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Abstract

Let Xt be 1-dimensional diffusion process satisfying some stochastic differential
equation. We discretize the equation at stopping times and give an upper error
bound for the Euler scheme w.r.t some moment of maximum step size. We give
a random discretization example for uniform approximation of Brownian motion
process and provide a method for the related random number generation. We com-
pare the values of the uniform error bounds between fixed and adaptive random
discretizations.
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1 Introduction

Let Xt be 1-dimensional diffusion process satisfying the following equation

Xt = a(t,Xt)dt+ b(t,Xt)dWt, X0 = 0, t ∈ [0, 1] (1)

where Wt is a standard 1 dimensional Brownian motion and the coefficient
functions a and b are measurable functions satisfying

|a(t, x)|+ |b(t, x)| ≤ K(1 + |x|); x ∈ R, t ∈ [0, 1]

and

|a(t, x)− a(t, y)|+ |b(t, x)− b(t, y)| ≤ K|x− y|; x, y ∈ Rn, t ∈ [0, 1]

for some constant K.
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In the strong approximation of stochastic differential equations, we choose
discrete time steps and apply a numerical scheme with partial information of
the driving Brownian motion i.e. discretely observed Brownian motion and
some multiple stochastic integrals on each time subinterval. So, the time sam-
pling is closely related to the quality of the approximation. Most commonly
used time discretization is equidistant one. But if we control the step sizes
according to the local errors adaptively, we may reduce the error amount or
save some computational costs for a given allowed error bound - see [2] and
[7]. Some general commentaries on random discretizations are found in [3] and
the predictability of the discretization times is emphasized for the recursive
computation i.e., the n+1 - th time node τn+1 should be Aτn

measurable for a
given filtration {At}t≥0. Also the deterministic upper bound for the maximum
step size is imposed for the convergence of numerical scheme. In recent years,
asymptotically optimal discretization methods are developed by N. Hofmann
at al. for pathwise global errors and linearly interpolated numerical solutions
- see [4], [5], and [8]. We review them briefly here. Let Xt be the solution of
(1) and Ȳt be the linearly interpolated numerical solution. In [5], the following
global L2-norm error

e(Ȳ ) =
[

E
(∫ 1

0
|Xt − Ȳt|2dt

)]1/2

was considered and the asymptotically optimal time steps are suggested as

τn+1 = τn +min

(

h

|b|(τn, X̄τn
)
, h2/3

)

, h > 0.

The convergence rate for this time discretization is also shown to be truly
optimal among all approximations based on N measurable selection of obser-
vations of the driving Brownian motion. In [8], d-dimensional system of SDEs
with m-noise was considered with a different error criterion, global uniform
Lp-norm error,

ep(X̄) = (E||X − Ȳ ||p∞)1/p, p ≥ 1,

where
||X − Ȳ ||∞ = max

t∈[0,1]
max
1≤i≤d

|Xi(t)− Ȳi(t)|,

and with a different adaptive time selection. These discretization strategies
follow both the predictability and the deterministic maximum step size re-
striction. In this article, we give a general error bound for Euler scheme for
random discretization at stopping times w.r.t some moment of the maximum
step size. We do not assume the predictability condition nor impose any deter-
ministic upper bound for the step sizes. As an application example of random
discretization, we suggest a method for the uniformly close reconstruction of
Brownian motion process. We discuss about the related random number gen-
eration and compare the asymptotic values of the uniform errors.
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2 An Error Bound for Random Discretizations

Consider the scalar SDE (1). Let 0 = τ0 < · · · < τN+1 = 1 be stopping times
where N is also random and N <∞ w.p.1. Then Xt in (1) is written as

Xτn+1
=

n∧N
∑

k=0

∫ τk+1

τk

a(s,Xs)ds+
n∧N
∑

k=0

∫ τk+1

τk

b(s,Xs)dWs, 0 ≤ n ≤ N,

and the discrete Euler scheme is

Yτn+1
=

n∧N
∑

k=0

a(τk, Yk)∆τk +
n∧N
∑

k=0

b(τk, Yτk
)∆Wτk

where ∆τk = τk+1− τk and ∆Wτk
= Wτk+1

−Wτk
. We measure the error of the

Euler scheme on these random times with the following maximum Lp-norm

[

E
(

max
1≤k≤N+1

|Xτk
− Yτk

|p
)]1/p

, p ≥ 2.

For an unspecified positive constant K, we have

max
1≤n≤N+1

|Xτk
− Yτk

|p ≤ K

(

N
∑

k=0

∫ τk+1

τk

|a(s,Xs)|ds
)p

+K max
1≤n≤N

∣

∣

∣

∣

∣

n
∑

k=0

∫ τk+1

τk

b(s,Xs)dWs

∣

∣

∣

∣

∣

p

≤ K(A1 + A2 + A3 +B1 +B2 +B3),

where

A1 =

(

N
∑

k=0

∫ τk+1

τk

|a(s,Xs)− a(τk, Xs)|ds
)p

,

B1 = K max
1≤n≤N

∣

∣

∣

∣

∣

n
∑

k=0

∫ τk+1

τk

(b(s,Xs)− b(τk, Xs))dWs

∣

∣

∣

∣

∣

p

,

and let A2 and A3 be A1 with the integrands replaced by

|a(τk, Xs)− a(τk, Xτk
)| and |a(τk, Xτk

)− a(τk, Yτk
)|

respectively. B2 and B3 are defined similarly for B1.

Lemma 1

||A1||2 + ||A2||2 + ||B1||2 + ||B2||2 ≤ KE
(

max
0≤k≤N

∆τ 2p
k

)1/4

.
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Proof. Note that

(nt−1)∧N
∑

k=0

∫ τk+1

τk

b(·, ·)dWs +
∫ t

τnt

b(·, ·)dWs

is a continuous time martingale. Hence, by the Burkholder-Davis-Gundy’s
inequality,

EB2
1 ≤ KE





[

N
∑

k=0

∫ τk+1

τk

(b(s,Xs)− b(τk, Xs))
2ds

]p




≤ KE





[

N
∑

k=0

∫ τk+1

τk

(1 + |Xs|)2∆τkds

]p




≤ KE

[

sup
0≤t≤1

(1 + |Xs|)2p · max
0≤k≤N

∆τ p
k

]

≤ KE
(

max
0≤k≤N

∆τ 2p
k

)1/2

.

By using the B-D-G’s inequality again, we have

EB2
2 ≤ KE





[

N
∑

k=0

∫ τk+1

τk

(b(τk, Xs)− b(τk, Xτk
))2ds

]p




≤ KE





[

N
∑

k=0

∫ τk+1

τk

(∫ s

τk

|a(t,Xt)|dt
)2

ds

]p




+KE





[

N
∑

k=0

∫ τk+1

τk

sup
τk≤s≤τk+1

∣

∣

∣

∣

∫ s

τk

b(t,Xt)dWt

∣

∣

∣

∣

2

ds

]p


 .

The first term is easily estimated by KE
(

max0≤k≤N ∆τ 4p
k

)1/2
and by the B-

D-G’s inequality, the second term is estimated as

E





[

N
∑

k=0

∫ τk+1

τk

sup
τk≤s≤τk+1

∣

∣

∣

∣

∫ s

τk

b(t,Xt)dWt

∣

∣

∣

∣

2

ds

]p




≤ E

(

sup
0≤k≤N

sup
τk≤s≤τk+1

∣

∣

∣

∣

∫ s

τk

b(t,Xt)dWt

∣

∣

∣

∣

2p
)

= E

(

sup
0≤s≤1

∣

∣

∣

∣

∫ s

0
b(t,Xt)Iτns≤t≤sdWt

∣

∣

∣

∣

2p
)

≤ KE

(

[∫ 1

0
b2(t,Xt)IτN≤t≤1dt

]p
)

≤ KE

(

sup
0≤t≤1

|b(t,Xt)|2p · max
0≤k≤N

∆τ p
k

)

≤ KE
(

max
0≤k≤N

∆τ 2p
k

)1/2

.

Similarly, we can estimate ||A1||2 and ||A2||2.
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Let us consider a σ-field

Ψ = σ(N, τ1, . . . , τN).

Since

E(A3|Ψ) ≤ K
N
∑

k=0

E
(

max
0≤m≤k

|Xτm
− Yτm

|p|Ψ
)

∆τk,

by Gronwall’s inequality, we have

E
(

max
1≤k≤N+1

|Xτk
− Yτk

|p|Ψ
)

≤ KE (A1 + A2 +B1 +B2 +B3|Ψ) .

Since

E(B3|Ψ) ≤ KE





[

N
∑

k=0

(b(τk, Xτk
)− b(τk, Yτk

))2(∆Wτk
)2
]p/2

|Ψ




≤ KE





[

N
∑

k=0

(Xτk
− Yτk

)2(∆Wτk
)2

1

N

]p/2

·Np/2|Ψ




≤ K
N
∑

k=0

E (|Xτk
− Yτk

|p|∆Wτk
|p|Ψ) · 1

N
·Np/2

≤ K
N
∑

k=0

E
(

max
1≤m≤k

|Xτm
− Yτm

|p|Ψ
)

· 1
N
·
(

Np/2 · max
0≤k≤N

|∆Wτk
|p
)

,

we apply the Gronwall’s inequality again to have

E
(

max
1≤k≤N+1

|Xτk
− Yk|p|Ψ

)

≤ KE (A1 + A2 +B1 +B2|Ψ)

· exp
{

Np/2 · max
0≤k≤N

|∆Wτk
|p
}

.

By Hölder’s inequality, we have

E
(

max
1≤k≤N+1

|Xτk
− Yτk

|p
)

≤ K (||A1||2 + ||A2||2 + ||B1||2 + ||B2||2)

· E exp
{

2Np/2 · max
0≤k≤N

|∆Wτk
|p
}

.

Hence, by applying Lemma 1, we obtain the desired result ;

Theorem 2 Let N and stopping times {τk}1≤k≤N satisfy

E exp
{

2Np/2 · max
0≤k≤N

|∆Wτk
|p
}

< K, (2)

for some K > 0 and p ≥ 2, then

E
(

max
1≤k≤N+1

|Xτk
− Yτk

|p
)

≤ KE
(

max
0≤k≤N

∆τ 2p
k

)1/4

.
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3 Uniformly Close Reconstruction of Brownian Motion

For numerical simulation of Brownian motion, we use normal random num-
bers with small variance, add them one by one on discretization points and
interpolate them linearly. But we don’t know what will happen actually on
each small time subinterval even though their probabilities are small. Here, we
suggest a new method for uniformly close reconstruction of Brownian motion
for which we need not worry about that small amount of probability. This is
also a motivation for section 2.

We are concerned in the following simple processes

dXt = adt+ bdWt, X0 = 0, (3)

where a and b are constants. We call the process Xt Brownian motion with

drift.

For a small h > 0, let τh be the first hitting time of Wt to the levels y = h or
y = −h and recursively we define

τn := inf{t > τn−1 : Wt > Wτn−1
+ h or Wt < Wτn−1

− h}, (4)

1 ≤ n ≤ N and
N := sup

n≥1
{n : τn < 1}, τN+1 = 1.

Hence we obtain a sequence of level crossing stopping times {τn}1≤n≤N+1 be-
fore t = 1. On the random times {τn}1≤n≤N+1, we apply the Euler scheme

Yτn+1
=

n∧N
∑

k=0

a∆τk +
n∧N
∑

k=0

b∆Wτk
(5)

and linearly interpolate the discrete points. This numerical process coincides
with Xt on {τn}1≤n≤N+1 and

sup
t∈[0,1]

|Xt − Yt| < 2bh (6)

i.e., Yt has a deterministic uniform error bound by our construction. For the
stopping times {τn}1≤n≤N+1, N , the condition (2) becomes

Ee2h2N < K

for some K but we could not prove it because of the complicated density
function of τ . But still Yt converges to Xt due to (6) when h ↓ 0. Note that
when Wt fluctuates much, it crosses many levels and the discretization number
increases and vice versa. Hence, our new method provides us a nice adaptive
time discretization for the process (3) while the adaptive schemes in [5] and
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[8] only suggest equidistant time discretization. Hence, our method is useful
for the simple process (3) when just small number of sampling (in the average
sense) is possible. The only problem we encounter is the random number
generation for τ .

4 Random Number Generation for the First Hitting Times

For the implementation of the numerical scheme (5), we need to generate ∆τk’s
and ∆Wτk

’s. ∆Wτk
’s are simply h times a Bernoulli sequence and τh = ∆τk is

the first hitting time of a Brownian motion to the two boundaries y = h and
y = −h. Hence the density function of ∆τk is given as

fh(t) :=
2√
2πt3

∞
∑

n=−∞

(4n+ 1)h exp

{

−{(4n+ 1)h}2

2t

}

, t > 0 (7)

- see [6]. The cumulative distribution function (CDF) is depicted in Figure
1 when h = 1. We will use the inverse CDF method. But when h is small,
numerical error will be big. So we use normalization and rescaling instead.
Recall that

Zt =
1

h
Wh2t, t ≥ 0

is also a standard Brownian motion. Hence, the first hitting time of Wt to
the boundaries ±h is h2 times that for Zt to the boundaries ±1. So, we only
need to generate random numbers for h = ±1 and we denote τ = τ1. We use
the inverse CDF method for the boundary ±1 and the Newton’s method is a
possible way to find the inverse values of the uniform random numbers i.e.,
for F (t) :=

∫ t
0 f(s)ds, and for each uniform random number u ∈ (0, 1), we will

find the zero of the equation, F̃ (t) := F (t)− u = 0. Then for an appropriate
initial guess t0 > 0, we obtain a very close solution in just several steps as
follows:

t(n+1) = t(n) − F̃ (t(n))

F̃ ′(t(n))
, n ≥ 0.

But if we include many terms in our calculation from the infinite series (7), this
method is found to be time consuming. So, we tried the following simplified
algorithm in Matlab :

(1) Equally divide the horizontal axis time interval [0, 6] into 6×n and find the
values of the distribution function there by integrating the density func-
tion from 0 up to each time node. Let us denote the integrated values by
F (i), 1 ≤ i ≤ 6× n.

(2) Generate M uniform random number u’s and for each u, we assign u→ i/n
if F (i) ≤ u < F (i+ 1).
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<< Figure 1 may be located here >>

<< Table 1 may be located here >>

We tested the newly generated random numbers for some moments of τ which
is obtained from the exponential martingale exp (λWt − λ2t/2), λ ∈ R and re-
lated polynomial type martingales - see [1] for the first and second moment and
the third moment is also obtained similarly using the polynomial martingale

W 6
t − 15tW 4

t + 45t2W 2
t − 15t3, t ≥ 0,

which are for h = 1,

Eτ = 1, Eτ 2 = 5/3, and Eτ 3 = 61/15.

We included ±30 terms from the infinite series (7). We took n = 1000 and
M = 5000 and 7000. See Table 1 for the test results.

5 A Comparison for Errors

For fixed equidistant discretization, usually, the uniform error for Brownian
motion Wt is

E
[

max
0≤t≤1

|Wt − Yt|
]

for the approximate process Yt i.e., the average of the maximum error. But for
our adaptive random discretization (4), the uniform error has the deterministic
upper bound and not uniform just in the average sense. In this section, we
compare the errors for these two discretizations i.e. the average sense uniform
error for the equidistant discretization (AE) and the deterministic uniform
error for the random discretization (4)(DR).

Since Eτh = h2, Eτh · EN ≈ 1, and the deterministic error bound is 2h for
standard Brownian motion, we have

2h ≈ 2√
EN

. (8)

We let m = EN and compare the deterministic error 2h with the average
error for m-equidistant discretization.

Let Y (m)(t) be the linearly interpolated Brownian motion for the equidistant
nodes {i/m}1≤i≤m and Bi, i = 1, 2, . . . be independent Brownian bridges on

8



the unit interval, then

E
[

max
0≤t≤1

|Wt − Y (m)(t)|
]

=
1√
m
· E
[

max
0≤l≤m

||Bl||∞
]

,

where ||Bl||∞ = max0≤s≤1 |Bl(s)|. According to Corollary 1 of [4], we have

lim
m→∞

1√
lnm

· E
[

max
0≤l≤m

||Bl||∞
]

=
1√
2

and hence

E
[

max
0≤t≤1

|Wt − Y (m)(t)|
]

≈ 1√
2
·
√
lnm√
m

(9)

when m is large. In Table 2, we compare the two kinds of errors (DR) and
(AE) by the values (8) and (9). When m increases, we can observe that DR
becomes even smaller than AE.

<< Table 2 may be located here >>
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Fig. 1. The distribution function for τ , h = 1.

Eτ Eτ2 Eτ3

exact 1 1.6667 4.0667

M=5000 1.0052 1.6779 4.0505

M=7000 1.0129 1.6904 4.0557

Table 1
Test for the moments of τ

m = 102 m = 103 m = 104 m = 105

DR 0.2000 0.0632 0.0200 0.0063

AE 0.1517 0.0588 0.0215 0.0076

Table 2
Comparison for the uniform errors
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