ Rn.

Numerical algorithms for weak approximation for such systems are well ex-
plained in [1] and [2]. But in practical implementations, we use Monte Carlo

method and compute
∑N

i=1 f(Y
(i)
t )/N , where Y

(i)
t denotes ith implementation of

numerical scheme Yt. Weak approximations have an advantage that we can make
use of simple discrete valued random variables with some moment conditions in-
stead of normal variables. This saves some computation times. According to
the simulation result in [3], CPU time for generating normal random numbers
takes 1.2 times more than that for discrete valued random numbers but no gain
in precision. For system (1), we need m ‘independent’ sequences of pseudo ran-
dom numbers for weak order 1.0 Euler scheme and m(m + 1)/2 for weak order
2.0 numerical scheme. We can take m or m(m + 1)/2 different pseudo random
number generators(PRNG’s for short) in each case. There are a lot of PRNG’s
most of which are some variants of linear congruential generators and we may
choose some of them for our purpose. But the independence between them is
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not guaranteed theoretically and moreover, when m is large, we may include
some unreliable PRNG’s. Hence, in many cases, we adopt methods generating
independent streams of random numbers from a single uniform PRNG such as
‘skipping ahead ′ and ‘leapfrogging ′- see [4]. But these methods reduce the
period of the generator and may not be appropriate in large scale Monte Carlo
Simulations of systems (1) with many noises which often arise in physics and
astronomy. In this Section, we suggest a very simple way of parallel discrete
PRN generation using a single uniform PRNG by some integer base power series
expansion of uniform random numbers. This method extends the period of the
generator and also there is no risk of overlap. The independence between the
parallel sequences only depends on the quality of the underlying uniform PRNG.

2. Weak Taylor Approximations

Weak order 1.0 Euler scheme : The weak order 1.0 Euler scheme for the
system (1) has the form

(2) Y i
n+1 = Y i

n + ai(tn, Yn) +
m
∑

j=1

bi,j(tn, Yn)∆W
j
n, Y0 = X0.

Here, we may substitute ∆Ŵ j for ∆W j which satisfies the moment condition
(??). We can choose ∆Ŵ j for example, random variables with distribution

P (∆Ŵ j = ±
√
∆) =

1

2
.

Usually for ∆Ŵ j, we generate a uniform random number U on (0, 1) interval

and compute sign (U − 1/2) and multiply
√
∆ . So, we need m ‘independent’

sequences of uniform PRN’s.
Weak order 2.0 scheme : The order 2.0 weak Taylor scheme contains dou-

ble stochastic integrals which are not easy to generate in general. Instead, the
following simplified order 2.0 weak Taylor scheme is of practical use.

Y i
n+1 = Y i

n + ai∆+
1

2
L0ai∆2 +

m
∑

j=1

{

1

2
∆(L0bi,j + Ljai)

}

∆Ŵ j

+
1

2

m
∑

j1,j2=1

Lj1bi,j2
(

∆Ŵ j1∆Ŵ j2 + Vj1,j2
)

.

where ∆Ŵ j, j = 1 . . .m are independent random variables satisfying

(3) P (∆Ŵ j = ±
√
3∆) =

1

6
, P (∆Ŵ j = 0) =

2

3

and Vj1,j2 are independent two-point distributed random variables such that

(4) P (Vj1,j2 = ±∆) =
1

2
, j1 < j2,

2



and
Vj,j = −∆ Vj1,j2 = −Vj2,j1 .

So, we need m + (m2 −m)/2 = (m2 +m)/2 independent sequences of uniform
PRN’s for usually used method. We stress that this number grows rather rapidly
when m is increased.

3. Algorithm

The following proposition is the motivation of this Section.

Proposition 1. Let M ∈ N \ {1} and {Mi}i≥1 be i.i.d. sequence of M-valued

random variables such that P (Mi = k) = 1/M for k = 0, 1, . . .M − 1. Then

Ū :=
∞
∑

i=1

MiM
−i

has the uniform distribution on (0, 1).

Proof. Let x ∈ (0, 1) then it has the unique M -based expansion expression x =
∑∞

i=1miM
−i and P (Ū = x) = P (M1 = m1,M2 = m2 . . . ) = 0. So, Ū does not

have a point mass. Hence it is enough to show P (Ū ≤ x) = x for x =
∑n

i=1miM
−i

P (Ū ≤ x) = P (0 ≤ Ū < m1/M) + P (m1/M ≤ Ū < m1/M +m2/M
2)

+ · · ·+ P (
n−1
∑

i=1

miM
−i ≤ Ū <

n
∑

i=1

miM
−i)

= m1/M + 1/M2 ·m2/M + · · · 1/Mn−1 ·mn/M = x

¤

Hence, from one sample x =
∑∞

i=1miM
−i ∈ (0, 1), 0 ≤ mi ≤ M − 1, we can

extract a sequence of sample values {mi}i≥1 of {Mi}i≥1 as follows:

mi = bx ·M ic (mod M).

So, if we generate a sequence {xj}j≥1 from a uniform PRNG then we obtain the
corresponding matrix of M-valued random numbers

(5) M =











m1
1 m2

1 · · · mn
1

m1
2

. . .
...

...
. . .

...
m1
k · · · · · · mn

k











.

The k random numbers in the first column of M are as ‘random’ as rolling a dice
in their nature and the quality of total random numbers in M depends only on
the quality of the underlying uniform PRNG.

For the purpose of the weak Euler approximation, M = 2, k = m and we
assign 0→ −1, 1→ 1 and multiply

√
∆ for ∆Ŵ . In this case, rows up to k = 53
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in (5) were available for weak approximation of scalar SDE in Matlab. For weak
2.0 Taylor scheme, M = 6, k = m(m + 1)/2 and we need the following simple
additional works. Since we need 3-valued random variables with distribution (3),
we assign

0→ −1, 1→ 1, {2, 3, 4, 5} → 0

and multiply
√
3∆ for ∆Ŵ . We make m such sequence of random numbers and

with remaining (m2 −m)/2 sequences, we assign

{0, 1, 2} → −1 {3, 4, 5} → 1

and multiply ∆ for Vj1,j2 in (4).

4. Some Statistical Tests

4.1. Test for independence between rows of M : Let us run N columns
of k-vector as in (5). Then there appear M k different vectors [m1 m2 . . . mk]
where mk = 1, 2, . . . ,M with same probability 1/M k and we count the number
Xi whenever each column vector falls into each category. Then the statistic

Y =
Mk
∑

i=1

(Xi −N/Mk)2

N/Mk

is asymptotically distributed as χ2 with Mk − 1 degree of freedom. The null
hypothesis of independence is rejected if the computed value Y exceeds χ2

Mk−1,α
.

But examining this test a little more, it is equivalent with the χ2 goodness of fit
test for the underlying uniform PRNG. Each vector above corresponds to a small
subinterval with length 1/M k in (0, 1). Since most widely used uniform PRNG’s
pass the χ2 goodness of fit test - see [6], they already passed the above χ2 test of
independence.

4.2. Run test for independence of each row : As in [8], we can perform a
run test to test independence of each row. We count consecutive numbers of mi

instead of runs-up and runs-down. ForM = 2, we count up to 6 each consecutive
numbers as in [8]. Consecutive sequences longer than 6 is lumped together. For
these 14 categories, we perform a χ2-test for 13 degrees of freedom.

4.3. χ2 goodness of fit test for each row : Let us divide each row of M
into vectors with l elements. Then there are M l categories. We take l such that
M l ∼ 1000 and N = 6000∗ l as recommended in [7] and we compute the following
statistic for each row

Y =
M l
∑

i=1

(Xi − 6000/M l)2

6000/M l
.
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Remark 1. The above tests are all standard ones and the test results for the
newly generated random numbers seem to be just as good as the usually used
method. Maybe it is because the underlying PRNG is already good enough. We
might be satisfied with the longer period of the new method for a while until new
statistical evidences appear.
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