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Abstract

Let Xt be n-dimensional diffusion process and S(t) be a smooth set-valued func-
tion. Suppose Xt is invisible when Xt ∈ S(t), but we can see the process exactly
otherwise. Let Xt0 ∈ S(t0) and we observe the process from the beginning till the
signal reappears out of the obstacle after t0. With this information, we evaluate
the estimators for the functionals of Xt on a time interval containing t0 where the
signal is hidden. We solve related 3 PDE’s in general cases. We give a generalized
last exit decomposition for n-dimensional Brownian motion to evaluate its estima-
tors. An alternative Monte Carlo method is also proposed for Brownian motion. We
illustrate several examples and compare the solutions between those by the closed
form result, finite difference method, and Monte Carlo simulations.

Key words: interpolation, diffusion process, excursions, backward boundary value
problem, last exit decomposition, Monte Carlo method

1 Introduction

Usually, the interpolation problem for Markov process indicates that of eval-
uating the probability distribution of the process between the discretely ob-
served times. One of the origin of the problem is Schrödinger’s Gedankenex-

periment where we are interested in the probability distribution of a diffusive
particle in a given force field when the initial and final time density functions
are given. We can obtain the desired density function at each time in a given
time interval by solving the forward and backward Kolmogorov equations. The
background and methods for the problem are well reviewed in [17]. The prob-
lem also attracts interests in signal processing. It is useful in restoration of lost
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signal samples [8]. In this paper, we consider a special type of interpolation
problem for which similar applications are expected.

Let Xt be the signal process represented by some system of stochastic differ-
ential equations. Suppose Xt is invisible when Xt ∈ S(t) for some set-valued
function S(t), 0 ≤ t ≤ T < ∞ and we can observe the process exactly other-
wise i.e. the observation process is

Yt = XtIXt /∈S(t), 0 ≤ t ≤ T.

In [10], 1-dimensional signal process and a fixed obstacle S(t) = (0,∞) are
considered and the optimal estimator E[f(X1)IX1>0|Y[0,1]] was derived for
bounded Borel function f . The key identity is

E[f(X1)IX1>0|Y[0,1]] = E[f(X1)IX1>0|τ ] (1)

where 1 − τ is the lastly observed time before 1 before the signal enters into
the obstacle. This is not a stopping time but if we consider the reverse time
process χt of Xt, τ is a stopping time and we can prove (1) by applying the
strong Markov property to χt. This simplified estimator is again evaluated by
the formula

E[f(X1)IX1>0|τ ] =
∫ ∞

0
f(x)q(x|τ)dx (2)

where q(x|τ) = p1(x)ux(τ)
∫∞
0 p1(z)uz(τ)dz

, p1(x) is the density function of X1 and ux(t)

is the first hitting time density of χt starting at x to 0 at t.

In [11], this problem was considered in a more generalized setting, where Xt

is n-dimensional diffusion process and the obstacle S(t) is a time-varying set-
valued function. For this setting, we should consider also the first hitting state
χτ as well as time τ and the corresponding identity becomes

E[f(X1)IX1∈S(1)|Y[0,1]] = E[f(X1)IX1∈S(1)|τ, χτ ] (3)

and q(x|t) is replaced by

q(x|t, y) = p1(x)ux(t, y)
∫∞
0 p1(z)uz(t, y)dz

. (4)

where ux(t, y) is the first hitting density on the surface of the images of S(t).
This problem can be thought as a kind of filtering problem (not a prediction),
because we observe the hidden signal up to time 1(to be estimated) and the
hidden process after time 1− τ still gives the information that the signal is in
the obstacle. In this paper, we consider related extended problems. We con-
tinue observing the hidden signal process till it reappears out of the obstacle.
With this additional information we can estimate the hidden state with more
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accuracy. An interesting fact is that even if the signal does not reappear in a
finite fixed time T , this information also improves the estimator. We also eval-
uate extrapolator and backward filter. The interpolator developed in Section
3.4 in particular, can be applied to reconstructing the lost parts of random
signals in a probabilistically optimal way.

In section 3, we prove the corresponding Bernstein-type [17] identity similar to
(1) and (3) and derive the optimal estimator. Due to this identity, the problem
reduces to that of computing the density functions of general excursions (or
meander) in the solution of stochastic differential equations on given excursion
intervals. It is well known that the transition density function for stochastic
differential equation is evaluated through a parabolic PDE. For the interpola-
tor, we should solve a Kolmogorov equation and two backward boundary value
problems. We explain a numerical algorithm by finite difference method for
general 1-dimensional diffusion processes. When the signal is a simple Brown-
ian motion process, we can use the so called last exit decomposition principle
and we can derive the estimators more conveniently, which will be confirmed
by a numerical computation example. Alternatively, for Brownian motion, we
can use Monte Carlo method for some boundaries by numerical simulation of
various conditional Brownian motions. We give several examples and compare
the results by each method.

2 Reverse Time Diffusion Process

Consider the following system of stochastic differential equation

dXt = a(t,Xt)dt+ b(t,Xt)dWt, X0 = 0, 0 ≤ t < T (5)

where a : [0, T ]× Rn → Rn, b : [0, T ]× Rn → Rn×m are measurable functions
and Wt is m-dimensional Brownian motion. According to [10] and [11], to
obtain the desired estimators, we need the reverse time diffusion process χt
of Xt on [0, T ). In [3], the conditions for the existence and uniqueness of the
reverse time diffusion process are stated and they are abbreviated to

Assumption 1 the functions ai(t, x) and bij(t, x), 1 ≤ i ≤ n, 1 ≤ j ≤ m are

bounded and uniformly Lipschitz continuous in (t, x) on [0, T ]× Rn;

Assumption 2 the functions (b b>)ij are uniformly Hölder continuous in x;

Assumption 3 there exists c > 0 such that

n
∑

i,j=1

(b b>)ij yiyj ≥ c|y|2, for all y ∈ Rn, (t, x) ∈ [0, T ]× Rn;
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Assumption 4 the functions ax, bx and bxx satisfy Assumption 1 and 2.

We say that Xt in (5) is time reversible iff the coefficients satisfy the above
4 conditions.

Theorem 1 [3] Assume Assumption 1 - Assumption 4 hold. Let p(t, x) be the
solution of the Kolmogorov equation for Xt. Then Xt can be realized as

Xt = XT +
∫ t

T
ā(s,Xs)d(−s) +

∫ t

T
b(s,Xs)dW̄s, 0 ≤ t < T

where W̄s is a Brownian motion independent of XT , and

ā(s,Xs) = −a(s,Xs) +

n
∑

i=1

∂

∂xi

(

m
∑

k=1

bik(s, x)b·k(s, x)p(s, x)

)∣

∣

∣

∣

∣

x=Xs

p(s,Xs)
. (6)

3 Derivation of The Optimal Estimators

3.1 Notations & Definitions

We will use the following notations throughout this paper.

• Pcc(Rn) : the space of closed and connected subsets in Rn.
• S : [0, T ]→ Pcc(Rn) : set-valued function.
• S(a,b) :=

⋃

a<t<b
S(t) , ∂S(a,b) :=

⋃

a<t<b
∂S(t), ∂S := ∂S(0,T ).

We say S is smooth iff for each x ∈ ∂S, there exists a unique tangent plane at
x. We only consider smooth set-valued functions.

• Xt : the time reversible signal process satisfying (5).
• Yt := XtIXt /∈S(t), t ∈ [0, T ], Y[a,b] := {Yt}t∈[a,b].
• X t0

t := Xt+t0 , χt0t := Xt0−tIt∈[0,T ], the reverse time process.

• X̃ t0
t := X t0

t IXt0
t /∈S(t0+t)

, χ̃t0t := X t0
t Iχt0t /∈S(t0−t)

.

Note that X t0
t and χt0t have the same initial distribution of ξ

d∼ Xt0 .

Let Ft = σ{Wt : 0 ≤ t < T − t0}, Gt = σ{W̄t : 0 ≤ t < t0}, and ξ be
all independent and we consider the filtrations σ(ξ,Ft), 0 ≤ t < T − t0 and
σ(ξ,Gt), 0 ≤ t < t0. Let Xt0 ∈ S(t0) and we define two random times

• τt0 := t0 − sup{s|s < t0, Xs /∈ S(s)} ∨ 0,
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• σt0 := inf{s|s > t0, Xs /∈ S(s)} ∧ T − t0.

We omit the subscript t0 for convenience. τ and σ can be rephrased w.r.t. X t0
t

and χt0t as follows:

τ = τ(ξ) : the first hitting time of χt0t to S(t0 − t) when ξ ∈ S(t0),
σ = σ(ξ) : the first hitting time of X t0

t to S(t0 + t) when ξ ∈ S(t0).

Let Xx
t and χxt be the processes X

t0
t and χt0t which start at x and PXx and Pχx

be probability measures induced by them, then with Pξ induced by ξ, these
three probability measures are independent. We denote Eχ0 , EX0 and Eξ for
the corresponding integrations.

We define the first hitting density of X t0
t on ∂S(t0,T ) as follows: We first define

two measures on ∂S(t0,T ). Let B̃ be open set in ∂S(t0,T ) and x ∈ S(t0).

νx(B̃) : = PXx((σ(x), X t0
σ(x)) ∈ B̃),

µn(B̃) : n-dimensional Hausdorff measure on ∂S(t0,T ).

Since νx ¿ µn, there exists the unique density function vx(t, y) := ∂νx/∂µn(t, y),
(t, y) ∈ ∂S(t0,T ) s.t.

νx(B̃) :=
∫

B̃
vx(t, y)dµn(t, y).

We can similarly define ux(s, z) := ∂λx/∂µn(s, z), (s, z) ∈ ∂S(0,t0) where

λx(Ã) : = Pχx((τ(x), χτ(x)) ∈ Ã) for open set Ã ⊂ ∂S(0,t0).

3.2 Extrapolation

Suppose Xt0 ∈ S(t0) and we have observed Yt for 0 ≤ t ≤ t0 and we want to
estimate a future state X t0

t , 0 ≤ t ≤ T − t0. From the lastly observed point
before t0, we obtain the conditional density v(x) = q(x|τ, χt0τ ) for the present
estimator as in (4) and we use this density as the initial condition for the
Kolmogorov equation;

∂pt0(t, x)

∂t
=−

n
∑

i=1

∂(pt0(t, x)a(t+t0, x))

∂x
+
1

2

n
∑

i,j=1

∂2(b>(t+t0, x)p
t0(t, x)b(t+t0, x))

∂xi∂xj
,

(7)

pt0(0, x) = v(x).

The solution pt0(t, x) is the conditional density for the extrapolator.
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3.3 Backward filtering

Suppose Xt0 ∈ S(t0) and we observe the hidden signal from the present time
t0 up to a future time and we want to estimate Xt0 .

Applying the strong Markov property, we can get a similar identity as (3)

E[f(Xt0)IXt0∈S(t0)|Y[t0,T ]] = E[f(Xt0)IXt0∈S(t0)|σ,X t0
σ ], (8)

We can think of two cases. One is the case when the hidden signal reappears
before T and the other is when the signal does not appear up to T .

3.3.1 Case 1 : t0 < t0 + σ ≤ T

Consider the joint density function

v(x; s, z) =
P
[

ξ ∈ dx; (σ(ξ), X t0
σ(ξ)) ∈ d(s, z)

]

dx d(s, z)
, t0 < s ≤ T.

By conditioning on ξ, we can decompose this density such as

v(x; s, z) = pt0(x)vx(s, z),

where pt0(x) is the density function of Xt0 . Hence, by the identity (8), we
obtain the formula

E[f(Xt0)IXt0∈S(t0)|Y[t0,T ]] =
∫

St0

f(x)v(x|σ,X t0
σ )dx (9)

where v(x|t, y) = pt0(x)vx(s, z)
∫

St0
pt0(r)vr(s, z)dr

. We can get pt0(x) = p(t0, x) by solving

the Kolmogorov equation

∂p(t, x)

∂t
= −

n
∑

i=1

∂(p(t, x)a(t, x))

∂x
+

1

2

n
∑

i,j=1

∂2(bT (t, x)p(t, x)b(t, x))

∂xi∂xj
, (10)

p(0, x) = δ(x),

where δ(x) is Dirac-delta function. vx(s, z) is obtained by the following proce-
dure. We need to solve the the following backward boundary value problem.

Lemma 2 We let C∞0 (∂S) be the set of infinitely differentiable function ψ’s
such that Suppψ ⊂⊂ ∂S. Consider the following partial differential equation

∂v

∂t
+

1

2
Tr[b>(t, x)vxxb(t, x)] + v>x a(t, x) = 0, (t, x) ∈ S(t0,T ) (11)
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with the boundary conditions

v(t, x) = ψ(t, x), for (t, x) ∈ ∂S(t0,T ),

v(T, x) = 0, for x ∈ S(t),
(12)

where Tr is the trace of m×m matrix and ψ ∈ C∞0 (∂S(t0,T )). Then there exists

a unique solution v(t, x) in C1,2([t0, T )× S(t)) and L such that

v(t, x) =
∫

∂S(t0,T )

L(t, x; r, y)ψ(r, y) dµn(r, y)

holds.

Proof. See [12] and references therein. 2

By applying Ito’s formula, Lemma 2, and the standard localization technique
for local martingale, we obtain the following lemma.

Lemma 3 Under the same assumptions in Lemma 2 , we get

E[ψ(σ(x), X t0
σ(x))] = v(0, x).

In particular, (σ(x), X t0
σ(x)) has the joint density function L(0, x; s, z)(= vx(s, z)).

Proof. See Lemma 3.2 [11]. 2

Hence, we have

E[ψ(σ(x), X t0
σ(x))] =

∫

∂S(t0,T )

vx(r, y)ψ(r, y) dµn(r, y)

and by taking a sequence ψs,zn ∈ C∞0 (∂S(t0,T )) converging to the Dirac-δ func-
tion at (s, z) on ∂S(t0,T ), we obtain the joint density vx(s, z) such as,

lim
n→∞

E[ψs,zn (σ(x), X t0
σ(x))] = vx(s, z).

Let vs,zn be the corresponding solution of (11) with the boundary conditions
(12) for ψ = ψs,zn , then by Lemma 3 we have

vx(s, z) = lim
n→∞

vs,zn (0, x).

3.3.2 Case 2 : T < t0 + σ

Just vx(s, z) in (9) is replaced by P (t0 + σ(x) > T ).
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3.4 Interpolation

Suppose we have observed Yt from the beginning to the final time T and we
want to estimate Xt0 , 0 < t0 < T , when Xt0 ∈ S(t0).

The following lemma asserts that we can apply the strong Markov property
to two strong Markov processes simultaneously even if they start at same ξ.

Lemma 4 Let f and g be bounded Borel functions, then

E[f(χt0τ+t) · g(X t0
σ+s)|Fτ(ξ), ξ,Gσ(ξ)] = E[f(χt0τ+t)|Fτ(ξ), ξ] · E[g(X t0

σ+s)|ξ,Gσ(ξ)].

Proof. Let F = F (ξ), H, and G = G(ξ) be Fτ(ξ), ξ, and Gσ(ξ) measurable
sets respectively, then conditioning on ξ, we have

E
[

E[f(χt0τ+t)|Fτ(ξ), ξ] · E[g(X t0
σ+s)|ξ,Gσ(ξ)] · IFHG

]

= Eξ

[

IH · E
[

E[f(ξ+χ0
τ+t) · IF |Fτ(ξ), ξ] · E[g(ξ+X0

σ+s) · IG| ξ, Gσ(ξ)]
∣

∣

∣ ξ
]

]

= Eξ

[

IH · Eχ0

[

f(ξ+χ0
τ+t) · IF

]

· EX0

[

g(ξ+X0
σ+s) · IG

]

]

= Eξ

[

IH · Eχ0×X0

[

f(ξ+χ0
τ+t) · g(ξ+X0

σ+s) · IFG
]

]

= E
[

f(χt0τ+t) · g(X t0
σ+s) · IFHG

]

.

2

Theorem 5 For bounded Borel function f , we have

E[f(Xt0)IXt0∈S(t0)|Y[0,T ]] = E[f(Xt0)IXt0∈S(t0)|τ, χt0τ , σ,X t0
σ ]. (13)

Remark 6 This identity means that if we observe the hidden process up to

time T , it is enough for us to know the lastly observed time and position before

t0 and the first reappearing time and position after t0 to estimate the hidden

state Xt0 optimally.

Proof. Let Ai, Bi, i = 1, 2, · · · , n, and Ã, B̃ be Borel sets in Rn and ∂S
respectively. We let A :=

∏n
i=1Ai and B :=

∏n
i=1Bi and denote

{χ̃τ+t ∈ A} := {χ̃τ+t1 ∈ A1, · · · , χ̃τ+tn ∈ An},
{X̃σ+s ∈ B} := {X̃σ+s1 ∈ B1, · · · , X̃σ+sn ∈ Bn}.

It is enough to prove that both sides of the equation (13) have the same ex-
pected values when they are multiplied by I

{(τ,χ
t0
τ )∈Ã, χ̃τ+t∈A}

·I
{(σ,X

t0
σ )∈B̃, X̃σ+s∈B}

.
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By using Lemma 4 and the strong Markov property, we have

E
[

f(Xt0)IXt0∈S(t0) · I{(τ,χt0τ )∈Ã, χ̃τ+t∈A}
I
{(σ,X

t0
σ )∈B̃, X̃σ+s∈B}

]

= E
[

f(ξ)Iξ∈S(t0)I{(τ,χt0τ )∈Ã}
I
{(σ,X

t0
σ )∈B̃}

E
[

I{χ̃τ+t∈A}I{X̃σ+s∈B}

∣

∣

∣Fτ(ξ), ξ,Gσ(ξ)

]

]

= E
[

f(ξ)Iξ∈S(t0)I{(τ,χt0τ )∈Ã}
I
{(σ,X

t0
σ )∈B̃}

P χ
t0
τ (χ̃t ∈ A) · PX

t0
σ (X̃s ∈ B)

]

.

On the other hand, similarly we have

E
[

E
[

f(Xt0)IXt0∈S(t0)

∣

∣

∣τ, χt0τ , σ,X
t0
σ

]

· I
{(τ,χ

t0
τ )∈Ã, χ̃τ+t∈A}

I
{(σ,X

t0
σ )∈B̃, X̃σ+s∈B}

]

= E
[

E
[

f(ξ)Iξ∈S(t0)I{(τ,χt0τ )∈Ã}
I
{(σ,X

t0
σ )∈B̃}

∣

∣

∣τ, χt0τ , σ,X
t0
σ

]

· E
[

I{χ̃τ+t∈A}I{X̃σ+s∈B}

∣

∣

∣Fτ(ξ), ξ,Gσ(ξ)

]

]

= E
[

E
[

f(ξ)Iξ∈S(t0)I{(τ,χt0τ )∈Ã}
I
{(σ,X

t0
σ )∈B̃}

∣

∣

∣τ, χt0τ , σ,X
t0
σ

]

· P χ
t0
τ (χ̃t ∈ A) · PX

t0
σ (X̃s ∈ B)

]

= E
[

f(ξ)Iξ∈S(t0)I{(τ,χt0τ )∈Ã}
I
{(σ,X

t0
σ )∈B̃}

P χ
t0
τ (χ̃t ∈ A) · PX

t0
σ (X̃s ∈ B)

]

.

This completes the proof. 2

Let q(x; t, y; s, z) be the joint density function such that

q(x; t, y; s, z) =
P
[

ξ ∈ dx; (τ(ξ), χt0τ(ξ)) ∈ d(t, y); (σ(ξ), X t0
σ(ξ)) ∈ d(s, z)

]

dx d(t, y) d(s, z)
,

(14)

By conditioning on ξ, we can decompose the joint density such as

q(x; t, y; s, z) = pt0(x)ux(t, y)vx(s, z)

where pt0(x) is the density function of Xt0 , ux(t, y) and vx(s, z) are the first
hitting densities defined in section 3.1. The density function pt0(x) = p(t0, x) is
obtained by solving the Kolmogorov’s equation (10), vx(s, z) is given in section
3.3 and ux(t, y) is obtained by solving the following backward boundary value
problem for the reverse time process χt0

∂u

∂t
+

1

2
Tr[d>(t, x)uxxd(t, x)] + u>x c(t, x) = 0, (t0 − t, x) ∈ S(0,t0)

with the boundary conditions

u(t, x) = ϕ(t, x), for (t, x) ∈ ∂S(0,t0),

u(t0, x) = 0, for x ∈ S(t),
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where c(t, x) := ā(t0 − t, x), d(t, x) := b(t0 − t, x), and ϕ ∈ C∞0 (∂S) is close to
a Dirac-delta function on ∂S(0,t0) - see [11].

Hence, by the identity (13), we obtain the formula for the interpolator such
as

Theorem 7

E[f(Xt0)IXt0∈S(t0)|Y[0,T ]] =
∫

St0

f(x)q(x|t, y; s, z)dx,

where q(x|t, y; s, z) = pt0(x)ux(t, y)vx(s, z)
∫

St0
pt0(r)ur(t, y)vr(s, z)dr

.

Example 1 (Brownian excursion and meander)

Let Wt be standard 1-dimensional Brownian motion starting at 0 and hidden
by S(t) = (0,∞), t > 0. Suppose Wt0 ∈ S(t0) and τ = t, σ = s, then the joint
density in (14) is

P (Xt0 ∈ dx, τ(Xt0) ∈ dt, σ(Xt0) ∈ ds)
dxdtds

= pt0(x)ux(t, 0)vx(s, 0), (15)

where

ux(t, 0) =
x

√

2π(t0 − t)t3
e−(t0−t)x2/2t and vx(s, 0) =

x√
2πs3

e−x
2/2s.

Then, the conditional density for Wt0 is evaluated as

P [Wt0 ∈ dx|τ = t,σ = s]/dx =
pt0(x)ux(t, 0)vx(s, 0)

∫

St0
pt0(z)uz(t, 0)vz(s, 0)dz

=

√

2

π

√

(s+ t)3

s3t3
x2 exp

{

− x2(s+ t)

2st

}

.

We can derive the same result using Corollary of Theorem 6 in [4].

When T < t0 + σ, the joint density for the interpolator is

P (Wt0 ∈ dx)P (τ(x) ∈ dt)P (t0 + σ(x) > T )/dxdt (16)

where

P (t0 + σ(x) > T ) = 1−
∫ T−t0

0

x√
2πr3

e−x
2/2rdr (17)

and we can obtain the corresponding conditional density for the interpolator.
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From Theorem 9 (Appendix), we have

P (γ(T ) ∈ d(t0 − t), Z(t0) ∈ dx, |W (T )| > 0)/d(−t)dx (18)

= 2p(t0 − t, 0, 0)g(t0, 0, x)
∫ ∞

0
q(T − t0;x, y)dy.

A little calculation shows that the last integral in the above line coincides with
(17), hence (18) yields the same conditional density as (16). So, we conclude
that the interpolator for hidden Brownian motion coincides with Brownian
excursion or meander.

The conditional densities for the filters and the interpolators at fixed times
are compared in Fig 1. We used Matlab for the numerical simulations in this
article. The densities for the interpolator seem to have smaller variance, hence
we can infer that they yield more accurate estimates.

4 A Last Exit Decomposition

For Brownian motion, the joint density (15) has an another decomposition
which is called the last exit decomposition (LED) as follows:

p(t0 − t, 0, 0)vx(t, 0)vx(s, 0).

This principle is proved for more general Markov processes in Getoor et al. [6]
and [7], and for scalar Brownian motion with smooth time varying boundaries
in Salminen [14]. Here we give a generalized version of the result in [14]. This
provides us some convenience since in this decomposition, we need not know
ux(t, y).

Theorem 8 Let Wt be n-dimensional Brownian motion. Then, for Wt and

set-valued function S : [0,∞) → Pcc(Rn), the joint density in (14) is decom-

posed as

q(x; t, y; s, z) = pt0−t(y)vx(t, y)vx(s, z).

Proof. It is enough for us to prove

u(x; t, y) :=
P
[

ξ ∈ dx; (τ(ξ), χt0τ(ξ)) ∈ d(t, y)
]

dx d(t, y)
= pt0−t(y)vx(t, y), (t, y) ∈ ∂S(0, t0).
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Let C ⊂ S(t0) be an open set in Rn, and Ã be an open set in ∂S(0, t0), then

P0

[

Wt0 ∈ S, (τ(Wt0), χτ(Wt0 )) ∈ Ã
]

=
∫

C
P0

[

Wt0 ∈ dx, (τ(Wt0), χτ(Wt0 )) ∈ Ã
]

=
∫

C
Pχx

[

(τ(x), χτ(x)) ∈ Ã
]

P0(Wt0 ∈ dx)

=
∫

C
Pχx

[

(τ(x), χτ(x)) ∈ Ã
∣

∣

∣W̄t0 = 0
]

P0(Wt0 ∈ dx)

=
∫

C
lim
dh→0

Pχx
[

(τ(x), χτ(x)) ∈ Ã, W̄t0 ∈ dh
]

pt0(x, 0) · dh
· pt0(0, x)dx

=
∫

C
lim
dh→0

Pχx
[

W̄t0 ∈ dh
∣

∣

∣(τ(x), χτ(x)) ∈ Ã
]

/dh · Pχx
[

(τ(x), χτ(x)) ∈ Ã
]

dx

=
∫

C
pt0−τ(x)(χτ(x), 0) · Pχx

[

(τ(x), χτ(x)) ∈ Ã
]

dx.

By the Lebesgue differentiation w.r.t x, the last line above becomes

pt0−τ(x)(χτ(x), 0) · Pχx
[

(τ(x), χτ(x)) ∈ Ã
]

.

Again, taking a sequence of balls Ãn on ∂S(0,t0) that shrinks to (t, y) nicely,
we obtain

u(x; t, y) = lim
n→∞

pt0−τ(x)(χτ(x), 0) ·
Pχx

[

(τ(x), χτ(x)) ∈ Ãn

]

µn(Ãn)

= pt0−t(y)vx(t, y).

2

Example 2 (Scalar Brownian motion hidden by an interval)

Suppose Wt is hidden by the interval S(t) = [0, 1] and W1 ∈ [0, 1]. Due
to Theorem 8, we can obtain the explicit filter and interpolator at each t0
for this case. Suppose Wt is lastly observed at (2/3, 0) i.e. (τ(W1), χτ(W1)) =
(1/3, 0). We compare the conditional density functions at t = 1 for the two
decompositions given above.

Let 0 < x < a, W x
t be Brownian motion starting at x and τ0 and τa be the

first hitting times of W x
t to y = 0 and y = a. Then for t > 0,

f 0
Wx(t) : = P x(τ0 ∈ dt, τ0 < τa)/dt, faWx(t) : = P x(τa ∈ dt, τa < τ0)/dt,

12



f 0
Wx(t) =

1√
2πt3

∞
∑

n=−∞

(2na+x) exp
{

− (2na+x)2

2t

}

,

faWx(t) =
1√
2πt3

∞
∑

n=−∞

(2na+a−x) exp
{

− (2na+a−x)2
2t

}

.

By Theorem 8, we have

u(x, 1/3, 0) = p2/3(0) · f 0
Wx(1/3) (19)

and alternatively, we can decompose (19) as in (15), u(x, 1/3, 0) = p1(0) ·
ux(1/3, 0) where ux(1/3, 0) is the first hitting density of (reverse) Brownian
bridge at (1/3, 0). We can obtain approximate ux(1/3, 0) by solving the partial
differential equation

∂u

∂t
+

1

2

∂2u

∂x2
− x

1− t
∂u

∂x
= 0, (t, x) ∈ [0, 1)× (0, 1)

with the boundary conditions

u(t, 0) = ϕ(1/3)
n (t), t ∈ [0, 1),

u(1, x) = 0, x ∈ (0, 1), and

u(t, 1) = 0, t ∈ [0, 1),

where
ϕ(1/3)
n (t) =

n

2
I[ 1

3
− 1

n
, 1
3
+ 1

n
](t).

We use finite difference method and the approximate conditional densities are
depicted in Fig 2 along with those by (19) for two different (τ, χ1

τ )’s.

5 Optimal Reconstruction of Lost Paths

Example 3 (Scalar Brownian motion hidden by an interval II)

For the same setting as in Example 2, we can obtain the interpolated esti-
mates at each time on the hidden interval using Theorem 7. In Fig 3, the
reconstructed paths are depicted using the conditional means at each time
for the interpolator in Theorem 7. We considered two cases. One is ‘bounded’
(Brownian) excursion and the other is ‘crossing’ (Brownian) excursion, i.e.
the signal reappears on the other boundary. The second case shows that the
simple linear interpolation is not the optimal reconstruction for the hidden
crossing excursion. A big discontinuity occurs for the filtered estimates at the
reappearing time.
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Example 4 (Planar Brownian motion hidden by a quadrant)

Let Xt = (W
(1)
t ,W

(2)
t ) be 2-dimensional Brownian motion starting at (0,0)

and suppose Xt0 is hidden by the quadrant S(t) = [0,∞) × [0,∞). We want
to reconstruct lost path on I = (t0− τ, t0 + σ) for the following two cases. We
let t0 + σ < T .

Case 1 : Xt lastly observed at (y1, 0) and reappeared at (0, y2); On I,

(W
(1)
t |Y[0,T ]) is scalar Brownian motion starting at (t0−τ, y1) which firstly hits

zero at t = t0 + σ i.e. time reversed Brownian meander with fixed end point.
And (W

(2)
t |Y[0,T ]) on I is the Brownian meander starting from (t0 − τ, 0) with

fixed end point (t0 + σ, y2). We can evaluate the each mean path using the
density function in Corollary 10 (Appendix).

Case 2 : Xt lastly observed at (y1, 0) and reappeared at (y2, 0); On

I, (W
(1)
t |Y[0,T ]) behaves as Brownian bridge from (t0 − τ, y1) to (t0 + σ, y2)

with lower bound zero and its mean path is evaluated using Corollary 11.
(W

(2)
t |Y[0,T ]) behaves as standard Brownian excursion on I, whose mean path

is given as

E(W
(2)
t |Y[0,T ]) =

2√
π

√

2(t− t0 + τ)(t0 − t+ σ)

τ + σ
, t ∈ I.

E(Xt|Y[0,T ]) is depicted in Fig 4 for both two cases, where R is the sojourn
time in the obstacle.

5.1 Finite Difference Method

We illustrate the algorithm by FDM by an example. Consider the simple ob-
stacle S(t) = (0,∞), t > 0 and the Ornstein-Uhlenbeck process Xt satisfying
the following equation:

dXt = Xtdt+ dWt, X0 = 1, (20)

Note that the coefficients in (20) satisfies the 4 conditions in Section 2. Suppose
Xt is lastly observed at (1, 0) and firstly reappeared at (3, 0). We want to
reconstruct the lost path.

Since (20) has the explicit solution

Xt = e−t
∫ t

0
esdWs, t > 0,

14



Xt is a zero mean Gaussian process with variance V (t) =
1

2
(1− e−2t). Hence

p(t, x) =
1

√

π(1− e−2t)
e−x

2/(1−e−2t). (21)

The PDE’s for ux(t, y) and vx(s, z) is given as

∂u

∂t
+

1

2

∂2u

∂x2
+ x

(

1− 2

1− e−2(3−t)

)

∂u

∂x
= 0, and

∂v

∂t
+

1

2

∂2v

∂x2
− x∂v

∂x
= 0, for (t, x) ∈ [1, 3]× [0,∞).

We take 8 instead of∞ and equally divide the rectangle [1, 3)×[0, 8) by 8, 000×
320. We evaluate two matrices U and V of the same size m×n where n = 8001
and m = 321 for the functions u and v. As boundary conditions, we impose
10,000 on U(1, 8001) for the Dirac-δ function and evaluate U by backward
finite difference method. Likewise, we evaluate V backward by imposing 10,000
on the other time end point. The elements of U and V are arrayed in an unusual
way as follows:

U(V ) =















um,n(vm,1) · · · um,1(vm,n)
...

. . .
...

u1,n(v1,1) · · · u1,1(v1,n)















,

where u1,n = v1,n = 10, 000. For each time discretization point ti ∈ [1, 3] we
use p(ti, x) in (21), ith column of V , and (8001− i)th column of U to evaluate
the interpolated estimate in Theorem 7. The estimated values are plotted in
Fig 5.

5.2 Monte Carlo Method by Simulation of Conditional Brownian Motions

When we reconstruct the whole hidden path, we evaluated conditional expec-
tations at each time point using complicated conditional densities. For Brow-
nian motion, we can generate various conditioned paths by some transforms
of Brownian motion and Brownian bridge. For example, let B i

t, i = 1, 2, 3 be
3 independent copies of Brownian bridge from (0, 0) to (1, 0). Then

Bme,r
t =

√

(rt+B1
t )2 + (B2

t )2 + (B3
t )2, 0 ≤ t ≤ 1

is the Brownian meander with fixed end point (1, r) which is needed inExample 4.
We can also generate Brownian excursion path by transposing the pre-minimum
part and post-minimum part of Brownian bridge as can be seen in Vervaat [16].
For other transforms, see [2] and references therein. Hence, we can get approx-
imate estimates by Monte Carlo methods using these transformed paths. Since
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we are interested in the conditional mean or expectation of some functionals
of the process, we need not evaluate the conditional density at each time in
this approach. When one of the boundary in Example 3 is not a constant, this
method is more useful. We can choose out paths which satisfy given boundary
conditions.

For example, consider the obstacle S(t) = (0, 4t/5), t > 0 and Wt is lastly
observed at (1, 0) and reappeared at (2, 0). We took a step-size 1/29 and
generated 5000 excursion paths. 2842 paths are discarded which do not obey
the upper boundary. The approximate estimates are compared with those by
finite difference method. See Fig 6.

Appendix : Some f.d.d.’s for conditional Brownian motion

Consider the standard Brownian meander on (γ(t0), t0) where γ(t0) = t0 − τ .
Let Z(u) = |W (γ(t0) + u)|. We quote the finite dimensional distribution of
Brownian meander given in Theorem 4 in Chung [4].

Theorem 9 Let m ≥ 1, 0 < u1 < u2 < ... < um < t0 − t < t0 and y1, ...ym+1

be arbitrary positive numbers. We have

P (γ(t0) ∈ dt;Z(u1) ∈ dy1, ..Z(um) ∈ dym; |W (t0)| ∈ dym+1)

= 2p(t, 0, 0)dt g(u1; 0, y1)dy1 q(u2−u1; y1, y2)dy2 ...q(um−um−1; ym−1, ym)dym

·q(t0 − t− um; ym, ym+1)dym+1.

where p(t;x, y) is the transition density of Wt, g(t; 0, y) =
|y|√
2πt3

e−y
2/2t, and

q(t;x, y) = p(t;x, y)− p(t;x,−y).

We immediately have

Corollary 10 (Brownian meander with fixed end point) For 0 < u <
t0,

P (Z(u) ∈ dy|γ(t0) ∈ dt, |W (t0)| ∈ dy1) =
g(u; 0, y) · q(t0 − t− u; y, y1)

g(t0 − t; 0, y1)
dy.

Corollary 11 (Brownian bridge with a lower bound) Let Bt be Brow-

nian bridge from (0, y1) to (t0, y2).

P (Bu ∈ dy|Bu > 0 for u ∈ [0, 1]) =
q(u; y1, y) · q(t0 − t− u; y, y2)

q(t0; y1, y2)
dy.
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Fig. 1. Conditional densities for filter and interpolator; Lastly observes at (1, 0) &
reappeared at (2, 0).
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