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Abstract

This paper suggests a new bound of estimating the confidence interval
defined by the absolute value of difference between the true (or general) and
empirical risks for the regression of real-valued functions using incremen-
tal learning algorithms. The theoretical bounds of confidence intervals can
be derived in the sense of probably approximately correct (PAC) learning.
However, these theoretical bounds are too overestimated and not well fitted
to the empirical data. In this sense, a new bound of the confidence inter-
val which can explain the behavior of learning machines using incremental
learning more faithfully to the given samples, is suggested.

Keywords : VC dimension, confidence interval, generalization, regression,
incremental learning



1 INTRODUCTION

This paper suggests a new bound of the confidence interval defined by the
absolute value of difference between the true (or general) and empirical risks
for the regression of real-valued functions. In the learning models, the goal is
minimizing the general error for the whole distribution of sample space, not
just a set of training samples. This is refer to as the generalization problem.
To identify the general error, we need to estimate the confidence interval.
Usually, the validation set, a part of training samples is extracted and used
to estimate the confidence interval. But the physical model of confidence
intervals is not well known.

The regression of real-valued functions is frequently tackled by the in-
cremental learning algorithms in which the necessary computational units,
usually the kernel functions with locality[1, 2, 3, 4, 5] such as Gaussian ker-
nel functions, are recruited in the learning procedure. In the computational
learning theory, the bounds of confidence intervals for regression can be de-
rived in the sense of probably approximately correct (PAC) learning[6]. For
a network with Gaussian kernel functions, the upper bounds of confidence
intervals can be derived using the concept of covering numbers|7] of the hy-
pothesis space defined by network models. The covering number, in a sense,
indicates the mapping capability of network models. The final form of confi-
dence intervals[8, 9] is a function of the numbers of input dimension, kernel
functions, and training samples. However, these theoretical bounds are too
overestimated and not well fitted to the empirical data. In this sense, a new
bound of the confidence interval which can explain the behavior of general
error more faithfully to the given samples, is suggested. The suggested bound
of the confidence interval can be applied to the optimization of learning mod-
els in the sense of minimizing the general error.

2 THE CONFIDENCE INTERVALS OF
RISK FUNCTIONS FOR REGRESSION

Let us consider that the following [ samples

(Xla yl); (X27 y2)7 Ty (Xl7 yl)

are formed randomly and independently. And we assume that x € X (input
space) and y € Y (output space) have the functional relationship y = f(x).
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Now let us consider the vector x appear randomly and independently in
accordance with a distribution F'(x). Then the values of y are generated
from the random trials in accordance with F(y|x). Here, we define a loss
function as

Qx,n) = (f(x) = fu(x))? (1)
where f(x) and f,(x) represent the target function and the estimation func-
tion in Fy,, the hypothesis space (or structure) with n parameters respectively.

The goal of learning models (or estimation function) f,, is minimizing the
true (or general) risk defined by

R(f,) = BIQx,n)] = [ (76x) ~ fulx)PaF(y}x). 2)

However, we can not estimate (2) in advance. Instead, we get the empirical
risk Ry, for [ samples defined by

l

Remp () = 7 32066 = al0)? )

=1

where x; and f(x;) represent the ith input and output samples respectively.
Let us also define a random variable

en(x) = f(x) = fu(x). (4)

Then e, represents a random variable associated with the error for the esti-
mator f,. For the case that e, has unknown distribution, Vapnik[10] derives
the bounds of the confidence intervals of risk functions for the problems of
classification and regression. Since these bounds accounts for general cases,
in other words, unknown distribution of e,, unknown estimation function
fn, and unknown learning algorithm, they are usually too overestimated in a
specific case of learning model. In this sense, a new bound of the confidence
interval which can explain the behavior of learning machines more faithfully
to the given samples, is investigated.

First, let us analyze the relationship between the true and empirical risks
in the sense of the distribution of e,,. Especially, we consider the confidence
interval defined by the absolute value of difference between the true and
empirical risks. That is, the confidence interval R.(f,) is defined by

Rc(fn) = |R(fn) - Remp(fn)|' (5)

For the confidence interval of (5), we propose the following theorem.
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Theorem 1 The confidence intervals of risk functions are bounded by the
following inequality with the probability at least 1 — §:

RU) ~ Renp ()] < [ () ()

where k 1s a constant dependent upon the distribution of estimation errors.
In the case of normal distribution k = 3, otherwise, k is a constant greater
than or equal to 1.

(proof)
Let us assume that the expected value of e, (x) of (4) is given by

Elen(x)] = 1. (7)
Then the variance of y,(x) is given by
Varle,(x)] = Ele;, (x)] = E*[en(x)] = R(f,) —”. (8)
Let us define another random variable
(%) = (f(x) = fu(x))* = e (%) (9)
Then the expected value of z,(x) is given by
Elzn(x)] = Elep(x)] = R(f») (10)
and the variance of z,(x) is given by
Var(z,(x)] = Elz (x)] — E*[z(x)]. (11)

Here, we assume that there exists a constant k£ such that

E[22()
Bla)] = (12)
then
Varlza ()] < (k- VE[2a()] = (k — R(f,). (13)

In general, the constant £ is a constant greater than or equal to 1 since the
variance of z,(x) is always nonnegative.



If the random variable e, (x) in (4) has Gaussian probability density func-
tion,

) 1 oo _(enx)=m)?
Elz,(x)] = o / e, (x)e e dey(x)

(o2 + ") (o0, + 1)
3R%(f,). (14)

IN

In other words,
Var(za(x)] < 2R (fa). (15)

Let us also define a random variable Z,(x) which is an average of [ z,(x)s’,

= 1 D 2nl0) = Rl (16)

Then the expected value of z, is given by
Elzn] = Elzn(x)] = R(f2) (17)
and the variance of z, is given by

1 k—1
Var|z,] = 7Var[zn(x)] = TR2(fn) (18)
assuming that z,(x;)s’are uncorrelated each other.

The random variable Z, satisfies the following Tchebycheff inequality[11]:

_ _ Var|z,
Pr{[ B[] — 5(0)| < ) = PrIR() — Romplf)] < 0] 2 1~ ~2P2) (19)
regardless of the distribution of e,.
For the PAC learning, we set
Var|z, k—1
R ) (20)

2 2
€2 €2l

Then the bound of ¢, becomes

kE—1
€n =1/ TR(fn) (21)
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Therefore, with the probability at least 1 — ¢,

()~ Renp ()] < | R (22)
Q.E.D.

In general, the inequality

Remp(fn) < R(fn) (23)

holds in the sense of empirical risk minimization. Therefore, we can easily
conclude the following corollary from theorem 1:

Corollary 1 The true risks have the following upper bounds with the prob-
ability at least 1 — §:

k—1

R(fn) < (11— 5

)™ Remp(fn)- (24)
For the nonnegative loss functions with the finite VC dimension, Vapnik
suggests the following bounds on the generalization for regression[10]:

Theorem 2 (Vapnik, 1998) For the nonnegative loss functions with the
finite VC' dimension h,,, the risk functions of f,, are bounded by the following
inequality with the probability at least 1 — §:

R(fn) < (1= 70(p)v/En)y Remp(fn) forp > 2, (25)
(Bl _
R 0
Lp-1

ap) = (=5, and (27)

hp(l+In2t) —Int
4 l"

En = (28)

for any f, € F,.

Comparing the theorems 1 and 2, we can see that the true risks are
bounded by a multiplication of some constant and the empirical risk. The

multiplication terms in the theorems 1 and 2 are mainly dependent upon
1/l and \/h, /I respectively. In other words, the bounds of true risks in
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the theorem 1 are determined by the multiplication term mainly dependent
upon the number of samples while the bounds of true risks in the theorem 2
are determined by the multiplication term mainly dependent upon the ratio
of the VC dimension and the number of samples.

Here, we need to investigate the property of true risks to obtain the
bounds of confidence intervals. First, let us consider the case of the bounded
loss functions with the finite VC dimension, in other words,

0<Qx,n) < B. (29)

For this case, Vapnik suggests the following bounds on the generalization for
regression|[10]:

Theorem 3 (Vapnik, 1998) For the bounded loss functions with the finite
VC dimension h,, the risk functions of f, are bounded by the following in-
equality with the probability at least 1 — 9

R(fn) < Remp(fn) + 326” (1+ \/1 + m;mi:(m) and (30)

hy(l4+1In2) —1n?
¢ — 4] 20 31)

for any f, € F,.

The generalization bounds of the true risks for the bounded loss functions
can be explained by the following theorem:

Theorem 4 For the bounded loss functions with the finite VC' dimension

hy,, the true risks have the following upper bounds with the probability at least
1—26:

R(fn) S Clrn + C2€n7 (32)
]' «
Tn = (ﬁ) : (33)
€n = B;"(l + \/1 + 741%855(“’6")), and (34)

hy(l4+1In2) —1n?
en =14 ( lh") . (35)




where k is a constant dependent upon the distribution of estimation errors, C
s a constant dependent upon the target function, Cy is a constant dependent
upon estimation error, and « is a constant dependent upon the smoothness
of target function and the dimension of input space.

(proof)
The true risk in (6) can be rewritten as

R(fn) = R(fa) — R(f3) + R(f;) (36)

where R(f) is the optimal estimation function in F,.
Then using the triangular inequality,

R(fn) < |R(fa) = R(f) + R(f7)- (37)

Let us first consider the first term |R(f,) — R(f;)| of the inequality (37).
In the case of empirical risk minimization, the following conditions holds:

R(f) R(fn) (38)
Remp(f3) Remp(fn)- (39)

Then according to the theorem 3, with the probability at least 1 — 20,

<
>

|R(fn) - Remp(fn)| < € for any fn € F, (40)
where
. B&“n 4Remp(fn)

Therefore, with the probability at least 1 — 20,

|R(fn) = R(f3)] < 26, (42)

to satisfy the conditions of (38) and (39).
The second term R(f) of the inequality (37) is concerned with the the-

n
orem of function approximation. According to Lorentz’s work[12], if n rep-

resents the degree of polynomials, the true risk of f, is bounded by
1
R(fy) <= N(=)" (43)
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where s represents the number of existing derivatives, m represents the di-
mension of input space of the target function, and N represents a constant
that depends on the target function and s.

In the case that the estimation function is composed of sigmoid or Gaus-
sian kernel functions, r, is bounded[13, 14, 15] by

Y < o%). (44)

Therefore, from (37), (42) and (43), with the probability at least 1 — 24,

R(fn) < 01(%)“ + Coey (45)

where
Ci=N, Cy;=2, and a = s/m. (46)

Q.E.D.

Theorem 4 states that the bounds of true risks are determined by the
approximation error 7, of (32) and the regression error ¢, of (32). Note that
the regression error €, can be approximated as Be,, if Repm,(fn) < Be,/4.
For the bounded loss functions with the finite VC dimension, the confidence
intervals of risk functions can be described by the following theorem:

Theorem 5 For the bounded loss functions with the finite VC dimension
h,, the confidence intervals of risk functions have the following upper bounds
with the probability at least 1 — 30

|R(fn) - Remp(fn)| < \/ %(Clrn + C2€n)7 (47)

1
TL: —_ a, 48
= (") (48)
Be, AR eyp(fn)
= 1 14 PR 4
€ == ( +\/ e, ), and (49)
ho(14+In2) —1In?
en =4 ( o) 0 (50)

[
where k is a constant dependent upon the distribution of estimation errors, C
15 a constant dependent upon the target function, Cy is a constant dependent
upon estimation error, and « is a constant dependent upon the smoothness
of target function and the dimension of input space.
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(proof)
The confidence intervals of risk functions are bounded by the following
inequality with the probability at least 1 — ¢:

()~ Remp ()] < /2 R(T) 61)

from the theorem 1. The true risks have the following upper bound with the
probability at least 1 — 24:

R(fn) < Cirp + Coey (52)

from the theorem 4. Therefore, from (51) and (52), the confidence intervals
of risk functions have the upper bounds with the probability at least 1 — 34:

RG) ~ Reng ()] <\ (o + O, (53)
Q.E.D.

Theorem 5 states that the confidence intervals of risk functions for the
regression of the bounded target functions and the learning models with the
finite VC dimension, are bounded by the approximation error r, of (32) and
the regression error €, of (32), but these bounds are decreased at the rate of
1/ V1 as the number of samples increases. Therefore, the true and empirical
risks approach to the same value regardless of the ratio h,/l as the number
of samples increases. This result can be compared with the Vapnik’s result
of generalization bounds for regression[10] in which the bounds of confidence
intervals are proportional to €,, in other words, approximately h,/l. In fact,
it is commonly observed that the confidence intervals are decreasing when
the number of kernel functions is proportional to [ and [ is decreasing.

There are many algorithms of incremental learning[1, 2, 3, 4, 5] using the
kernel functions with locality. In most cases, a learning algorithm composed
of two learning processes, is considered. They are the process of recruiting
the necessary number of kernel functions and the process of parameter esti-
mation associated with kernel functions. For the estimation of true risks of
incremental learning, we can consider the estimation model motivated from
the theorem 5. We have shown that such estimation model of confidence
intervals[16] could be well fitted to the empirical data.
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3

CONCLUSION

In this paper, the confidence intervals for the regression of real-valued func-
tions using incremental learning, are suggested in the sense of VC dimension
and function approximation theories. The suggested confidence intervals can
be applied to various types of learning models including artificial neural net-
works for optimizing the structure (or network size) of learning models in the
sense of minimizing the general error.
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