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Abstract. We develop the left-definite analysis associated with the self-adjoint operator A
(α,β)
k in

the Hilbert space L2
α,β(−1, 1) := L2((−1, 1); wα,β(t)), where wα,β(t) = (1 − t)α(1 + t)β , generated

from the classical second-order Jacobi differential equation

`α,β,k[y](t) =
1

wα,β(t)

((
−(1 − t)α+1(1 + t)β+1

y
′(t)
)
′

+ k(1 − t)α(1 + t)β
y(t)

)
(t ∈ (−1, 1)),

that has the Jacobi polynomials {P
(α,β)
m }∞m=0 as eigenfunctions; here, α, β > −1 and k is a fixed,

non-negative constant. More specifically, for each n ∈ N, we explicitly determine the unique left-

definite Hilbert-Sobolev space W
(α,β)
n,k (−1, 1) associated with (L2

α,β(−1, 1), A
(α,β)
k ). Moreover, for

each n ∈ N, we determine the corresponding unique left-definite self-adjoint operator B
(α,β)
n,k in

W
(α,β)
n,k (−1, 1) and characterize its domain in terms of another left-definite space. The key to

determining these spaces and inner products is in finding the explicit Lagrangian symmetric form
of the integral composite powers of `α,β,k[·]. In turn, the key to determining these powers is a
remarkable new identity involving a double sequence of numbers which we call Jacobi-Stirling

numbers.

1. Introduction

In a recent paper [16], Littlejohn and Wellman developed a general abstract left-definite theory
for self-adjoint, bounded below operators A in a Hilbert space (H, (·, ·)). More specifically, they
construct a continuum of unique Hilbert spaces {(Wr, (·, ·)r)}r>0 and, for each r > 0, a unique
self-adjoint restriction Br of A in Wr. The Hilbert space Wr is called the rth left-definite Hilbert

space associated with the pair (H, A) and the operator Br is called the rth left-definite operator

associated with (H, A); further details of these constructions, spaces, and operators is given in
Section 2 below. Left-definite theory (the terminology left-definite is due to Schäfke and Schneider
(who used the German Links-definit) [23] in 1965) has its roots in the classic treatise of Weyl [28]
on the theory of formally symmetric second-order differential expressions. We remark, however,
that even though our motivation for the general left-definite theory developed in [16] arose through
our interest in certain self-adjoint differential operators, the theory developed in [16] can be applied
to any strictly positive, self-adjoint operator in a Hilbert space.

In this paper, we apply this left-definite theory to the self-adjoint Jacobi differential operator

A
(α,β)
k , generated by the classical second-order Lagrangian symmetrizable (see [15]) Jacobi differ-

ential expression

`α,β,k[y](t) :=
1

wα,β(t)

((
−(1− t)α+1(1 + t)β+1)y′(t)

)′
+ k(1− t)α(1 + t)βy(t)

)
(1.1)

= −(1− t2)y′′ + (α− β + (α + β + 2)t)y′(t) + ky(t) (t ∈ (−1, 1)),

Date: 13 August 2002; Version 2.
1991 Mathematics Subject Classification. Primary 33C65, 34B30, 47B25; Secondary 34B20, 47B65 .
Key words and phrases. spectral theorem, left-definite Sobolev space, left-definite self-adjoint operator, Lagrangian

symmetric, Jacobi polynomials, Stirling numbers of the second kind, Jacobi-Stirling numbers.

1



2 W. N. EVERITT, K. H. KWON, L. L. LITTLEJOHN, AND G. J. YOON

where

(1.2) wα,β(t) := (1− t)α(1 + t)β (t ∈ (−1, 1)),

which has the Jacobi polynomials {P
(α,β)
r }∞r=0 as eigenfunctions. Throughout this paper, we assume

α, β > −1 and k is a fixed, non-negative constant. The right-definite setting for this Jacobi
differential expression is the Hilbert space L2((−1, 1); wα,β(t)) := L2

α,β(−1, 1), defined by

(1.3) L2
α,β(−1, 1) := {f : (−1, 1) → C | f is Lebesgue measurable and

∫ 1

−1
|f(t)|2 wα,β(t)dt < ∞},

with inner product

(1.4) (f, g)α,β :=

∫ 1

−1
f(t)g(t)wα,β(t)dt (f, g ∈ L2

α,β(−1, 1)).

When α = β = 0, (1.1) is the Legendre differential expression which, for later purposes, we list as

(1.5) `0,0,k[y](t) := −
(
(1− t2)y′(t)

)′
+ ky(t) (t ∈ (−1, 1)).

Historically, it was Titchmarsh (see [25] and [26]) who first studied, in detail, the analytic properties
of `0,0,k[·] in the right-definite setting L2(−1, 1) := L2

0,0(−1, 1). In particular, he showed that

the Legendre polynomials {Pn}
∞
n=0 are eigenfunctions of a certain self-adjoint operator, which we

denote by A
(0,0)
k , generated by the singular differential expression `0,0,k[·]. Another detailed reference

concerning the Legendre expression, and its properties, is [7]; for a comprehensive treatment of the
Jacobi expression (1.1) in the setting L2

α,β(−1, 1), see the thesis of Onyango-Otieno in [18].
This paper may be seen as a continuation of the results obtained for the Legendre differential ex-

pression in [10] and the related papers [3] and [8]. In [10], the authors develop the left-definite theory

of the operator A
(0,0)
k in the Hilbert space L2(−1, 1), generated by (1.5), and having the Legendre

polynomials {Pn}
∞
n=0 as eigenfunctions. In [3], a new characterization of the domains D(A

(0,0)
k )

and D(B
(0,0)
1,k ), where B

(0,0)
1,k is the first left-definite operator associated with (L2(−1, 1), A

(0,0)
k ), are

given as well as a new proof of the Everitt-Marić result [11]. In [8], the authors obtain further new

characterizations of the domain D(A
(0,0)
k ) of A

(0,0)
k , including a different proof of the one given in

[3].
We remark that, even though the theory obtained in [16] guarantees the existence of a contin-

uum of left-definite spaces {W
(α,β)
r,k (−1, 1)}r>0 and left-definite operators {B

(α,β)
r,k }r>0 associated

with the pair (L2
α,β(−1, 1), A

(α,β)
k ), we can only effectively determine these spaces and operators

in this general Jacobi case when r is a positive integer; see Remark 2.1 in Section 2. The key to

obtaining these explicit characterizations of {W
(α,β)
r,k (−1, 1)}r∈N and {B

(α,β)
r,k }r∈N is in obtaining the

Lagrangian symmetrizable form of each integral power `r
α,β,k[·] of the Jacobi differential expression

`α,β,k[·]. In turn, the key to obtaining these integral powers is a remarkable, and yet somewhat
mysterious, combinatorial identity involving a function that can be viewed as a sort of generating
function for these integral powers of `α,β,k[·]. In our discussion of the combinatorics of these inte-

gral powers of `α,β,k[·], we introduce a double sequence {P (α,β)S
(j)
n } of real numbers that we call

Jacobi-Stirling numbers; these numbers, as we will see, share similar properties with the classical

Stirling numbers of the second kind {S
(j)
n }. Furthermore, these Jacobi-Stirling numbers generalize

the Legendre-Stirling numbers, whose properties are developed in [10] and [13].
The contents of this paper are as follows. In Section 2, we state some of the main left-definite

results developed in [16]. In Section 3, we review key properties of the Jacobi differential equation,

the Jacobi polynomials, and the right-definite self-adjoint operator A
(α,β)
k , generated by the second-

order Jacobi expression (1.1), having the Jacobi polynomials as eigenfunctions; explicit in this
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review is a discussion of the Glazman-Krein-Naimark theory (see [2] and [19]). In Section 4, we
determine the Lagrangian symmetrizable form of each integral composite power of the second-order
Jacobi expression `α,β,k[·] (see Theorem 4.2) in terms of the Jacobi-Stirling numbers and we discuss
a remarkable identity involving these numbers (see Theorem 4.1 and Remark 4.2). Lastly, in Section

5, we establish the left-definite theory associated with the pair (L2
α,β(−1, 1), A

(α,β)
k ). Specifically,

we determine explicitly

(a) the sequence {W
(α,β)
n,k (−1, 1)}∞n=1 of left-definite spaces associated with (L2

α,β(−1, 1), A
(α,β)
k )

and we show that the Jacobi polynomials {P
(α,β)
m }∞m=0 form a complete orthogonal set in

each of these Hilbert-Sobolev spaces;

(b) the sequence of left-definite self-adjoint operators {B
(α,β)
n,k }∞n=1, as well as their explicit do-

mains {D(B
(α,β)
n,k )}∞n=1, associated with (L2

α,β(−1, 1), A
(α,β)
k ). Furthermore, we show that

{P
(α,β)
m }∞m=0 is a complete set of eigenfunctions for each of these operators B

(α,β)
n,k ;

(c) the domains D((A
(α,β)
k )n), for each n ∈ N, of the composite power (A

(α,β)
k )n of A

(α,β)
k .

These results culminate in Theorem 5.4.
Throughout this paper, N will denote the set of positive integers, N0 = N∪{0}, while R and C

will denote, respectively, the real and complex number fields. The term AC will denote absolute
continuity; for an open interval I ⊂ R, the notation ACloc(I) will denote those functions f : I → C

that are absolutely continuous on all compact subintervals of an interval I ⊂ R. For n ∈ N, the

space AC
(n)
loc (I) denotes the set of all functions f satisfying f (j) ∈ ACloc(I) for j = 0, 1, . . . , n. The

space of all polynomials p : R → C will be denoted by P. If A is a linear operator, D(A) will denote
its domain. Lastly, a word is in order regarding displayed, bracketed information. For example,

f(t) has property P (t ∈ I),

and

gm has property Q (m ∈ N0)

mean, respectively, that f has property P for all t ∈ I and gm has property Q for all m ∈ N0.
Further notations are introduced as needed throughout the paper.

2. Left-definite Hilbert spaces and left-definite operators

Let V denote a vector space (over the complex field C) and suppose that (·, ·) is an inner product
with norm ‖·‖ generated from (·, ·) such that H = (V, (·, ·)) is a Hilbert space. Suppose Vr (the
subscripts will be made clear shortly) is a linear manifold (vector subspace) of V and let (·, ·)r and
‖·‖r denote an inner product and associated norm, respectively, over Vr (quite possibly different
from (·, ·) and ‖·‖). We denote the resulting inner product space by Wr = (Vr, (·, ·)r).

Throughout this section, we assume that A : D(A) ⊂ H → H is a self-adjoint operator that is
bounded below by kI, for some k > 0; that is,

(Ax, x) ≥ k(x, x) (x ∈ D(A)).

It follows that Ar, for each r > 0, is a self-adjoint operator that is bounded below in H by krI.
We now define an rth left-definite space associated with (H, A).

Definition 2.1. Let r > 0 and suppose Vr is a linear manifold of the Hilbert space H = (H, (·, ·))
and (·, ·)r is an inner product on Vr. Let Wr = (Vr, (·, ·)r). We say that Wr is an rth left-definite

space associated with the pair (H, A) if each of the following conditions hold:

(1) Wr is a Hilbert space,

(2) D(Ar) is a linear manifold of Vr,
(3) D(Ar) is dense in Wr,
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(4) (x, x)r ≥ kr (x, x) (x ∈ Vr), and

(5) (x, y)r = (Arx, y) (x ∈ D(Ar), y ∈ Vr).

It is not clear, from the definition, if such a self-adjoint operator A generates a left-definite space
for a given r > 0. However, in [16], the authors prove the following theorem; the Hilbert space
spectral theorem (see [22, Chapter 13]) plays a prominent role in establishing this result.

Theorem 2.1. (see [16, Theorems 3.1 and 3.4]) Suppose A : D(A) ⊂ H → H is a self-adjoint

operator that is bounded below by kI, for some k > 0. Let r > 0. Define Wr = (Vr, (·, ·)r) by

(2.1) Vr = D(Ar/2),

and

(x, y)r = (Ar/2x, Ar/2y) (x, y ∈ Vr).

Then Wr is a left-definite space associated with the pair (H, A). Moreover, suppose W ′
r := (V ′

r , (·, ·)′r)
is another rth left-definite space associated with the pair (H, A). Then Vr = V ′

r and (x, y)r = (x, y)′r
for all x, y ∈ Vr = V ′

r ; i.e. Wr = W ′
r. That is to say, Wr = (Vr, (·, ·)r) is the unique left-definite

space associated with (H, A). Moreover,

(a) if A is bounded, then, for each r > 0,
(i) V = Vr;
(ii) the inner products (·, ·) and (·, ·)r are equivalent ;

(b) if A is unbounded, then

(i) Vr is a proper subspace of V ;
(ii) Vs is a proper subspace of Vr whenever 0 < r < s;
(iii) the inner products (·, ·) and (·, ·)s are not equivalent for any s > 0;
(iv) the inner products (·, ·)r and (·, ·)s are not equivalent for any r, s > 0, r 6= s.

Remark 2.1. Although all five conditions in Definition 2.1 are necessary in the proof of Theorem
2.1, the most important property, in a sense, is the one given in (5). Indeed, this property, which
we call the Dirichlet identity for Ar, asserts that the rth left-definite inner product is generated
from the rth power of A; see (3.15) in the next section. In particular, if A is generated from a
Lagrangian symmetrizable differential expression `[·], we see that the form of the rth power of A is
then determined by the rth power of `[·]. Practically speaking, in this case, it is possible to obtain
these powers only when r is a positive integer. However, we refer the reader to [16] where an
example is discussed in which the entire continuum of left-definite spaces is explicitly obtained.

Definition 2.2. For r > 0, let Wr = (Vr, (·, ·)r) denote the rth left-definite space associated with

(H, A). If there exists a self-adjoint operator Br : D(Br) ⊂ Wr → Wr that is a restriction of A,
that is,

Brf = Af (f ∈ D(Br) ⊂ D(A)),

we call such an operator an rth left-definite operator associated with (H, A).

Again, it is not immediately clear that such an operator Br exists for a given r > 0; in fact,
however, as the next theorem shows, Br exists and is unique.

Theorem 2.2. (see [16, Theorems 3.2 and 3.4]) Suppose A is a self-adjoint operator in a Hilbert

space H that is bounded below by kI, for some k > 0. For any r > 0, let Wr = (Vr, (·, ·)r) be the

rth left-definite space associated with (H, A). Then there exists a unique left-definite operator Br in

Wr associated with (H, A); in fact,

D(Br) = Vr+2 ⊂ D(A).

Furthermore,

(a) if A is bounded, then, for each r > 0, A = Br.
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(b) if A is unbounded, then

(i) D(Br) is a proper subspace of D(A) for each r > 0;
(ii) D(Bs) is a proper subspace of D(Br) whenever 0 < r < s.

The last theorem that we state in this section shows that the point spectrum, continuous spec-
trum, and resolvent set of A and each of its associated left-definite operators Br (r > 0) are
identical.

Theorem 2.3. (see [16, Theorem 3.6]) For each r > 0, let Br denote the rth left-definite operator

associated with the self-adjoint operator A that is bounded below by kI, where k > 0. Then

(a) the point spectra of A and Br coincide; i.e. σp(Br) = σp(A);
(b) the continuous spectra of A and Br coincide; i.e. σc(Br) = σc(A);
(c) the resolvent sets of A and Br are equal; i.e. ρ(Br) = ρ(A).

We refer the reader to [16] for other theorems, and examples, associated with the general left-
definite theory of self-adjoint operators A that are bounded below.

3. Jacobi polynomials and a discussion of the right-definite analysis of the

classical Jacobi differential expression

We remind the reader that α, β > −1 and the parameter k in (1.1) is a fixed, non-negative
constant (later, particularly in Section 5, k will be a fixed, positive constant - the specific use of

this parameter k is to shift the spectrum σ(A
(α,β)
k ) of the self-adjoint operator A

(α,β)
k (see below

for a discussion of this operator) to a subset of the positive real numbers). At this point, it is
convenient to introduce the following definitions, generalizing those in (1.3) and (1.4). For j ∈ N0,
let

L2
α+j,β+j(−1, 1) := {f : (−1, 1) → C |f is Lebesgue measurable and(3.1)

∫ 1

−1
|f(t)|2 wα+j,β+j(t) < ∞},

where wα,β(t) is defined in (1.2). Of course, each L2
α+j,β+j(−1, 1) is a Hilbert space with inner

product

(f, g)α+j,β+j : =

∫ 1

−1
f(t)g(t)wα+j,β+j(t)dt(3.2)

=

∫ 1

−1
f(t)g(t)(1− t)α+j(1 + t)β+jdt (f, g ∈ L2

α+j,β+j(−1, 1)),

and associated norm

(3.3) ‖f‖α+j,β+j := (f, f)
1/2
α+j,β+j (f ∈ L2

α+j,β+j(−1, 1)).

A simple, but useful (see Corollary 5.1) observation, is the following:

(3.4) f ∈ L2
α+j,β+j(−1, 1) ⇔ (1− t2)j/2f ∈ L2

α,β(−1, 1).

It is well known that, with

(3.5) λ
(α,β)
r,k := r(r + α + β + 1) + k (r ∈ N0),

the Jacobi equation

`α,β,k[y](t) = λ
(α,β)
r,k y(t) (t ∈ (−1, 1)),

where `α,β,k[·] is defined in (1.1), or equivalently, the well-known classical form of the Jacobi equation

(1− t2)y′′(t) + (β − α− (α + β + 2)t)y′(t) + r(r + α + β + 1)y(t) = 0,
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has a polynomial solution P
(α,β)
r (t) of degree r, called the rth Jacobi polynomial. In particular, with

the rth Jacobi polynomial P
(α,β)
r (t) defined by

P (α,β)
r (t) = k(α,β)

r

r∑

j=0

(1 + α)r(1 + α + β)r+j

j!(r − j)!(1 + α)j(1 + α + β)r

(
1− x

2

)j

(3.6)

= k(α,β)
r 2F1(−r, 1 + α + β + r; 1 + α;

1− x

2
) (r ∈ N0),

where

k(α,β)
r :=

(r!)1/2(1 + α + β + 2r)1/2(Γ(α + β + r + 1))1/2

2(α+β+1)/2(Γ(α + r + 1))1/2(Γ(β + r + 1))1/2
,

it is the case that {P
(α,β)
r }∞r=0 forms a complete orthonormal set in L2

α,β(−1, 1); that is to say,

(3.7) (P (α,β)
r , P (α,β)

n )α,β = δr,n (r, n ∈ N0),

where δr,n is the Kronecker delta symbol. In particular, for each j ∈ N0, the Jacobi polynomi-

als {P
(α+j,β+j)
r }∞r=0 form a complete orthonormal set in the Hilbert space L2

α+j,β+j(−1, 1). When

α = β = 0, these polynomials are called Legendre polynomials; if α = β = −1/2, they are called
Chebychev polynomials of the first kind and when α = β = 1/2, they are called Chebychev polyno-

mials of the second kind. In general, if α = β, the Jacobi polynomials are often called Gegenbauer

or ultraspherical polynomials. For details and various properties of the Jacobi polynomials, we
recommend the classic treatises of [20, Chapter 16] and [24, Chapter IV].

The derivatives of the Jacobi polynomials satisfy the identity

(3.8)
djP

(α,β)
r (t)

dtj
= c(α,β)(r, j)P

(α+j,β+j)
r−j (t) (r, j ∈ N0),

where

c(α,β)(r, j) :=
(r!)1/2(Γ(α + β + r + 1 + j))1/2

((r − j)!)1/2(Γ(α + β + r + 1))1/2
(j = 0, 1, . . . , r);

¿From (3.2) and (3.8), we see that

∫ 1

−1

dj(P
(α,β)
r (t))

dtj
dj(P

(α,β)
n (t))

dtj
wα+j,β+j(t)dt(3.9)

=
r!Γ(α + β + r + 1 + j)

(r − j)!Γ(α + β + r + 1)
δr,n (r, n, j ∈ N0).

We now turn our attention to discuss some operator-theoretic properties of the Jacobi differential
expression `α,β,k[·]; we recommend [18] for further details on this analysis as well as the classic texts
[2] and [19] for a general discussion of self-adjoint operators generated from Lagrangian symmetric
differential expressions.

The maximal domain ∆
(α,β)
k of `α,β,k[·] in L2

α,β(−1, 1) is defined to be

(3.10) ∆
(α,β)
k := {f ∈ L2

α,β(−1, 1) | f, f ′ ∈ ACloc(−1, 1); (1/wα,β)`α,β,k[f ] ∈ L2
α,β(−1, 1)}.

Since ∆
(α,β)
k contains P, the space of polynomials, we see that ∆

(α,β)
k is a dense vector subspace of

L2
α,β(−1, 1). The maximal operator T

(α,β)
max,k, generated by `α,β,k[·] in L2

α,β(−1, 1) is defined to be

D(T
(α,β)
max,k) := ∆

(α,β)
k

T
(α,β)
max,k(f) := `α,β,k[f ].
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The minimal operator T
(α,β)
min,k is then defined as T

(α,β)
min,k = (T

(α,β)
max,k)

∗, the Hilbert space adjoint of

T
(α,β)
max,k. This operator T

(α,β)
min,k is closed, symmetric, and satisfies (T

(α,β)
min,k)

∗ = T
(α,β)
max,k. Furthermore, the

deficiency index d(T
(α,β)
min,k) of T

(α,β)
min,k is given by

(3.11) d(T
(α,β)
min,k) =





(0, 0) if α, β ≥ 1
(1, 1) if α ≥ 1 and β ∈ (−1, 1) or β ≥ 1 and α ∈ (−1, 1)
(2, 2) if α, β ∈ (−1, 1).

Consequently, by the well-known von-Neumann theory of self-adjoint extensions of symmetric op-

erators [6, Chapter XII], T
(α,β)
min,k has self-adjoint extensions in L2

α,β(−1, 1) for all α, β > −1; in fact,

when α, β ≥ 1, there is a unique self-adjoint extension in L2
α,β(−1, 1). The values of the deficiency

index in (3.11) can be seen from the fact that the singular endpoints t = ±1 of `α,β,k[·] satisfy the
following limit-point/limit-circle criteria:

(i) t = 1 is in the limit-point case in L2
α,β(−1, 1) if α ≥ 1; if −1 < α < 0, t = 1 is in the

regular case and if 0 ≤ α < 1, t = 1 is in the limit-circle, non-oscillatory case in L2
α,β(−1, 1);

(ii) t = −1 is in the limit-point case in L2
α,β(−1, 1) if β ≥ 1; if −1 < β < 0, t = −1 is in the

regular case and if 0 ≤ β < 1, t = −1 is in the limit-circle, non-oscillatory case in L2
α,β(−1, 1);

for more information on the terminology for these singular point classifications, we refer the reader
to the documentation and references in [4].

¿From the Glazman-Krein-Naimark theory (see [2] and [19]), the operator A
(α,β)
k : D(A

(α,β)
k ) ⊂

L2
α,β(−1, 1) → L2

α,β(−1, 1) defined by

(3.12) A
(α,β)
k f = `α,β,k[f ]

for f ∈ D(A
(α,β)
k ), where

(3.13) D(A
(α,β)
k ) :=





∆
(α,β)
k if α, β ≥ 1

{f ∈ ∆
(α,β)
k | lim

t→1
(1− t)α+1f ′(t) = 0} if |α| < 1 and β ≥ 1

{f ∈ ∆
(α,β)
k | lim

t→−1
(1 + t)β+1f ′(t) = 0} if |β| < 1 and α ≥ 1

{f ∈ ∆
(α,β)
k | lim

t→±1
(1− t)α+1(1 + t)β+1f ′(t) = 0} if − 1 < α, β < 1,

is self-adjoint in L2
α,β(−1, 1); see also the comprehensive thesis [18] of Onyango-Otieno for further

information on this self-adjoint operator. We note that A
(α,β)
k is the so-called Friedrich’s extension

except when −1 < α < 0 or −1 < β < 0. The Jacobi polynomials {P
(α,β)
r }∞r=0 are a (complete) set

of eigenfunctions of A
(α,β)
k in L2

α,β(−1, 1) and the spectrum of A
(α,β)
k is given by

σ(A
(α,β)
k ) = {λ

(α,β)
r,k | r ∈ N0},

where λ
(α,β)
r,k is defined in (3.5). In particular, we see that

σ(A
(α,β)
k ) ⊂ [k,∞),

from which it follows (see [22, Chapter 13]) that A
(α,β)
k is bounded below by kI in L2

α,β(−1, 1); that
is to say,

(3.14) (A
(α,β)
k f, f)α,β ≥ k(f, f)α,β (f ∈ D(A

(α,β)
k )).

Consequently, the left-definite theory discussed in Section 2 can be applied to this self-adjoint
operator.
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For f, g ∈ D(A
(α,β)
k ), we also have the well-known, and classical, Dirichlet identity for A

(α,β)
k :

(A
(α,β)
k f, g)α,β =

∫ 1

−1
`α,β,k[f ](t)g(t)(1− t)α(1 + t)βdt(3.15)

=

∫ 1

−1

{
(1− t)α+1(1 + t)β+1f ′(t)g′(t) + k(1− t)α(1 + t)βf(t)g(t)

}
dt;

we give another proof of this identity in Section 5 (see Remark 5.1). Furthermore, when k > 0,
notice that the right-hand side of (3.15) satisfies the conditions of an inner product. Consequently,

we define the inner product (·, ·)
(α,β)
1,k on D(A

(α,β)
k )×D(A

(α,β)
k ) by

(f, g)
(α,β)
1,k(3.16)

:=

∫ 1

−1

{
(1− t)α+1(1 + t)β+1f ′(t)g′(t) + k(1− t)α(1 + t)βf(t)g(t)

}
dt (f, g ∈ D(A

(α,β)
k ));

later in this paper, we extend this inner product to the set V
(α,β)
1 ×V

(α,β)
1 , where V

(α,β)
1 is a certain

vector space of functions (specifically, the first left-definite space) properly containing D(A
(α,β)
k ).

In the literature, this inner product (·, ·)
(α,β)
1,k is called the first left-definite inner product associated

with (L2
α,β(−1, 1), A

(α,β)
k ). Notice that the weights in this inner product are precisely the terms in

the Lagrangian symmetrizable differential expression `α,β,k[·]; see (1.1) and Remark 2.1.

4. Jacobi-Stirling numbers and powers of the Jacobi differential expression

We now turn our attention to the explicit construction of the sequence of left-definite inner

products (·, ·)
(α,β)
n,k (n ∈ N) associated with the pair (L2

α,β(−1, 1), A
(α,β)
k ), where A

(α,β)
k is the self-

adjoint Jacobi differential operator defined in (3.12) and (3.13). As discussed in Remark 2.1, these
inner products are generated from the integral composite powers `n

α,β,k[·] (n ∈ N) of the Jacobi

differential expression `α,β,k[·], given inductively by

`1
α,β,k[y] = `α,β,k[y], `2

α,β,k[y] = `α,β,k(`α,β,k[y]), . . . , `n
α,β,k[y] = `α,β,k

(
`n−1
α,β,k[y]

)
(n ∈ N).

One of the keys to the explicit determination of these integral powers of `α,β,k[·] are two double

sequences of non-negative numbers, {P (α,β)S
(j)
n } and {c

(α,β)
j (n, k}}n

j=0, which are both defined in
the following theorem; connections between these numbers and the powers of the Jacobi differential
expression `α,β,k[·] will be made in Theorem 4.2 below.

Theorem 4.1. Suppose k ≥ 0 and n ∈ N. For each m ∈ N0, the recurrence relations

(4.1) (m(m + α + β + 1) + k)n =
n∑

j=0

c
(α,β)
j (n, k)

m!Γ(α + β + m + 1 + j)

(m− j)!Γ(α + β + m + 1)

have a unique solution (c
(α,β)
0 (n, k), c

(α,β)
0 (n, k), . . . , c

(α,β)
n (n, k)), where each c

(α,β)
j (n, k) is indepen-

dent of m, given explicitly by

(4.2) c
(α,β)
0 (n, k) :=

{
0 if k = 0
kn if k > 0,

and, for j ∈ {1, 2, . . . , n},

(4.3) c
(α,β)
j (n, k) :=

{
P (α,β)S

(j)
n if k = 0∑n−j

s=0

(
n
s

)
P (α,β)S

(j)
n−sk

s if k > 0
(j ∈ {1, . . . , n}),
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where each P (α,β)S
(j)
n is positive and given by

(4.4) P (α,β)S(j)
n =

j∑

r=0

(−1)r+j Γ(α + β + r + 1)Γ(α + β + 2r + 2) [r(r + α + β + 1)]n

r!(j − r)!Γ(α + β + 2r + 1)Γ(α + β + j + r + 2)

for each n ∈ N and j ∈ {1, 2, . . . , n}. Moreover, P (α,β)S
(j)
n is the coefficient of tn−j in the Taylor

series expansion of

(4.5) f
(α,β)
j (t) :=

j∏

r=1

1

1− r(r + α + β + 1)t

(
|t| <

1

j(j + α + β + 1)

)
.

Proof. Fix k ≥ 0 and n ∈ N; let m ∈ N0. Written out, the identity in (4.1) becomes

(m(m + α + β + 1) + k)n = c
(α,β)
0 (n, k) + c

(α,β)
1 (n, k)m(α + β + m + 1)

+ c
(α,β)
2 (n, k)m(m− 1)(α + β + m + 2)(α + β + m + 1) + · · ·(4.6)

+ c(α,β)
n (n, k)P (m, n)P (α + β + m + n, n),

where P (r, q) = r(r − 1) . . . (r − q + 1) for r ∈ R and q ∈ N. If m = 0, (4.6) immediately yields

c
(α,β)
0 (n, k) = kn, which establishes (4.2). Similarly, when m = 1 and m = 2, we readily obtain from

(4.6) the values of c
(α,β)
1 (n, k) and c

(α,β)
2 (n, k):

c
(α,β)
1 (n, k) =

(α + β + 2 + k)n − kn

α + β + 2
,

and

c
(α,β)
2 (n, k) =

(α + β + 2)(2α + 2β + 6 + k)n − 2(α + β + 3)(α + β + 2 + k)n + (α + β + 4)kn

2(α + β + 2)(α + β + 3)(α + β + 4)
.

In general, it is not difficult to see that each c
(α,β)
j (n, k) is unique, independent of m, and given by

c
(α,β)
j (n, k) =

j∑

r=0

(−1)r+j Γ(α + β + r + 1)Γ(α + β + 2r + 2)

r!(j − r)!Γ(α + β + 2r + 1)Γ(α + β + r + j + 2)
(r(r + α + β + 1) + k)n

=

j∑

r=0

n∑

s=0

(
n

s

)
(−1)r+j Γ(α + β + r + 1)Γ(α + β + 2r + 2) (r(r + α + β + 1)n−s

r!(j − r)!Γ(α + β + 2r + 1)Γ(α + β + r + j + 2)
ks

=
n∑

s=0

(
j∑

r=0

(−1)r+jΓ(α + β + r + 1)Γ(α + β + 2r + 2) (r(r + α + β + 1)n−s

r!(j − r)!Γ(α + β + 2r + 1)Γ(α + β + r + j + 2)

)(
n

s

)
ks

=
n∑

s=0

(
n

s

)
P (α,β)S

(j)
n−sk

s.(4.7)

This establishes (4.4) but not the identity in (4.3) (the sum in (4.3) has upper limit n − j, not n
as in (4.7)); we return to prove (4.3) after we prove the identity in (4.5). To prove the positivity of

each P (α,β)S
(j)
n and that f

(α,β)
j (t), defined in (4.5), generates the numbers {P (α,β)S

(j)
n }, let j ∈ N

and decompose
j∏

m=1

t

1−m(m + α + β + 1)t
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into partial fractions; that is, write

tj

(1− (α + β + 2)t)(1− (2α + 2β + 6)t) · · · (1− j(j + α + β + 1)t)
(4.8)

=

j∑

m=1

Am

1−m(m + α + β + 1)t
(|t| <

1

1− j(j + α + β + 1)
).

Consequently,

tj = A1(1− (2α + 2β + 6)t)(1− (3α + 3β + 12)t) · · · (1− j(j + α + β + 1)t)

+ A2(1− (α + β + 2)t)(1− (3α + 3β + 12)t) · · · (1− j(j + α + β + 1)t)(4.9)

+ . . .

+ Aj(1− (α + β + 2)t)(1− (2α + 2β + 6)t) · · · (1− (j − 1)(j + α + β)t).

If we let t =
1

α + β + 2
in (4.9), we find that

A1 =
(−1)j+1Γ(α + β + 2)Γ(α + β + 4)

1!(j − 1)!Γ(α + β + 3)Γ(α + β + j + 3)
.

Similarly, letting t =
1

2α + 2β + 6
in (4.9), we obtain

A2 =
(−1)jΓ(α + β + 3)Γ(α + β + 6)

2!(j − 2)!Γ(α + β + 5)Γ(α + β + j + 4)
.

In general, setting t =
1

m(m + α + β + 1)
yields

Am =
(−1)m+jΓ(α + β + m + 1)Γ(α + β + 2m + 2)

m!(j −m)!Γ(α + β + 2m + 1)Γ(α + β + j + m + 2)
(1 ≤ m ≤ j).

Returning to (4.8), we find that

tj
j∏

m=1

1

1−m(m + α + β + 1)t

=

j∏

m=1

t

1−m(m + α + β + 1)t

=

j∑

m=1

Am

1−m(m + α + β + 1)t

=

j∑

m=1

∞∑

n=0

Am(m(m + α + β + 1))ntn
(
|t| <

1

j(j + α + β + 1)

)

=
∞∑

n=0

(
j∑

m=1

Am(m(m + α + β + 1))n

)
tn

(
|t| <

1

j(j + α + β + 1)

)
.
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Hence
j∏

m=1

1

1−m(m + α + β + 1)t

=
∞∑

n=0

(
j∑

m=1

Am(m(m + α + β + 1))n

)
tn−j

=
∞∑

n=0

(
j∑

m=1

(−1)m+jΓ(α + β + m + 1)Γ(α + β + 2m + 2)(m(m + α + β + 1))n

m!(j −m)!Γ(α + β + 2m + 1)Γ(α + β + j + m + 2)

)
tn−j(4.10)

=
∞∑

n=0

P (α,β)S(j)
n tn−j .

¿From this identity, it follows that

(4.11) P (α,β)S(j)
n = 0 (j ∈ N; n = 0, 1, . . . , j − 1);

consequently, from (4.3), we now see that

c
(α,β)
j (n, k) =

n−j∑

s=0

(
n

s

)
P (α,β)S

(j)
n−sk

s (j = 1, 2, . . . , n),

as claimed in (4.3). Lastly, since the coefficient of each term of the Taylor (geometric) series of

1

1−m(m + α + β + 1)t
(|t| <

1

m(m + α + β + 1)
; 1 ≤ m ≤ j)

is positive and each P (α,β)S
(j)
n (j = 1, 2, . . . , n) is a certain Cauchy product of these positive

coefficients, it is clear that each P (α,β)S
(j)
n is positive when j, n ∈ N with n ≥ j. In turn, we see

that c
(α,β)
j (n, k) > 0 for j ∈ {1, 2, . . . , n} and c

(α,β)
0 (n, k) = kn ≥ 0. This completes the proof of the

theorem. �

Definition 4.1. Let n, j ∈ N0. If n ∈ N and 1 ≤ j ≤ n, we call the number P (α,β)S
(j)
n , defined

in (4.4), the Jacobi-Stirling number of order (n, j) associated with (α, β). We extend this

definition by defining these numbers to be P (α,β)S
(0)
0 = 1, P (α,β)S

(j)
n = 0 if j ∈ N and 0 ≤ n ≤ j − 1

(see (4.11)) , and P (α,β)S
(0)
n = 0 for n ∈ N. In short, we refer to P (α,β)S

(j)
n as the Jacobi-Stirling

number of order (n, j), or simply as a Jacobi-Stirling number.

Observe, from (4.4), that the Jacobi-Stirling numbers {P (α,β)S
(j)
n } are symmetric in α and β;

that is,

P (α,β)S(j)
n = P (β,α)S(j)

n (n, j ∈ N0).

Remark 4.1. Why associate the name “Stirling” to this double sequence of real numbers? In

[16], Littlejohn and Wellman show that the classical Stirling numbers of the second kind S
(j)
n (see,

for example, [1, pp. 824-825] and [5, Chapter V]) appear as the coefficients of the terms in the
Lagrangian symmetrizable form of the nth power of the classical second-order Laguerre differential
expression

(4.12) `Lag[y](t) = t−α exp(t)(−tα+1 exp(−t)y′(t))′ (t ∈ (0,∞));

indeed, they prove that

(4.13) `n
Lag[y](t) = t−α exp(t)

n∑

j=1

(−1)jS(j)
n

(
tα+j exp(−t)y(j)(t)

)(j)
(n ∈ N).
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This seems to be a new application of these important combinatorial numbers (a similar, previously
known, result states that the Stirling numbers of the second kind appear as the coefficients of the
operator identity

((t− a)
d

dt
)n =

n∑

j=1

S(j)
n (t− a)j dj

dtj
(a ∈ C; n ∈ N);

see [21]). Similarly, the authors in [9] show that the Stirling numbers of the second kind also appear
in the powers of the Lagrangian symmetrizable form of the classical Hermite differential expression

`H [y](t) = exp(t2)
((
−(exp(−t2)y′(t)

)′
+ k exp(−t2)y(t)

)
(t ∈ (−∞,∞)).

Moreover, in a recent paper [10], the authors develop the left-definite theory for the classical
Legendre differential expression defined in (1.5). In doing so, they discovered a new sequence of

numbers {PS
(j)
n } that they call Legendre-Stirling numbers. In fact, a key result in their left-

definite analysis is the explicit determination of the nth composite power of the Legendre differential
expression, namely

`n
0,0,0[y](t) =

n∑

j=0

(−1)jPS(j)
n

(
(1− t2)jy(j)(t)

)(j)
(n ∈ N).

Moreover, in regards to the notation of this paper, these Legendre-Stirling numbers are explicitly
given by

PS(j)
n = P (0,0)S(j)

n .

In a subsequent paper [13], Gawronski and Littlejohn show that the Legendre-Stirling numbers have
many properties in common with the classical Stirling numbers of the second kind. Indeed, the
Legendre-Stirling numbers have a vertical, horizontal, and rational generating function, and they
satisfy vertical and triangular recurrence relations similar to the Stirling numbers of the second
kind; see [5, Chapter V] for notation and a compendium of results for the classical Stirling numbers
of the second kind. We discuss some of these properties below.

We list a few Jacobi-Stirling numbers P (α,β)S
(j)
n in the following table.

j/n n = 0 n = 1 n = 2 n = 3 n = 4 n = 5
j = 0 1 0 0 0 0 0
j = 1 0 1 α+β+2 (α+β+2)2 (α+β+2)3 (α+β+2)4

j = 2 0 0 1 3α+3β+8
7α2+38α+7β2+
38β+14αβ+52

320+344α+124α2+15α3+
344β+248αβ+45α2β+
124β2+45αβ2+15β3

j = 3 0 0 0 1 6α+6β+20
25α2+25β2+170α+
170β+50αβ+292

j = 4 0 0 0 0 1 10α+10β+40
j = 5 0 0 0 0 0 1

Table 1: A List of Jacobi-Stirling Numbers (for example,

P (α,β)S
(3)
5 = 25α2 + 25β2 + 170α + 170β + 50αβ + 292)
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The numbers in the jth row demonstrate the identity in (4.5). For example, reading along the
row beginning with j = 2, we see that

2∏

r=1

1

1− r(r + α + β + 1)t

= 1 + (3α + 3β + 8)t + (7α2 + 38α + 7β2 + 38α + 14αβ + 52)t2

+ (320 + 344α + 124α2 + 15α3 + 344β + 248αβ + 45α2β + 124β2 + 45αβ2 + 15β3)t3

+ . . . .

However, the main interest in these numbers from the point of view of this manuscript is seen
in the columns; indeed, the numbers in the nth column of Table 1 are precisely the coefficients of
the nth power of the Jacobi differential expression `α,β,0[·]; see Theorem 4.2, Corollary 4.1, and the
examples considered below.

¿From a purely combinatorial point of view, we note that there are several interesting properties
of these Jacobi-Stirling numbers; we mention some of these properties now but defer proofs and
an extensive study of these numbers to a future paper. For example, we note that these numbers
satisfy the following triangular recurrence relation:

P (α,β)S(j)
n = P (α,β)S

(j−1)
n−1 + j(j + α + β + 1)P (α,β)S

(j)
n−1 (n, j ∈ N)

P (α,β)S(0)
n = P (α,β)S

(j)
0 = 0 (n, j ∈ N)

P (α,β)S
(0)
0 = 1;

see [5, Chapter V] where the reader will find that the Stirling numbers of the second kind satisfy a
similar-looking recurrence relation. The Jacobi-Stirling numbers also satisfy the following identity

(4.14) xn =
n∑

j=0

P (α,β)S(j)
n 〈x〉

(α,β)
j (n ∈ N0),

where 〈x〉
(α,β)
j is a generalized falling factorial defined, for x ∈ C, by

(4.15) 〈x〉
(α,β)
j :=

{
1 if j = 0∏j−1

r=0(x− r(r + α + β + 1)) if j ∈ N.

Notice the remarkable similarity of (4.14) with the well-known identity for the Stirling numbers of
the second kind:

(4.16) xn =
n∑

j=0

S(j)
n (x)j (n ∈ N0),

where (x)j is the falling factorial (see [21]) defined, for any x ∈ C, by

(x)j :=

{
1 if j = 0∏j−1

r=0(x− r) if j ∈ N.

In several texts, the identity in (4.16) is used to define the Stirling numbers of the second kind

{S
(j)
n }. By ‘inverting’ (4.16), we obtain the Stirling numbers of the first kind {s

(j)
n } as the solutions

of the equation

(x)n =
n∑

j=0

s(j)
n xj (n ∈ N0).
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Consequently, using this strategy along with (4.14), we obtain the analogue of the Stirling numbers

of the first kind {P (α,β)s
(j)
n } for the Jacobi-Stirling numbers. as the solutions of the equation

〈x〉(α,β)
n =

n∑

j=0

P (α,β)s(j)
n xj .

Consequently, it may be more natural to call the numbers {P (α,β)S
(j)
n } the “Jacobi-Stirling numbers

of the second kind”. Indeed, we see that there is an associated sequence of numbers {P (α,β)s
(j)
n },

the analog of the Stirling numbers of the first kind, which we could call the “Jacobi-Stirling num-
bers of the first kind”. However, we resist this temptation on the grounds of notational inconve-

nience. Indeed, as mentioned in Section 3, the Jacobi polynomials {P
(−1/2,−1/2)
n } are often called

the “Chebychev polynomials of the first kind”; consequently, it might be natural to call the num-

bers {P (−1/2,−1/2)S
(j)
n } the “Chebychev-Stirling numbers of the first kind of the second kind” and

their combinatorial counterparts {P (−1/2,−1/2)s
(j)
n } the “Chebychev-Stirling numbers of the first

kind of the first kind”. Notation, sometimes, can be problem! We instead refer to the numbers

{P (α,β)s
(j)
n } as the “associated Jacobi-Stirling numbers”. From the definition of these asso-

ciated Jacobi-Stirling numbers, we immediately obtain the following bi-orthogonality relationships

between {P (α,β)S
(j)
n } and {P (α,β)s

(j)
n }:

max{n,m}+1∑

j=0

P (α,β)s(j)
n · P (α,β)S

(m)
j = δn,m (n, m ∈ N0),

max{n,m}+1∑

j=0

P (α,β)S(j)
n · P (α,β)s

(m)
j = δn,m (n, m ∈ N0).

The following table lists a few of these associated Jacobi-Stirling numbers {P (α,β)s
(j)
n } :

j/n n = 0 n = 1 n = 2 n = 3 n = 4 n = 5

j = 0 1 0 0 0 0 0

j = 1 0 1 -2-α-β
12+2α2+4αβ+
10α+2β2+10β

-144-6α3-18α2β-54α2

-18αβ2-108αβ-156α

-6β3-54β2-156β

2880+3696α+3696β

+3408αβ+1008α2β+1008αβ2

+1704α2+1704β2+336α3

+336β3+24α4+24β4

+96α3β+144α2β2+96αβ3

j = 2 0 0 1 -8-3α-3β
108 + 11α2 + 32α

+11β2 + 22αβ + 108β

-2304-1988α-554α2-50α3

-1988β-1108αβ-150α2β

-554β2-150αβ2-50β3

j = 3 0 0 0 1 -20-6α-6β
508+35α2+35β2

+270α+270β+70αβ

j = 4 0 0 0 0 1 -40-10α-10β

j = 5 0 0 0 0 0 1

Table 2: A List of Associated Jacobi-Stirling Numbers (for example,

P (α,β)s
(2)
4 = 108 + 11α2 + 32α + 11β2 + 22αβ + 108β)

We now prove the following key result which will allow us, in the next section, to obtain the

left-definite spaces associated with the pair (L2
α,β(−1, 1), A

(α,β)
k ). Recall the definition of P (see the

various notation at the end of Section 1), as the space of all polynomials p : R → C.

Theorem 4.2. Let k ≥ 0. For each n ∈ N, the nth composite power of the classical Jacobi dif-

ferential expression `α,β,k[·], defined in (1.1), is Lagrangian symmetrizable, with symmetry factor
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wα,β(t) = (1− t)α(1 + t)β, and is given explicitly by

(4.17) wα,β(t)`n
α,β,k[y](t) =

n∑

j=0

(−1)j
(
c
(α,β)
j (n, k)(1− t)α+j(1 + t)β+jy(j)(t)

)(j)
,

where c
(α,β)
j (n, k) is defined in (4.2) and (4.3). Moreover, for p, q ∈ P, the following identity is

valid:

(`n
α,β,k[p], q)α,β =

∫ 1

−1
`n
α,β,k[p](t)q(t)wα,β(t)dt(4.18)

=
n∑

j=0

c
(α,β)
j (n, k)

∫ 1

−1
p(j)(t)q(j)(t)(1− t)α+j(1 + t)β+jdt.

Proof. We first establish the identity in (4.18). Since the Jacobi polynomials {P
(α,β)
m }∞m=0 form a

basis for P, it suffices to show (4.18) is valid for p = P
(α,β)
m and q = P

(α,β)
r , for arbitrary m, r ∈ N0.

From the identity (which follows immediately by induction)

(4.19) `n
α,β,k[P

(α,β)
m ](t) = (m(m + α + β + 1) + k)nP (α,β)

m (t) (m ∈ N0),

it follows from (3.7), with this particular choice of p and q, that the left-hand side of (4.18) reduces
to

(4.20) (m(m + α + β + 1) + k)nδm,r.

On the other hand, from (3.9), we see that the right-hand side of (4.18) yields

n∑

j=0

c
(α,β)
j (n, k)

∫ 1

−1

dj(P
(α,β)
m (t))

dtj
dj(P

(α,β)
r (t))

dtj
(1− t)α+j(1 + t)β+jdt

=
n∑

j=0

c
(α,β)
j (n, k)

m!Γ(α + β + m + 1 + j)

(m− j)!Γ(α + β + m + 1)
δm,r.(4.21)

Comparing (4.20) with (4.21), we see from (4.1) and Theorem 4.1 that the identity in (4.18) is
valid.

To prove (4.17), first define the differential expression

(4.22) wα,β(t)m
(α,β)
J [y](t) :=

n∑

j=0

(−1)j
(
c
(α,β)
j (n, k)(1− t)α+j(1 + t)β+jy(j)(t)

)(j)
(−1 < t < 1).

For p, q ∈ P, integration by parts yields
∫ 1

−1
m

(α,β)
J [p](t)q(t)wα,β(t)dt

=




n∑

j=1

(−1)jc
(α,β)
j (n, k)

j∑

r=1

(−1)r+1
(
p(j)(t)(1− t)α+j(1 + t)β+j

)(j−r)
q(r−1)(t)




+1

−1

+
n∑

j=0

c
(α,β)
j (n, k)

∫ 1

−1
p(j)(t)q(j)(t)(1− t)α+j(1 + t)β+jdt.

Now, for any p ∈ P and integer r with 1 ≤ r ≤ j,
(
p(j)(t)(1− t)α+j(1 + t)β+j

)(j−r)
= pj,r(t)(1− t2)

for some pj,r ∈ P; in particular,

lim
t→±1

(
p(j)(t)(1− t2)j

)(j−r)
q(r−1)(t) = 0 (p, q ∈ P; r, j ∈ N, r ≤ j).
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Consequently, we see that

∫ 1

−1
m

(α,β)
J [p](t)q(t)wα,β(t)dt(4.23)

=

n∑

j=0

c
(α,β)
j (n, k)

∫ 1

−1
p(j)(t)q(j)(t)(1− t)α+j(1 + t)β+jdt (p, q ∈ P).

Hence, from (4.18) and (4.23), we see that for all polynomials p and q, we have

(`n
α,β,k[p]−m

(α,β)
J [p], q)α,β = 0.

¿From the density of P in L2
α,β(−1, 1), it follows that

(4.24) `n
α,β,k[p](t) = m

(α,β)
J [p](t) (t ∈ (−1, 1); p ∈ P).

This latter identity implies that the expression `n
α,β,k[·] has the form given in (4.17). �

For general results on symmetry factors as well as necessary and sufficient conditions on the
Lagrangian symmetrizability of ordinary differential expressions with smooth coefficients, we refer
the reader to [14] and [15]. We also refer to [12] and [29] where more general results are obtained
for composite powers of ordinary quasi-differential expressions defined via Shin-Zettl matrices.

The following corollary lists some additional, and important, properties of the Jacobi differential
expressions `α,β,k[·] and `α,β,0[·], as well as new orthogonality properties of the classical Jacobi

polynomials {P
(α,β)
m }∞m=0; as the reader will see, these properties are important in our left-definite

analysis of `α,β,k[·] that we develop in the next section.

Corollary 4.1. Let n ∈ N. Then

(a) the nth (composite) power of the classical Jacobi differential expression

`α,β,0[y](t) := −(1− t2)y′′(t) + (α− β + (α + β + 2)t)y′(t)

=
1

wα,β(t)

(
−(1− t)α+1(1 + t)β+1y′(t)

)′

is Lagrangian symmetrizable with symmetry factor wα,β(t) = (1 − t)α(1 + t)β and has the

Lagrangian symmetrizable form

`n
α,β,0[y](t) :=

1

wα,β(t)

n∑

j=1

(−1)j
(
P (α,β)S(j)

n (1− t)α+j(1 + t)β+jy(j)(t)
)(j)

,

where P (α,β)S
(j)
n is defined in (4.4);

(b) the bilinear form (·, ·)
(α,β)
n,k , defined on P × P by

(4.25) (p, q)
(α,β)
n,k :=

n∑

j=0

c
(α,β)
j (n, k)

∫ 1

−1
p(j)(t)q(j)(t)(1− t)α+j(1 + t)β+jdt (p, q ∈ P),

is an inner product when k > 0 (a pseudo inner product when k = 0) and, for each k ≥ 0,

(4.26) (`n
α,β,k[p], q)α,β = (p, q)

(α,β)
n,k (p, q ∈ P);
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(c) for each k ≥ 0, the Jacobi polynomials {P
(α,β)
m }∞m=0 are orthogonal with respect to (·, ·)

(α,β)
n,k ;

in fact,

(P (α,β)
m , P (α,β)

r )
(α,β)
n,k =

n∑

j=0

c
(α,β)
j (n, k)

∫ 1

−1

dj(P
(α,β)
m (t))

dtj
dj(P

(α,β)
r (t))

dtj
(1− t)α+j(1 + t)β+jdt(4.27)

= (m(m + α + β + 1) + k)nδm,r.

Proof. The proof of (a) follows immediately from Theorem 4.2 and k = 0. The proof of (b) is clear
since all the numbers {cj(n, k)}n

j=0 are positive when k > 0. The identity in (4.26) is a restatement of

(4.18). Lastly, (4.27) follows from (4.19), (4.26), and the orthonormality of the Jacobi polynomials
in L2

α,β(−1, 1). �

To illustrate Theorem 4.2 and Corollary 4.1, we list the following examples of powers of the
Jacobi differential expression:

`2
α,β,k[y](t) =

1

wα,β(t)
[(1− t)α+2(1 + t)β+2y′′)′′

− ((2k + 2 + α + β)(1− t)α+1(1 + t)β+1y′)′(4.28)

+ k2(1− t)α(1 + t)βy],

`3
α,β,k[y](t) =

1

wα,β(t)
[−((1− t)α+3(1 + t)β+3)y′′′)′′′

+ ((3k + 8 + 3α + 3β)(1− t)α+2(1 + t)β+2y′′)′′(4.29)

− ((3k2 + 6k + 4 + α2 + 3kα + 4α + 2αβ + β2 + 3kβ + 4β)(1− t)α+1(1 + t)β+1)y′)′

+ k3(1− t)α(1 + t)βy],

and

`4
α,β,0[y](t) =

1

wα,β(t)
[((1− t)α+4(1 + t)β+4y(4))(4)

− ((6α + 6β + 20)(1− t)α+3(1 + t)β+3y′′′)′′′(4.30)

+ ((7α2 + 38α + 7β2 + 38β + 14αβ + 52)(1− t)α+2(1 + t)β+2y′′)′′

− ((α + β + 2)3(1− t)α+1(1 + t)β+1y′)′].

Remark 4.2. We note a remarkable, and somewhat mysterious, point concerning the Stirling
numbers of the second kind, the Legendre-Stirling numbers and, now more generally, the Jacobi-
Stirling numbers. As mentioned in Remark 4.1, the Stirling numbers of the second kind appear in
the integral composite powers of the classical Laguerre differential expression `Lag,k[·]. The Stirling

numbers of the second kind {S
(j)
n } may be defined (see [1, pp. 824-825]) as the coefficient of tn−j

in the Taylor series expansion of

(4.31) gj(t) :=

j∏

r=1

1

1− rt

(
|t| <

1

j

)
.

Furthermore, the rth Laguerre polynomial y = Lα
r (t) (r ∈ N0) is a solution of

`Lag[y](t) = ry(t),

where the Laguerre differential expression `Lag[·] is defined in (4.12); observe that this eigenvalue
λr = r also appears in the denominator of the rational generating function gj(t) defined in (4.31).
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This is not a coincidence. Indeed, the same phenomenon occurs with the Hermite and the general
Jacobi equations. More specifically, powers of the Hermite equation, defined by

`H [y](t) : = exp(t2)
(
−(exp(−t2)y′(t)

)′
(t ∈ (−∞,∞))

= −y′′(t) + 2ty′(t)

are given by

`n
H [y](t) = exp(t2)

n∑

j=0

(−1)j2n−jS(j)
n

(
exp(−t2)y(j)(t)

)(j)
(n ∈ N);

the reader can check that 2n−jS
(j)
n is also the coefficient of the Taylor series expansion of

(4.32) hj(t) :=

j∏

r=1

1

1− 2rt

(
|t| <

1

2j

)
.

Moreover, y = Hr(t), the rth Hermite polynomial is a solution of `H [y](t) = 2ry(t); again notice
that the eigenvalue λr = 2r and the denominator term in (4.32) agree. In the general Jacobi case,
which includes the Legendre case studied in [10], we see, from Theorem 4.1, that the Jacobi-Stirling

number P (α,β)S
(j)
n is the coefficient of tn−j in the expansion of

f
(α,β)
j (t) :=

j∏

r=1

1

1− r(r + α + β + 1)t

(
|t| <

1

j(j + α + β + 1)

)
.

Moreover, the rth Jacobi polynomial y = P
(α,β)
r (t) is a solution of

`α,β,0[y](t) = r(r + α + β + 1)y(t);

again, notice the agreement between the eigenvalue λr = r(r+α+β+1) and the denominator term

in f
(α,β)
j (t) above. These are intriguing results between the eigenvalues associated with the classical

Jacobi, Laguerre, and Hermite expressions and the corresponding generating functions (4.5), (4.31),
and (4.32) for the powers of these differential expressions. There is also some mystery concerning
this connection. Indeed, the problem of determining integral composite powers of these expressions
is completely an algebraic problem, independent of any functional or operator analysis. Why then
do the generating functions (4.5), (4.31), and (4.32) for these powers involve the eigenvalues of those
self-adjoint operators which have the corresponding Jacobi, Laguerre, and Hermite polynomials as
eigenfunctions instead of the eigenvalues for some other self-adjoint operator generated from these
differential expression? The answer could be that this is a new, and remarkable, property of these
classical orthogonal polynomials and the second-order differential equations that they satisfy.

5. The left-definite theory for the Jacobi equation

For the results that follow in this section, we assume k > 0, where k is the parameter in the

Jacobi expression (1.1). We remind the reader of the definition of the space AC
(n)
loc (I) for n ∈ N;

see the notation at the end of Section 1. Notice that if f ∈ AC
(n)
loc (−1, 1), then f (n+1)(t) exists for

almost all t ∈ (−1, 1). We also recall the Hilbert spaces L2
α+j,β+j(−1, 1) for each j ∈ N0 (see (3.1),

(3.2), and (3.3)). Lastly, we remind the reader of the Jacobi self-adjoint operator A
(α,β)
k , defined

in (3.12) and (3.13), and its properties that are given in Section 3; in particular, from (3.14), this
operator is bounded below in L2

α,β(−1, 1) by kI.

Definition 5.1. Let k > 0. For each n ∈ N, define

(5.1) V (α,β)
n := {f : (−1, 1) → C | f ∈ AC

(n−1)
loc

(−1, 1); f (j) ∈ L2
α+j,β+j(−1, 1) (j = 0, 1, . . . n)}
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and let (·, ·)
(α,β)
n,k and ‖·‖

(α,β)
n,k denote, respectively, the inner product

(5.2) (f, g)
(α,β)
n,k :=

n∑

j=0

c
(α,β)
j (n, k)

∫ 1

−1
f (j)(t)g(j)(t)(1− t)α+j(1 + t)β+jdt (f, g ∈ V (α,β)

n ),

(see (4.25) and (4.26)) and the norm ‖f‖
(α,β)
n,k :=

(
(f, f)

(α,β)
n,k

)1/2
, where the numbers c

(α,β)
j (n, k)

are defined in (4.2) and (4.3). Finally, let W
(α,β)
n,k (−1, 1) := (V

(α,β)
n , (·, ·)

(α,β)
n,k ).

The inner product (·, ·)
(α,β)
n,k , defined in (5.2), is a Sobolev inner product and, in the context of

the theory of differential operators, is more commonly called the Dirichlet inner product associated
with the symmetrizable differential expression `n

α,β,k[·] given in (4.17).

Notice, from the definition in (5.2) and the non-negativity of each of the numbers c
(α,β)
j (n, k)

(j = 0, 1, . . . , n), that

(
‖f‖

(α,β)
n,k

)2
=

n∑

j=0

c
(α,β)
j (n, k)

∥∥∥f (j)
∥∥∥

2

α+j,β+j
(5.3)

≥ c
(α,β)
j (n, k)

∥∥∥f (j)
∥∥∥

2

α+j,β+j
(j = 0, 1, . . . , n; f ∈ V (α,β)

n ),

where ‖·‖α+j,β+j is defined in (3.7). In particular, from (4.2) and (5.3), we see that

(5.4)
(
‖f‖

(α,β)
n,k

)2
≥ kn ‖f‖2

α,β (f ∈ W
(α,β)
n,k (−1, 1));

see item (iv) in Definition 2.1.

We remark that, for each r > 0, the rth left-definite inner product (·, ·)
(α,β)
r,k is given abstractly,

through the Hilbert space spectral theorem (see [22]), by

(f, g)
(α,β)
r,k :=

∫

R

λrdE
(α,β)
f,g (k) (f, g ∈ V

(α,β)
r,k := D((A

(α,β)
k )r/2)),

where E(α,β)(k) is the spectral resolution of the identity for the self-adjoint operator A
(α,β)
k ; see

[16] for further details connecting the left-definite theory with the spectral theorem. However, we
are able to determine this inner product in terms of the differential expression `r

α,β,k[·] only when
r ∈ N; see also Remark 2.1. Clearly, further work along this line needs to be addressed; perhaps
the theory of fractional differential expressions can be utilized to extend the results of this paper
as well those results in [9], [10], and [16].

One of our aims in this section is to show that W
(α,β)
n,k (−1, 1) is the nth left-definite space associ-

ated with the pair (L2
α,β(−1, 1), A

(α,β)
k ), where A

(α,β)
k is the self-adjoint Jacobi operator defined in

(3.12) and (3.13). From this, we are able to obtain, for each n ∈ N, an explicit representation of the

nth left-definite operator B
(α,β)
n,k as well as an explicit representation of each integral (composite)

power
(
A

(α,β)
k

)n
of A

(α,β)
k .

We begin by showing that W
(α,β)
n,k (−1, 1) is a complete inner product space.

Theorem 5.1. Let k > 0. For each n ∈ N, W
(α,β)
n,k (−1, 1) is a Hilbert space.

Proof. Let n ∈ N. Suppose {fm}
∞
m=1 is Cauchy in W

(α,β)
n,k (−1, 1). Since c

(α,β)
n (n, k) is positive,

we see from (5.3) that {f
(n)
m }∞m=1 is Cauchy in L2

α+n,β+n(−1, 1) and hence there exists gn+1 ∈

L2
α+n,β+n(−1, 1) such that

f (n)
m → gn+1 in L2

α+n,β+n(−1, 1),
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so gn+1 ∈ L1
loc(−1, 1). Fix t, t0 ∈ (−1, 1) (t0 will be chosen shortly) and assume t0 ≤ t. From

Hölder’s inequality, we see that as m →∞,
∫ t

t0

∣∣∣f (n)
m (t)− gn+1(t)

∣∣∣ dt

=

∫ t

t0

∣∣∣f (n)
m (t)− gn+1(t)

∣∣∣ (1− t)(α+n)/2(1 + t)(β+n)/2(1− t)−(α+n)/2(1 + t)−(β+n)/2dt

≤

(∫ t

t0

∣∣∣f (n)
m (t)− gn+1(t)

∣∣∣
2
(1− t)α+n(1 + t)β+ndt

)1/2

·

(∫ t

t0

(1− t)−(α+n)(1 + t)−(β+n)dt

)1/2

=M(t0, t)

(∫ t

t0

∣∣∣f (n)
m (t)− gn+1(t)

∣∣∣
2
(1− t)α+n(1 + t)β+ndt

)1/2

→ 0.

It now follows, since f
(n−1)
m ∈ ACloc(−1, 1), that

(5.5) f (n−1)
m (t)− f (n−1)

m (t0) =

∫ t

t0

f (n)
m (t)dt →

∫ t

t0

gn+1(t)dt.

Furthermore, from the definition of (·, ·)
(α,β)
n,k , we see that {f

(n−1)
m }∞m=0 is Cauchy in L2

α+n−1,β+n−1(−1, 1);

hence, there exists gn ∈ L2
α+n−1,β+n−1(−1, 1) such that

f (n−1)
m → gn in L2

α+n−1,β+n−1(−1, 1).

Repeating the above argument, we see that gn ∈ L1
loc(−1, 1) and, for any t, t1 ∈ (− 1, 1),

(5.6) f (n−2)
m (t)− f (n−2)

m (t1) =

∫ t

t1

f (n−1)
m (t)dt →

∫ t

t1

gn(t)dt.

Moreover, from [22, Theorem 3.12], there exists a subsequence {f
(n−1)
mk,n−1} of {f

(n−1)
m }∞m=1 such that

f (n−1)
mk,n−1

(t) → gn(t) (a.e. t ∈ (−1, 1)).

Choose t0 ∈ R in (5.5) such that f
(n−1)
mk,n−1(t0) → gn(t0) and then pass through this subsequence in

(5.5) to obtain

gn(t)− gn(t0) =

∫ t

t0

gn+1(t)dt (a.e. t ∈ (−1, 1)).

That is to say,

(5.7) gn ∈ ACloc(−1, 1) and g′n(t) = gn+1(t) (a.e. t ∈ (−1, 1)).

Again, from the definition of (·, ·)
(α,β)
n,k , we see that {f

(n−2)
m }∞m=1 is Cauchy in L2

α+n−2,β+n−2(−1, 1)

so there exists gn−1 ∈ L2
α+n−2,β+n−2(−1, 1) such that

f (n−2)
m → gn−1 in L2

α+n−2,β+n−2(−1, 1).

As above, we find that gn−1 ∈ L1
loc(−1, 1); moreover, for any t, t2 ∈ (−1, 1)

f (n−3)
m (t)− f (n−3)

m (t2) =

∫ t

t2

f (n−2)
m (t)dt →

∫ t

t2

gn−1(t)dt,

and there exists a subsequence {f
(n−2)
mk,n−2} of {f

(n−2)
m } such that

f (n−2)
mk,n−2

(t) → gn−1(t) (a.e. t ∈ (−1, 1)).



LEFT-DEFINITE JACOBI THEORY 21

In (5.6), choose t1 ∈ (−1, 1) such that f
(n−2)
mk,n−2(t1) → gn−1(t1) and pass through the subsequence

{f
(n−2)
mk,n−2} in (5.6) to obtain

gn−1(t)− gn−1(t1) =

∫ t

t1

gn(t)dt (a.e. t ∈ (−1, 1)).

Consequently, gn−1 ∈ AC
(1)
loc (−1, 1) and g′′n−1(t) = g′n(t) = gn+1(t) a.e. t ∈ (−1, 1). Continuing in

this fashion, we obtain n + 1 functions gn−j+1 ∈ L2
α+n−j,β+n−j(−1, 1) (j = 0, 1, . . . , n) such that

(i) f
(n−j)
m → gn−j+1 in L2

α+n−j,β+n−j(−1, 1) (j = 0, 1, . . . , n),

(ii) g1 ∈ AC
(n−1)
loc (−1, 1), g2 ∈ AC

(n−2)
loc (−1, 1), . . . , gn ∈ ACloc(−1, 1),

(iii) g′n−j(t) = gn−j+1(t) a.e. t ∈ (−1, 1) (j = 0, 1, . . . , n− 1),

(iv) g
(j)
1 = gj+1 (j = 0, 1, . . . , n).

In particular, we see that f
(j)
m → g

(j)
1 in L2

α+j,β+j(−1, 1) for j = 0, 1, . . . , n and g1 ∈ V
(α,β)
n . Hence,

we see that

(
‖fm − g1‖

(α,β)
n,k

)2
=

n∑

j=0

c
(α,β)
j (n, k)

∫ 1

−1

∣∣∣f (j)
m (t)− g

(j)
1 (t)

∣∣∣
2
(1− t)α+j(1 + t)β+jdt

=
n∑

j=0

c
(α,β)
j (n, k)

∥∥∥f (j)
m − g

(j)
1

∥∥∥
2

α+j,β+j

→ 0 as m →∞.

Thus W
(α,β)
n,k (−1, 1) is complete and, consequently, so is the proof of this theorem. �

We next establish the completeness of the Jacobi polynomials {P
(α,β)
m }∞m=0 in each W

(α,β)
n,k (−1, 1).

Theorem 5.2. Let k > 0. The Jacobi polynomials {P
(α,β)
m }∞m=0 form a complete orthogonal set in

the space W
(α,β)
n,k (−1, 1). Equivalently, the space P of polynomials is dense in W

(α,β)
n,k (−1, 1).

Proof. Let f ∈ W
(α,β)
n,k (−1, 1); in particular, f (n) ∈ L2

α+n,β+n(−1, 1). Consequently, from the com-

pleteness and orthonormality of the Jacobi polynomials {P
(α+n,β+n)
m }∞m=0 in L2

α+n,β+n(−1, 1), it
follows that

(5.8)
r∑

m=0

c(α,β)
m,n P (α+n,β+n)

m → f (n) as r →∞ in L2
α+n,β+n(−1, 1),

where the numbers {c
(α,β)
m,n }∞m=0 ⊂ `2 are the Fourier coefficients of f (n), relative to the orthonormal

basis {P
(α+n,β+n)
m }∞m=0 of L2

α+n,β+n(−1, 1), defined by

(5.9) c(α,β)
m,n =

∫ 1

−1
f (n)(t)P (α+n,β+n)

m (t)(1− t)α+n(1 + t)β+ndt (m ∈ N0).

For r ≥ n, define the polynomials

(5.10) pr(t) =
r∑

m=n

c
(α,β)
m−n,n ((m− n)!)1/2 (Γ(α + β + m + 1))1/2

(m!)1/2 (Γ(α + β + m + n + 1)!)1/2
P (α,β)

m (t).
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Then, using the derivative formula (3.8) for the Jacobi polynomials, we see that

p(j)
r (t)

=
r∑

m=n

c
(α,β)
m−n,n ((m− n)!)1/2 (Γ(α + β + m + j + 1)!)1/2

(Γ(α + β + m + n + 1)!)1/2 ((m− j)!)1/2
P

(α+j,β+j)
m−j (t) (j = 0, 1, . . . , n),(5.11)

and, in particular, from (5.8),

p(n)
r =

r∑

m=n

c
(α,β)
m−n,nP

(α+n,β+n)
m−n → f (n) in L2

α+n,β+n(−1, 1) (r →∞).

Furthermore, from [22, Theorem 3.12], there exists a subsequence {p
(n)
rj } of {p

(n)
r } such that

(5.12) p(n)
rj

(t) → f (n)(t) (a.e. t ∈ (−1, 1)).

Returning to (5.11), observe that since
((m− n)!)1/2 (Γ(α + β + m + j + 1)!)1/2

(Γ(α + β + m + n + 1)!)1/2 ((m− j)!)1/2
→ 0 as m → ∞

for j = 0, 1, . . . , n− 1, we see that
{

c
(α,β)
m−n,n ((m− n)!)1/2 (Γ(α + β + m + j + 1)!)1/2

(Γ(α + β + m + n + 1)!)1/2 ((m− j)!)1/2

}∞

m=n

∈ `2.

Hence, from the completeness of the Jacobi polynomials {P
(α+j,β+j)
m }∞m=0 in L2

α+j,β+j(−1, 1) and

the Riesz-Fischer theorem (see [22, Chapter 4, Theorem 4.17]), there exists gj ∈ L2
α+j,β+j(−1, 1)

such that

(5.13) p(j)
r → gj in L2

α+j,β+j(−1, 1) as r →∞ (j = 0, 1, . . . , n− 1).

Since, for a.e. a, t ∈ (−1, 1),

p(n−1)
rj

(t)− p(n−1)
rj

(a) =

∫ t

a
p(n)

rj
(u)du →

∫ t

a
f (n)(u)du = f (n−1)(t)− f (n−1)(a) (j →∞),

we see that, as j →∞,

(5.14) p(n−1)
rj

(t) → f (n−1)(t) + c1 (a.e. t ∈ (−1, 1)),

where c1 is some constant. From (5.13), with j = n− 1, we deduce that

gn−1(t) = f (n−1)(t) + c1 (a.e. t ∈ (−1, 1)).

Next, from (5.14) and one integration, we obtain

p(n−2)
rj

(t) → f (n−2)(t) + c1t + c2 (j →∞),

for some constant c2 and hence, from (5.13),

gn−2(t) = f (n−2)(t) + c1t + c2 (a.e. t ∈ (−1, 1)).

We continue this process to see that, for j = 0, 1, . . . n− 1,

gj(t) = f (j)(t) + qn−j−1(t) (a.e. t ∈ (−1, 1)),

where qn−j−1 is a polynomial of degree ≤ n− j − 1 satisfying

q′n−j−1(t) = qn−j−2(t).

Combined with (5.13), we see that, as r →∞,

p(j)
r → f (j) + qn−j−1 in L2

α+j,β+j(−1, 1) (j = 0, 1, . . . , n).
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For each r ≥ n, define the polynomial

πr(t) := pr(t)− qn−1(t),

and observe that, for j = 0, 1, . . . , n,

π(j)
r = p(j)

r − q
(j)
n−1

= p(j)
r − qn−j−1

→ f (j) in L2
α+j,β+j(−1, 1).

Hence, as r →∞,

(
‖f − πr‖

(α,β)
n,k

)2
=

n∑

j=0

c
(α,β)
j (n, k)

∫ 1

−1

∣∣∣f (j)(t)− π(j)
r (t)

∣∣∣
2
(1− t)α+j(1 + t)β+jdt → 0.

This shows that P is dense in W
(α,β)
n,k (−1, 1) and completes the proof of this theorem. �

The next result, which gives a simpler characterization of the function space V
(α,β)
n , follows from

ideas presented in the above proof of Theorem 5.2. Due to the importance of this theorem (which
can be further seen in the statement of Corollary 5.1 below), we provide the following proof.

Theorem 5.3. For each n ∈ N,

V (α,β)
n = {f : (−1, 1) → C | f ∈ AC

(n−1)
loc (−1, 1); f (n) ∈ L2

α+n,β+n(−1, 1)}(5.15)

= {f : (−1, 1) → C | f ∈ AC
(n−1)
loc (−1, 1); (1− t2)n/2f (n) ∈ L2

α,β(−1, 1)}

Proof. On account of (3.4), it is clear that the two sets on the right-hand side of (5.15) are equal.

Let n ∈ N and recall the definition of V
(α,β)
n in (5.1). Define

Ṽ (α,β)
n = {f : (−1, 1) → C | f ∈ AC

(n−1)
loc (−1, 1); f (n) ∈ L2

α+n,β+n(−1, 1)}.

It is clear that V
(α,β)
n ⊂ Ṽ

(α,β)
n . Conversely, suppose f ∈ Ṽ

(α,β)
n so f (n) ∈ L2

α+n,β+n(−1, 1) and

f ∈ AC
(n−1)
loc (−1, 1). As shown in Theorem 5.2, as r →∞,

r∑

m=0

c(α,β)
m,n P (n,n)

m → f (n) in L2
α+n,β+n(−1, 1),

where {c
(α,β)
m,n } are the Fourier coefficients of f (n), defined in (5.9), relative to the orthonormal basis

{P
(α+n,β+n)
m }∞m=0 of L2

α+n,β+n.

For r ≥ n, let pr(t) be the polynomial that is defined in (5.10). Then, for any j ∈ N0, the jth

derivative of pr is given in (5.11) and, as in Theorem 5.2,

p(n)
r → f (n) as r →∞ in L2

α+n,β+n(−1, 1);

moreover, as shown in Theorem 5.2, there exists polynomials qn−j−1 of degree ≤ n − j − 1, for
j = 0, 1, . . . , n− 1, satisfying q′n−j−1(t) = qn−j−2(t) with

p(j)
r → f (j) + qn−j−1 as r →∞ in L2

α+j,β+n(−1, 1),

= f (j) + q
(j)
n−1.

Consequently, for each j = 0, 1, . . . , n−1, {p
(j)
r −q

(j)
n−1}

∞
r=n converges in L2

α+j,β+j(−1, 1) to f (j). From

the completeness of L2
α+j,β+j(−1, 1), we conclude that f (j) ∈ L2

α+j,β+j(−1, 1) for j = 0, 1, . . . , n−1.

That is to say, f ∈ V
(α,β)
n . This completes the proof. �

We are now in position to prove the main result of this section.
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Theorem 5.4. For k > 0, let A
(α,β)
k : D(A

(α,β)
k ) ⊂ L2

α,β(−1, 1) → L2
α,β(−1, 1) be the Jacobi

self-adjoint operator, defined in (3.12) and (3.13), having the Jacobi polynomials {P
(α,β)
m }∞m=0 as

eigenfunctions. For each n ∈ N, let V
(α,β)
n be given as in (5.1) or (5.15) and let (·, ·)

(α,β)
n,k denote the

inner product defined in (5.2). Then W
(α,β)
n,k (−1, 1) = (V

(α,β)
n , (·, ·)

(α,β)
n,k ) is the nth left-definite space

for the pair (L2
α,β(−1, 1), A

(α,β)
k ). Moreover, the Jacobi polynomials {P

(α,β)
m }∞m=0 form a complete

orthogonal set in W
(α,β)
n,k (−1, 1) satisfying the orthogonality relation (4.27). Furthermore, define

B
(α,β)
n,k : D(B

(α,β)
n,k ) ⊂ W

(α,β)
n,k (−1, 1) → W

(α,β)
n,k (−1, 1)

by

B
(α,β)
n,k f = `α,β,k[f ] (f ∈ D(B

(α,β)
n,k ) := V

(α,β)
n+2 ),

where `α,β,k[·] is the Jacobi differential expression defined in (1.1). Then B
(α,β)
n,k is the nth left-

definite operator associated with the pair (L2
α,β(−1, 1), A

(α,β)
k ). Furthermore, the Jacobi polynomials

{P
(α,β)
m }∞m=0 form a complete set of eigenfunctions of B

(α,β)
n,k and the spectrum of B

(α,β)
n,k is given by

σ(B
(α,β)
n,k ) = {m(m + α + β + 1) + k | m ∈ N0} = σ(A

(α,β)
k ).

Proof. Let n ∈ N; in order to show that W
(α,β)
n,k (−1, 1) is the nth left-definite space for the pair

(L2
α,β(−1, 1), A

(α,β)
k ), we must show that the five items listed in Definition 2.1 are each satisfied.

(i) W
(α,β)
n,k (−1, 1) is complete:

The proof of the completeness is given in Theorem 5.1; see also Theorem 5.3 where an alternative

characterization of the underlying vector space V
(α,β)
n is given.

(ii) D((A
(α,β)
k )n) ⊂ W

(α,β)
n,k (−1, 1) ⊂ L2

α,β(−1, 1):

Let f ∈ D((A
(α,β)
k )n). Since the Jacobi polynomials {P

(α,β)
m }∞m=0 form a complete orthonormal set

in L2
α,β(−1, 1), we see that

(5.16) pj → f in L2
α,β(−1, 1) (j →∞),

where

pj(t) :=

j∑

m=0

c(α,β)
m P (α,β)

m (t) (t ∈ (−1, 1)),

and {c
(α,β)
m }∞m=0 are the Fourier coefficients of f in L2

α,β(−1, 1) defined by

c(α,β)
m = (f, P (α,β)

m )α,β =

∫ 1

−1
f(t)P (α,β)

m (t)(1− t)α(1 + t)βdt (m ∈ N0).

Since (A
(α,β)
k )nf ∈ L2

α,β(−1, 1), we see that

j∑

m=0

c̃(α,β)
m P (α,β)

m → (A
(α,β)
k )nf in L2

α,β(−1, 1) (j →∞),

where, from (4.19),

c̃(α,β)
m := ((A

(α,β)
k )nf, P (α,β)

m )α,β = (f, (A
(α,β)
k )nP (α,β)

m )α,β

= (m(m + α + β + 1) + k)n(f, P (α,β)
m )α,β

= (m(m + α + β + 1) + k)nc(α,β)
m ;
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that is to say,

(A
(α,β)
k )npj → (A

(α,β)
k )nf in L2

α,β(−1, 1) (j →∞).

Moreover, from (4.26), we see that
(
‖pj − pr‖

(α,β)
n,k

)2
= ((A

(α,β)
k )n[pj − pr], pj − pr)α,β

→ 0 as j, r →∞;

that is to say, {pj}
∞
j=0 is Cauchy in W

(α,β)
n,k (−1, 1). From Theorem 5.1, we see that there exists

g ∈ W
(α,β)
n,k (−1, 1) ⊂ L2

α,β(−1, 1) such that

pj → g in W
(α,β)
n,k (−1, 1) (j →∞).

Furthermore, from (5.4), we see that

‖pj − g‖α,β ≤ k−n/2 ‖pj − g‖
(α,β)
n,k

and, hence

(5.17) pj → g in L2
α,β(−1, 1).

Comparing (5.16) and (5.17), we see that f = g ∈ W
(α,β)
n,k (−1, 1); this completes the proof of (ii).

(iii) D((A
(α,β)
k )n) is dense in W

(α,β)
n,k (−1, 1):

Since polynomials are contained in D((A
(α,β)
k )n) and are dense in W

(α,β)
n,k (−1, 1) (see Theorem 5.2),

it is clear that (iii) is valid. Furthermore, from Theorem 5.2, we see that the Jacobi polynomials

{P
(α,β)
m }∞m=0 form a complete orthogonal set in W

(α,β)
n,k (−1, 1); see also (4.27).

(iv) (f, f)
(α,β)
n,k ≥ kn(f, f)α,β for all f ∈ V

(α,β)
n :

This was observed in (5.4).

(v) (f, g)
(α,β)
n,k = ((A

(α,β)
k )nf, g)α,β for f ∈ D((A

(α,β)
k )n) and g ∈ V

(α,β)
n :

Observe that this identity is true for any f, g ∈ P; indeed, this is seen in (4.26). Let f ∈ D((A
(α,β)
k )n)

⊂ W
(α,β)
n,k (−1, 1) and g ∈ W

(α,β)
n,k (−1, 1); since polynomials are dense in both W

(α,β)
n,k (−1, 1) and

L2
α,β(−1, 1) and convergence in W

(α,β)
n,k (−1, 1) implies convergence in L2

α,β(−1, 1) (from (iv) above),

there exists sequences of polynomials {pj}
∞
j=0 and {qj}

∞
j=0 such that, as j →∞,

pj → f in W
(α,β)
n,k (−1, 1), (A

(α,β)
k )npj → (A

(α,β)
k )nf in L2

α,β(−1, 1)

(see the proof of part (ii) of this Theorem), and

qj → g in W
(α,β)
n,k (−1, 1) and L2

α,β(−1, 1).

Hence, from (4.26),

((A
(α,β)
k )n[f ], g)α,β = lim

j→∞
((A

(α,β)
k )n[pj ], qj)α,β = lim

j→∞
(pj , qj)

(α,β)
n,k = (f, g)

(α,β)
n,k .

This proves (v). The rest of the proof follows immediately from Theorems 2.1, 2.2, and 2.3. �

Remark 5.1. Observe that, for n = 1, the identity given in part (v) of the above proof, namely

(f, g)
(α,β)
1,k = (A

(α,β)
k f, g)α,β (f ∈ D(A

(α,β)
k ), g ∈ V

(α,β)
1 ),

extends the Dirichlet identity for A
(α,β)
k , given in (3.15).
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Remark 5.2. Theorem 5.4 generalizes the left-definite theory of the Legendre differential expres-
sion `0,0,k[·] developed in [10]; see also [27], where the first left-definite theory is developed in a
different manner.

The next corollary follows immediately from Theorems 2.1, 5.3, 5.4 and the observation made in

(3.4). Remarkably, it characterizes the domain of each of the integral composite powers of A
(α,β)
k .

Furthermore, the characterization given in (5.18) below of the domain D(A
(α,β)
k ) of A

(α,β)
k is new

and generalizes the results in [3] and [8] for the special case of the Legendre differential operator

A
(0,0)
k .

Corollary 5.1. Let k > 0. For each n ∈ N, the domain D((A
(α,β)
k )n) of the nth composite power

(A
(α,β)
k )n of the self-adjoint Jacobi operator A

(α,β)
k , defined in (3.12) and (3.12), is given by

D((A
(α,β)
k )n) = V

(α,β)
2n = {f : (−1, 1) → C | f ∈ AC

(2n−1)
loc (−1, 1); f (2n) ∈ L2

α+2nβ+2n(−1, 1)}

= {f : (−1, 1) → C | f ∈ AC
(2n−1)
loc (−1, 1); (1− t2)nf (2n) ∈ L2

α,β(−1, 1).

In particular,

(5.18) D(A
(α,β)
k ) = V

(α,β)
2 = {f : (−∞,∞) → C | f ∈ AC

(1)
loc (−1, 1); (1− t2)f ′′ ∈ L2

α,β(−1, 1)}.

Lastly, we note, from Theorems 2.2 and 5.4, that the domain of the first left-definite operator

B
(α,β)
1,k is given explicitly by

D(B
(α,β)
1,k ) = V

(α,β)
3 = {f : (−1, 1) → C | f ∈ AC

(2)
loc (−1, 1); (1− t2)3/2f ′′′ ∈ L2

α,β(−1, 1)};

this characterization, as well, extends results in [3] and [8] for the Legendre differential operator

A
(0,0)
k .
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