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1 INTRODUCTION

Suppose that the log-linear model (LLM) of X = (X1, · · · , Xp) is hierarchical and that Xi

is multinomial with category levels 1, · · · , λi and let X(i) be the (p − 1)-vector obtained by

removing Xi from X. As is well known, a log-linear model of X is used to represent the

logarithm of the joint probability distribution of X as a linear combination of the terms each

of which is defined on a subset of X1, · · · , Xp. When the model is hierarchical, the model

structure of X is determined by the terms whose domain subsets are maximal, i.e., each of the

maximal domain subsets is not contained in any other domain subset in the model. This is why

we can represent the model structure of a hierarchical log-linear model by a set of maximal

domain subsets, and we will call the set the log-linear structure (LLS) of the model. The set

used to be called generating class in literature.

Consider a conditional LLM of X(1) given that X1 = x1 and denote its LLS by CSx1 . Since

X1 takes on λ1 different values, we can think of λ1 such CS’s, whose collection actually makes

the LLS of X. In other words, the collection is another form of model representation for X.

The conditional log-linear structures (CLLSs) are low-level model-structures for X(1). We will

depict the collection in a tree shape, with a node for X1 and λ1 arrows from it to the λ1 nodes

of CS’s. Since this tree shape is a hybrid of tree and log-linear structures, we will call it a

hybrid, represent it as Hyb(X1; CS1, · · · , CSλ1), and call it a one-node hybrid.

Adapting our notation from Bishop, Fienberg, and Holland (1975), we will represent a LLS

by {θ1, · · · , θk}, where θi’s are maximal domain subsets. For notational convenience, we use

the indexes of the X variables to represent the LLS. Fienberg and Kim (1999) found (Lemma 1

thereof) that if θ appears in at least one of the CLLSs of a given one-node hybrid, the original

log-linear model, say M , must contain a maximal domain subset θ or the union of θ and the

index, say c, of the conditional variable. In particular, it was found that if the θ is found

in all the CLLSs, then either θ or θ ∪ {c} is a maximal domain subset of the model M , and

that otherwise, θ ∪ {c} must be a maximal domain subset of M provided that θ is maximal in

∪λc
i=1CSi. A key point in this is that parts of the model structure of a LLM are found in the

CLLSs of the LLM.

Conditional models are often used for model representation in AI. The Bayesian network

(Pearl, 1988) is one of the most popular graphical models in AI that are depicted via directed

acyclic graph. D’Ambrosio (1995), Geiger and Heckerman (1996), and Mahoney and Laskey

(1999) consider a problem of representing Bayesian networks, using conditional probability
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models and conditional variables, which are capable of explicitly capturing much of lower-

level structural details. They use the hybrid type of model representation with the CLLS

replaced with the conditional probability distribution. Chickering, Heckerman, and Meek

(1997) and Friedman and Goldszmidt (1998) employ the detailed model representation in

learning Bayesian networks. Conditional models are embedded in a whole model as local

descriptions of the whole model, making the detailed model-representation possible. Our

purpose of using the CLLS is quite different from them in that we aim to use the CLLS

for searching model structures rather than using it as a way of model representation.

Our main goal of this article is to explore further the relationship between LLS and its

CLLS and propose an easier method of log-linear modelling which makes use of the pieces

of information on model structure that are obtained from CLLSs. The time of parameter-

estimation for log-linear modelling increases exponentially in the number of variables involved.

At an early stage of modelling, it is desirable that we have a reasonable model structure to

begin with, which is in practice not an easy matter.

This paper consists of 7 sections. Section 2 briefly describes the relation between an LLM

and its conditional LLM. We view this relation from another perspective in section 3 assuming

that the log-linear model is graphical. This will be helpful in getting an insight into the relation.

Section 4 then presents a theory which is instrumental for structure searching. While we assume

single conditional variables in section 4, we consider CLLSs with multiple conditional variables

in section 5 and derive generalized versions of the theorems in its preceding sections. The

results in section 5 are applied successfully to real data in section 6, and finally we close the

article in section 7 with some concluding remarks.

2 CONDITIONAL LOG-LINEAR STRUCTURE

We briefly review, through a couple of examples, a LLM and its conditionals. The examples

are about how CLLSs are related with a given log-linear structure (LLS for short). After these

examples we will describe in general terms the relation between a LLM and its CLLM.

Example 1 Consider a LLS for 5 variables, X1, · · · , X5, as given by

{{1, 2, 3}, {1, 3, 4}, {3, 4, 5}}. (1)

If we denote the three component sets in (1), respectively by {θ1, θ2, θ3}, we can write the
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corresponding LLM as

log p12345(x1, · · · , x5) = uθ1 + uθ2 + uθ3 + R,

where R includes a constant u-term plus the summation of the uθ-terms, each of whose subscript

set is a strict subset of θi for some i ∈ {1, 2, 3}.

Let

w
(x1)
θ = uθ + uθ∪{1},

w(x1) = u + u1 − log p1(x1),

Then the logarithm of the conditional probability of X2 = x2, · · · , X5 = x5 given X1 = x1 is

given by

log p2345|1(x2, · · · , x5; x1)

= w(x1) + w
(x1)
2 + w

(x1)
3 + w

(x1)
4 + u5 + w

(x1)
23 + w

(x1)
34 + u35 + u45 + u345. (2)

Note in (2) that the CLLS is determined by the terms w
(x1)
23 and u345 if neither of them equals

zero. Also note that the index sets of these terms, {2, 3} and {3, 4, 5}, are included in the set

{θ1 \ {1}, θ2 \ {1}, θ3 \ {1}} = {{2, 3}, {3, 4}, {3, 4, 5}}.

As connoted in the last equation, we need know when to expect to see the full set of u− or

w−terms for a successful trip back to a LLM from a specific version of its conditional model

(that depends on the value x1). The lemma below plays an important role in searching for

the set of the CLLSs that appear in a hybrid. Although the proof of the lemma is simple it is

presented because it gives us an insight into the relation between a LLM and its CLLM.

Lemma 1 Let θ ∩ {1} = ∅. Then, uθ = u{1}∪θ = 0, iff w
(x1)
θ = 0 for all x1 = 1, · · · , λ1.

Proof: Suppose that w
(x1)
θ(xθ) = 0, for all possible realizations xθ, and for all x1 = 1, · · · , λ1.

Then it follows that, for x1 = 1, · · · , λ1,

u{1}∪θ(x1,xθ) = −uθ(xθ), ∀xθ. (3)

Since
∑λ1

x1=1 u{1}∪θ(x1,xθ) = 0, equation (3) implies that uθ = 0. The proof for the other

direction is straightforward.
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According to Lemma 1, it is possible that w
(x1)
34 = 0 for some value x1 of X1 when u134 6= 0.

If w
(x1)
34 in (2) equals 0 for all values of x1, then the full LLM is not hierarchical since u345 6= 0;

similarly, it is also possible that w
(x1)
3 = 0 while w

(x1)
34 6= 0. These “non-hierarchical” situations

are difficult to interpret. We shall assume, throughout the remainder of the paper, that the

hierarchy principle holds for both the CLLM and the LLM to avoid such situations. We refer

to this as the strong hierarchy principle or the SHP for short.

Under the SHP , the CLLS is subject to whether a particular w-term is zero or not. For

instance, the CLLS of the model represented by expression (2) is determined by u345 and

w
(x1)
23 when w

(x1)
23 6= 0, determined by u345 and w

(x1)
2 when w

(x1)
23 = 0 and w

(x1)
2 6= 0, and

determined by u345 only when both w
(x1)
23 and w

(x1)
2 are non-zero. We refer to such situations

where w(·) = 0 as zero-w phenomena.

Taking the zero-w phenomena into consideration in (2), we come up with the possible

CLLSs for X2, · · · , X5 given X1 as

{{2, 3}, {3, 4, 5}}, {{2}, {3, 4, 5}}, {{3, 4, 5}}. (4)

We can also have the same result directly from the LLS as in (1). Once we condition on X1 in

the model given in (1), {1, 3, 4}\{1} = {3, 4} is a subset of {3, 4, 5} while {1, 2, 3}\{1} = {2, 3}
is not. Applying the zero-w phenomenon to {2, 3} leads us to the list in (4).

By applying Lemma 1 to the list in (4), we can obtain hybrids for the 5 random variables

in Example 1. According to the lemma, the CLLS {{2, 3}, {3, 4, 5}} appears in every possible

hybrid that corresponds to the LLM in expression (1), but not for the other CLLSs in (4). For

example, if the model Hyb(X1; {{3, 4, 5}}, {{2}, {3, 4, 5}}) holds true, then by Lemma 1 the

set {1, 2, 3} can not show up in (1). Note that {3, 4, 5} appears in all the structures in (4),

but this is not guaranteed when a set in a LLS contains “1”. To make it clearer, we consider

a simple LLS which consists of the sets only that contains “1” each.

Example 2 Consider a submodel of the model in (1):

{{1, 2, 3}, {1, 3, 4}}. (5)

Since “1” is contained in both of the sets in expression (5), we represent the CLLMs in

terms of w-terms only. Thus, as in Example 1, considering all the possible zero-w phenomena

concerning both {1, 2, 3} and {1, 3, 4} gives rise to possible CLLSs of the form:

{ϕ1, ϕ2} with ϕ1 ⊆ {2, 3}, ϕ2 ⊆ {3, 4},
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where {2, 3} and {3, 4} must show up at least once in the CLLSs by Lemma 1.

It is worthwhile to note in both of the examples that for each set θ in a given LLS, θ \ {1}
shows up in at least one of the CLLSs unless θ \ {1} is a subset of any other in LLS. Thus

we may claim that for every set θ that is maximal in
⋃λ1

i=1 CSi, either θ or θ ∪ {1} must show

up in the corresponding LLS. This relationship between LLS and its CLLS is a useful piece of

information for finding the LLS.

We can apply the approach suggested by these two examples to get a list of the possible

CLLSs for a given LLS involving p categorical variables, X1, X2, · · · , Xp. We consider CLLSs

of X2, X3, · · · , Xp conditional on the outcomes of X1, and assume that X1 takes on λ1 values

1, · · · , λ1 and that it is effective for the LLM of X1, X2, · · · , Xp. Thus we may restrict ourselves

to the LLMs that include the u1 term, i.e.,

u1 6= 0. (6)

Consider a LLS given by

{θ1, θ2, · · · , θk}, (7)

where θ1, θ2, · · · , θk are distinct subsets of {1, 2, · · · , n}. Under the assumption in (6), there

must exist at least one set in expression (7) which contains “1”. Suppose that there are r of

these, θ1, θ2, · · · , θr. When a LLM is conditioned by X1, the “1” disappears into the w(x1)-

terms in the CLLM and the terms affect the CLLS under the SHP. If the index set of a w-term

(e.g., w
(x1)
{3,4}) is a subset of the index set of some u-term, the w-term does not affect the CLLS;

otherwise (e.g., w
(x1)
{2,3}), the w-term affect the CLLS. We call a set such as {1, 3, 4} in Example

1 as a disappearing set, a set such as {1, 2, 3} as a remaining set, and a set such as {3, 4, 5} as

a settled set. If a set of a LLS is free of “1”, it is settled; otherwise, it is either remaining or

disappearing.

We may suppose, without loss of generality, that there are d disappearing sets, θ1, · · · , θd,

0 ≤ d < r, in expression (7). Thus the sets, θd+1, · · · , θr, are the remaining sets in (7). After

appropriate rearrangements, we have d = 1, r = 2, k = 3 in Example 1, and d = 0, r = k = 2

in Example 2. When all the sets in a LLS contain “1”, r = k and d = 0.

Many of the CLLSs associated with a LLS are the results of zero-w phenomena involving

the remaining sets in the LLS. We define an operator 〈·〉 as in that, for a collection A of sets,

〈A〉 is a collection of the maximal sets in A, where “maximal” is in the sense of set-inclusion.
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When the LLS is given by (7), the generic form of the CLLSs for X2, · · · , Xp given X1 = x1

is given, under the SHP, by

〈ϕd+1, ϕd+2, · · · , ϕr, θr+1, · · · , θk〉, for ϕj ∈ Cj , j = d + 1, · · · , r, (8)

where Cj is a collection of subsets of the remaining set, θj \ {1} for d + 1 ≤ j ≤ r. The largest

of the CLLSs is given by {θd+1 \ {1}, · · · , θr \ {1}, θr+1, · · · , θk}, and the smallest is given by

{θr+1, · · · , θk}. The settled sets show up in each of the CLLSs.

There must exist, by Lemma 1, θj \ {1} in at least one of the λ1 CLLSs for d + 1 ≤ j ≤ r.

Thus if we take the maximal sets in ∪λ1
i=1CSi we have

〈∪λ1
i=1CSi〉 = {θd+1 \ {1}, · · · , θr \ {1}, θr+1, · · · , θk}, (9)

which we will denote by Λ{1}(M) where M denotes the LLM represented as in (7) and the

subscript {1} stands for that the conditional variable is X1. If a set SM represents the structure

of a LLM M , we will write

Λ{1}(SM ) = Λ{1}(M).

Expressions (8) and (9) also imply that, for any subset B ⊆ {1, 2, · · · , λ1},
〈
∪i∈B CSi

〉
⊆

(
{ϕj ; ϕj ⊆ (θj \ {1}), j = d + 1, · · · , r} ∪ {θr+1, · · · , θk}

)

and 〈
∩i∈B CSi

〉
⊇ {θr+1, · · · , θk}.

In other words,
〈
∪i∈B CSi

〉
contains the settled sets as well as subsets of the remaining sets.

Equation (9) is valid for the hierarchical log-linear models since Lemma 1 holds for every

hierarchical LLM. Although our interest lies in the hierarchical log-linear models, we will make

use of an attractive feature of graphical log-linear model (Darroch, Lauritzen, and Speed 1980;

Fienberg 1980) to visualize the relation between LLS and its CLLS. This will help getting an

insight into how CLLSs are useful for log-linear modelling.

3 CONDITIONAL LOG-LINEAR STRUCTURE AND
INDUCED SUBGRAPH

A log-linear model is called a graphical log-linear model if its model structure is representable

via an undirected graph of vertices and edges. The undirected graph is also called independence
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Figure 1: Examples of undirected graph

graph (Whittaker 1990) and in computer science it is called Markov network (Pearl 1988). We

will call the graphical log-linear model simply by graphical model. As is well known, the

conditional independence relationship among the variables involved in a graphical model is

represented in a graph in such a way that the conditional independence of X and Y given Z

is depicted in the corresponding graph of the model as that all the paths from X to Y are

through Z (Whittaker 1990, The Separation Theorem).

We denote a graph by G = (V, E) with V and E as the set of the vertices in G and the set

of the edges in G, respectively. Since we consider only the undirected graph, (α, β) ∈ E implies

(β, α) ∈ E and vice versa. So if an edge with end points α and β is in G, we will simply write

either (α, β) ∈ E or (β, α) ∈ E.

An induced subgraph of G is defined as

GA = (A, EA)

where the edge set EA = E ∩ (A×A) is obtained by keeping edges with both endpoints in A.

From this definition, we can see that for a set V(a) = V \ {a} with a a vertex in G, GV(a)
is

obtained by removing the vertex a along with the edges for which a is an endpoint.

A clique in G is a maximal complete subgraph of G where maximal is in the sense of

set inclusion. If the LLS in (7) is graphical with graph G, each θi, i = 1, · · · , k, corre-

sponds to a clique in G. For example, the graph in panel (a) of Figure 1 is the graph

of the LLS, {{1, 2}, {1, 3}, {2, 4}, {3, 4}} and that in panel (b) is the graph of the LLS,

{{1, 2, 3}, {2, 3, 4, 5}, {5, 6}, {4, 5, 7}, {4, 5, 8}}. A good introduction to the graphical log-

linear model is given in Darroch, Lauritzen, and Speed (1980).

Note that in panel (a) the induced subgraph G{2,3,4} is expressed as

{{2, 4}, {3, 4}}; (10)
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similarly, as for panel (b), the induced subgraph is expressed as

{{2, 3, 4, 5}, {5, 6}, {4, 5, 7}, {4, 5, 8}}. (11)

If we denote the LLSs in Figure 1 by Ma and Mb respectively, we can see from (7) that Λ{1}(Ma)

and Λ{1}(Mb) are the same as those in (10) and (11), respectively. We can summarize this as

in the theorem below. If a graphical model, M , has its corresponding graph G, we will use

Λa(G) in the same sense as Λa(M). Since a graph can be expressed in the form of set, we will

use the symbol ψ(G) for the set-expression of the graph G.

Theorem 1 Suppose that the LLS of X = (X1, · · · , Xp) is graphical with the corresponding

graph G. Then

Λ{1}(G) = ψ(GV \{1}).

Proof: Without loss of generality, we may assume the LLS as in (7) with d and r interpreted

as they are therein. By definition, Λ{1}(G) is the same as the right-hand side of equation (9).

GV \{1} is obtained by removing node 1 along with the edges connected to node 1. There are

two situations of the nodes that are at the other end of the to-be-removed edges. One is that

the node, α say, belongs to only one clique; and the other is that node α belongs to multiple

cliques. In the former situation, node α itself remains as a clique or belongs to a new clique;

and in the latter situation, node α remains as a member of an existing clique of G and any

clique that includes both nodes 1 and α disappears along with node 1. In the context of the

LLS (7), {θd+1, · · · , θr} pertains to the former situation and {θ1, · · · , θd} the latter situation.

Therefore, we have

ψ(GV \{1}) = 〈{θ1 \ {1}, · · · , θk \ {1}}〉
= the right-hand side of (9).

This completes the proof.

4 COMBINATION OF CLLSs WITH SINGLE CONDITIONAL
VARIABLES

Consider a graph G = (V, E) and let A ⊆ V . Then, for any induced subgraph GA, EA ⊆ E. In

an undirected graph, we say that two vertices α and β are adjacent if the two are connected

by an edge, i.e., (α, β) ∈ E.
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When two nodes, α and β, are not adjacent in G, then it is obvious, by the definition of

induced subgraph, that

ψ(GV \α) ∪ ψ(GV \β) = ψ(G).

Thus, if there are at least one pair of non-adjacent nodes in a LLS, it is always true that

∪α∈V ψ(GV \α) = ψ(G). (12)

We will prove this in a general setting.

Theorem 2 Consider a LLM, M , represented as in (7). Then the following holds:

(i) If {α, β} ⊆ θ′ for some θ′ in SM , then 〈Λ{α}(M) ∪ Λ{β}(M)〉 ⊂ SM .

(ii) Otherwise, 〈Λ{α}(M) ∪ Λ{β}(M)〉 = SM .

Proof: In case (i), it is obvious that θ′ does not show up in Λ{α}(M) ∪ Λ{β}(M) since it is

not included in neither of Λ{α}(M) and Λ{β}(M). In case (ii), we may suppose without loss

of generality that α is included in Sα = {θ1, · · · , θa} and β in Sβ = {θa+1, · · · , θa+b} for some

positive integers a and b with a + b ≤ k. Since the sets in Sα are all distinct from the sets in

Sβ, it follows that

(SM \ Sα) ∪ (SM \ Sβ) = SM .

Therefore, by applying (8), we have

〈Λ{α}(M) ∪ Λ{β}(M)〉 = SM .

Note that by Theorem 1, equation (12) is immediate from result (ii) of Theorem 2. From

result (i) of Theorem 2, we can see that (12) does not hold if a graph is complete. For instance,

if G is a complete graph of nodes 1, 2, and 3, then

∪α∈{1,2,3}ψ(GV \α) = {{1, 2}, {2, 3}, {1, 3}}, (13)

while ψ(G) = {{1, 2, 3}}. As a matter of fact, the LLS as in the right-hand side of (13) is a

good example of a hierarchical log-linear model which is not graphical (Darroch, Lauritzen,

and Speed 1980).
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5 COMBINATION OF CLLSs WITH MULTIPLE CONDI-
TIONAL VARIABLES

So far, we have considered CLLMs with only one conditional variable. But we can extend

the argument to the situations of multiple conditional variables. Let A be a subset of V =

{1, 2, · · · , p} and suppose that XA is the vector of the conditional variables. We define, XA =

xA,

w
(xA)
θ =

∑

ϕ⊆A

uθ∪ϕ.

Then, we can have an extended version of Lemma 1.

Theorem 3 Let θ ∩A = ∅ for a set A ⊂ V . Then

uϕ∪θ = 0, for all ϕ ⊆ A

if and only if

w
(xA)
θ = 0 for all values of xA.

Proof: See Appendix A.

From this theorem, we can have a generalized version of (8) and (9), which plays a key role

along with Theorem 2 in searching for model structures. Consider the LLS in (7), let A ⊂ V ,

and assume that

θi ∩A 6= ∅ for i ∈ {1, 2, · · · , r}

and

θi ∩A = ∅ for i ∈ {r + 1, · · · , k}.

Further assume that for i ∈ {1, · · · , d}, d ≤ r,

(θi \A) ⊂ θl, for some l ∈ {r + 1, · · · , k},

but not for i ∈ {r + 1, · · · , r}. Then the CLLS of XV \A is given in the form of

〈ϕd+1, ϕd+2, · · · , ϕr, θr+1, · · · , θk〉 for ϕj ∈ Cj , j = d + 1, · · · , r,

where Cj is a collection of subsets of the remaining set, θj \A for d + 1 ≤ j ≤ r.
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We denote by χA the set of all the possible values of XA. Then, by Theorem 3, the maximal

sets in ∪x∈χACSx is given by

〈∪x∈χACSx〉 = {θd+1 \A, · · · , θr \A, θr+1, · · · , θk},

which we will denote by ΛA(M).

The theorem below is an extension of Theorem 1 to a situation of multiple conditional

variables.

Theorem 4 Suppose that the LLM M of X = (X1, · · · , Xp) is graphical with the corresponding

graph G. Then, for A ⊂ V ,

〈∪x∈χACSx〉 = ψ(GV \A).

Proof: According to Theorem 3, only the set, θ say, that appears in ∪x∈χACSx shows up in

the LLS SM in the form of ϕθ ∪ θ for some ϕθ ⊆ A which can be an empty set. And so, under

the strong hierarchy principle, the LLS SM is given by

〈{θ ∪ ϕθ; θ ∈ ∪x∈χACSx}〉 ,

where ϕθ’s correspond to the θ and are subsets of A.

Since M is graphical, the induced subgraph of M confined to V \A can be expressed in a

set form by

〈{θ ∪ ϕθ; θ ∈ ∪x∈χACSx}〉 \A,

which is the same as 〈∪x∈χACSx〉 since all the ϕθ’s are contained in A. This completes the

proof.

When multiple variables are conditional, whether all the conditional variables are contained

in a component set of a LLS is an important issue in structure searching through CLLSs.

Theorem 5 Consider a LLM M as given in (7). Let A and B be non-empty subsets of V .

Then the following holds:

(i) If A ∩B 6= ∅, then ΛA(M) ∪ ΛB(M) ⊂ SM .

(ii) If A ∩ θ′ 6= ∅ and B ∩ θ′ 6= ∅ for some θ′ ∈ SM , then ΛA(M) ∪ ΛB(M) ⊂ SM .

(iii) Otherwise, ΛA(M) ∪ ΛB(M) = SM .
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Table 1: The 8 labels of items and their meanings. The random variables are listed according
to their contents. The first four are about lecturing, the next three concerning homework, and
the last may be regarded as an overall level of evaluation.

Variables key words item contents
A Class atmosphere Was the lecture given in an interactive atmosphere?
T Thought provoking Was the lecture thought-provoking?
O Organization Was the lecture well organized throughout the course?
E Explanation Was the lecture given with an explanation good enough

for a clear understanding?
D Difficulty Were the test and the homework problems at appropriate

levels?
F Feedback Did you get a satisfactory feedback from the comments on

your homework?
H Homework Was the homework assignments helpful in understanding

the lecture and related subjects?
R Recommendation Would you recommend this course to your friends?

Proof: See Appendix A.

This theorem says that when using multiple conditional variables, it is desirable that at

least one pair of sets of conditional variables be disjoint. This point is to be observed when we

try to find a reasonable model structure in log-linear modelling.

6 AN APPLICATION: LOG-LINEAR MODELLING WITH
REAL DATA

In this section a real data set of size 28,270 is used, which is collected for lecture evaluation for

the courses lectured during in year 2000 at a university in South Korea. The survey items that

are selected for use are 8 out of 23. The selected 8 items are about lecture and homework, and

tests. We will label the random variables for the 8 items by A, T, O, E, D, F, H, and R, which

are explained in Table 1. Item D has three options, easier, middle, and harder, and each of the

other 7 items has three options, negative, half-and-half, positive, and so the random variables

are all ternary taking on values 1 (for negative), 2 (for half-and-half), or 3 (for positive). The

frequency table of the data is of 38 = 6, 561 cells. Because of the size of the table, the data

set is not included in the article but is given as a file named “lec00.sel8.dat” in the web site,

“http://amath.kaist.ac.kr/∼slki/research/data.”
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The eight variables look all related each other and so it is not easy to guess an initial model

structure to begin with. Although only eight variables are involved, it takes too long a time

to use a backward deletion method starting from the full model which is of 6,560 parameters

to estimate. However, if we use the information from CLLSs of a subset of the eight variables,

we can easily guess a possible model structure for the whole data.

The smaller the model, the easier the modelling. The log-linear modelling with five variables

is feasible and takes much less time than dealing with six variables. So we tried to find a set of

three conditioning variables which are closely related each other. CART (Breiman et al. 1984)

and S-plus (Chambers and Hastie 1992) are useful in this respect since it yields a regression

tree where the variables that are more highly associated with a given dependent variable tend

to appear earlier in the tree topology.

The set of variables that was selected at the initial stage of modelling is {E, O, R}. It was

obtained by tree-regressing R which indicates a level of course recommendation by students

and is mostly interested by teachers. The CLLS of the rest five variables, A, T, D, F , and

H, that is appropriate conditional on {E, O, R} is [ATFH][TDFH]. The goodness-of-fit levels

are listed in panel (a) of Table 2. In this CLLS, {T, F, H} is contained in both of the suffi-

cient sets of the model. So we selected the variables in the set as conditional and the model

[AEO][DOR][AOR][EDR] is selected as reasonably good. The corresponding goodness-of-fit

levels are listed in panel (b) of Table 2. Out of all the possible configurations of the condi-

tional variables, only those configurations are used where the corresponding sample sizes (n)

are near or larger than 5 times the cell count (i.e., 35 = 243) of each conditional contingency

table. This applies to all the panels of the table.

Note that the two conditional sets are disjoint and so it is possible by (i) of Theorem 2 that

there be at least one sufficient set that involves some variables in both of the two conditional

sets. To check this, two more conditional modelings were carried out, one conditional on

{A,E, D} and another conditional on {A,D,F}, and their results are summarized in panels

(c) and (d) of Table 2, respectively. In panel (c), the P-value is small for two configurations,

222 and 332. But this may not undermine the modelling process since when combining the

CLLSs toward the whole model, such local deficiencies may be patched up.

Using the notation for CLLS and denoting the LLM for the data by M , we can express the

for CLLSs as follows:

Λ{O,E,R}(M) = {{A, T, F, H}, {T,D, F, H}},

13



Table 2: The goodness-of-fit levels of the four CLLMs corresponding to four sets of conditional
variables. The values are obtained from the SAS package.

(a) [ATFH][TDFH]
conditional on {O,E, R}
configuration n P-value

222 2569 0.09
223 1696 0.72
233 1837 0.40
323 1669 0.31
332 1934 0.66
333 11760 0.08

(b) [AEO][DOR][AOR][EDR]
conditional on {T, H, F}
configuration n P-value

221 1181 0.99
222 2357 0.13
223 1145 0.99
231 1056 0.85
232 1751 0.69
233 2017 0.30
322 1370 0.99
323 1027 0.90
331 1558 0.21
332 3327 0.46
333 6519 0.60

(c) [THO][TFH][TOR][FHR]
conditional on {A,E,D}
configuration n P-value

222 2482 0.0015
223 1426 0.28
232 2583 0.30
322 1635 0.98
323 1291 0.995
332 7180 0.004
333 4689 0.64

(d) [EO][TEH][TOR][THR][HOR][ER]
conditional on {A,D,F}
configuration n P-value

221 1309 0.74
222 2502 0.02
223 1669 0.80
232 1293 0.77
233 1206 0.99
321 1683 0.999
322 3158 0.83
323 4201 0.05
331 1060 0.998
332 1781 0.42
333 3434 0.67

Λ{T,H,F}(M) = {{A,E, O}, {D, O,R}, {A,O,R}, {E, D,R}},
Λ{A,E,D}(M) = {{T, H, O}, {T, F, H}, {T,O, R}, {F,H, R}},
Λ{A,D,F}(M) = {{E, O}, {T, E,H}, {T, O,R}, {T, H, R}, {H, O,R}, {E, R}}.

This model does not fit well to the whole data, for which the goodness-of-fit level is 0.0012.

So we put the four sets

{{T, H,O}, {T, O, R}, {T, H,R}, {H,O, R}}

together into {T, H,O, R} with the other sets in (15) remaining in the model, which ends up

with the model {{A, T, F,H}, {T,D, F,H}, {A,E, O}, {D,O, R}, {A,O, R}, {E, D, R},
{T, H, O, R}, {F,H, R}, {T,E, H}}. The goodness-of-fit level of this model is 0.0316, which
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is yet to be improved. In searching for a larger model, we examined the third through sixth

sets in the preceding model and found that out of the five variables, A,D, E, O,R, only the

A-and-D pair is not two-way interactive. So we considered a largest model possible for the five

variables that is given by {{A,E, O, R}, {D, E,O, R}}. With this replacement made to the

preceding model, we have the model

{{A, T, F, H}, {T,D, F,H}, {A, E, O,R}, {D,E, O, R},
{T, H, O,R}, {F, H,R}, {T, E,H}}, (14)

whose goodness-of-fit level is 0.46 and whose ANOVA-like summary from the SAS package is

given in Appendix B.

Combining these four CLLSs yields

〈Λ{O,E,R}(M) ∪ Λ{T,H,F}(M) ∪ Λ{A,E,D}(M) ∪ Λ{A,D,F}(M)〉
= {{A, T, F,H}, {T, D, F, H}, {A,E,O}, {D, O, R}, {A,O, R}, {E,D, R},

{T, H,O}, {T, O, R}, {F, H, R}, {T, E, H}, {T, H, R}, {H, O, R}} (15)

It is interesting to see that in the model (14) variable T is in the same set as H, E and O

are in the same set as R, and F with H. This may imply that the contribution of homework

(H) has something to do with a thought-provoking lecture (T) and with the feedback from the

homework (F) and that the course-recommendation level (R) is influenced by, among others,

the clarity of explanation (E) and the organization of a course (O) by the lecturer. Since our

purpose is to demonstrate the proposed method of structure searching, we will refrain from

deviating that line of pursuit concerning the data.

7 CONCLUDING REMARKS

We will call a set A irreducible if 〈A〉 = A. When a LLM M is graphical, we learned that

the induced subgraph which is obtained by removing the nodes of the conditional variables

from the graph of M can also be obtained as the irreducible set of the component sets of all

the CLLSs of M . This node-removal from a graph is equivalent to the variable-elimination

from the structure of a hierarchical LLM. A nice feature in conditionalizing a LLM M is that

the conditional variables disappear from the LLS SM with the other variables in M remaining

untouched. Individual CLLSs may vary across the values of the conditional variables. However,
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from the collection of the CLLSs, we can obtain a model structure which is an analogy of

induced subgraph. We have shown that we can construct a model structure for M if two sets

of conditional variables are disjoint and they do not share a component set of SM .

When modelling with real data and if it is time-consuming to find a good-looking model

structure for the data, it is relatively easy, as we have seen in the previous section, to find

a model structure which is reasonable to begin with. It is usually the case that parameter

estimation with conditional models is much more time-efficient than with a model of all the

variables involved. What is worse when we deal with all the variables involved is that a wrong

model that we begin with might cost us a long time until we could find a reasonable model at

an early stage of modelling.

As we have seen in the real data example, we may not have to look at all the CLLSs.

We may ignore the CLLSs for which the sample sizes are not large enough. Although the

irreducible set, say S, of all the component sets of the CLLSs such as in (15) may not fit

well to the data, it serves as a solid ground for building an appropriate model by trying, if

necessary, some models larger than S.

APPENDIX A: PROOFS

Proof of of Theorems 3: Necessity is obvious by the definition of w. Suppose that w
(xA)
θ = 0

for all possible values of xA and xθ. So we have

uA∪θ(xA,xθ) = −
∑

ϕ⊂A

uϕ∪θ(xϕ,xθ) for all values of xA and xθ. (A.1)

By the constraint that
∑
xi

uϕ∪θ(xϕ,xθ) = 0 for i ∈ (ϕ ∪ θ) with ϕ ⊆ A,

we have from (A.1), for i ∈ A, that

0 = uθ(xθ) + u{i}∪θ(xi,xθ).

So, it follows that

uθ = u{i}∪θ = 0.

Similarly, we can show that

uθ = u{α}∪θ = 0 for every α ∈ A. (A.2)
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Now suppose that (A.2) holds for i and j in A. If A = {i, j}, then the following equation

is immediate from (A.1) and the supposition:

u{i,j}∪θ = 0. (A.3)

Otherwise, we have

∑

xk; k∈(A\{i,j})
uA∪θ(xA,xθ) = −

∑

ϕ⊆{i,j}
uϕ∪θ(xϕ,xθ) (A.4)

= −u{i,j}∪θ(xi, xj ,xθ) (A.5)

= 0. (A.6)

The left-hand side of (A.4) equals zero due to the constraint upon the u terms, and equation

(A.5) follows from the result (A.2).

For a proper subset B of A, assume that

uϕ∪θ(xϕ,xθ) = 0, for every subset ϕ ⊆ B.

By applying the same argument as above, we can derive

uB∪θ = 0.

Thus by inductive reasoning, the sufficiency is proved.

Proof of Theorem 5: If A ∩ B 6= ∅, then any variable with its index α ∈ (A ∩ B) does not

show up in ΛA(M) ∪ΛB(M). So (i) holds true. If the condition of statement (ii) holds, θ′ \A

is a subset of a component set of ΛA(M) and θ′ \B is a subset of a component set of ΛB(M).

So the set θ′ can not show up in ΛA(M) ∪ ΛB(M), which proves (ii).

In statement (iii), A and B do not share variables with the same set in SM . Suppose that A

share variables with θi1 , · · · , θia in SM and B with θj1 , · · · , θjb
in SM for some positive integers

a and b with a + b ≤ k, where

(∪a
k=1θik) ∩ (∪b

k=1θjk
) = ∅. (A.7)

Then by applying Theorem 3, we have

ΛA(M) ⊇ 〈(SM \ (∪a
k=1θik))〉 (A.8)

since A ⊆ (∪a
k=1θik), and by the same reason

ΛB(M) ⊇ 〈(SM \ (∪b
k=1θjk

))〉. (A.9)
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From (A.7) follows that

(SM \ (∪a
k=1θik)) ∪ (SM \ (∪b

k=1θjk
)) = SM .

So, we have from (A.8) and (A.9), that

ΛA(M) ∪ ΛB(M) ⊇ SM .

But by definition, each component set of ΛA(M) is a subset of a component set of SM and

similarly for ΛB(M). This leads to the desired result of (iii).

APPENDIX B: SAS OUTPUT FOR THE MODEL IN EX-
PRESSION (14)

Maximum Likelihood Analysis of Variance

Source DF Chi-Square Pr > ChiSq

--------------------------------------------------

A 2 94.89 <.0001

T 2 137.60 <.0001

A*T 4 753.38 <.0001

F 2 26.46 <.0001

A*F 4 37.96 <.0001

T*F 4 20.70 0.0004

A*T*F 8 26.82 0.0008

H 2 84.52 <.0001

A*H 4 111.45 <.0001

T*H 4 14.86 0.0050

A*T*H 8 90.96 <.0001

H*F 4 61.15 <.0001

A*H*F 8 22.51 0.0041

T*H*F 8 4.15 0.8430

A*T*H*F 16 58.61 <.0001

D 2 308.39 <.0001

T*D 4 65.60 <.0001

D*F 4 26.72 <.0001

T*D*F 8 12.45 0.1323

H*D 4 182.51 <.0001

T*H*D 8 36.20 <.0001

H*D*F 8 29.66 0.0002

T*H*D*F 16 19.74 0.2323

O 2 172.28 <.0001

A*O 4 59.67 <.0001

E 2 63.55 <.0001

A*E 4 112.15 <.0001

O*E 4 288.55 <.0001

A*O*E 8 42.70 <.0001

R 2 85.54 <.0001

A*R 4 28.08 <.0001
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O*R 4 72.22 <.0001

A*O*R 8 10.52 0.2306

E*R 4 82.91 <.0001

A*E*R 8 20.83 0.0076

O*E*R 8 16.76 0.0327

A*O*E*R 16 50.10 <.0001

O*D 4 41.82 <.0001

E*D 4 36.53 <.0001

O*E*D 8 50.24 <.0001

D*R 4 75.25 <.0001

O*D*R 8 22.06 0.0048

E*D*R 8 21.68 0.0056

O*E*D*R 16 27.68 0.0345

T*O 4 166.07 <.0001

O*H 4 167.19 <.0001

T*O*H 8 17.32 0.0270

T*R 4 117.39 <.0001

H*R 4 183.99 <.0001

T*H*R 8 9.02 0.3403

T*O*R 8 13.61 0.0924

O*H*R 8 24.37 0.0020

T*O*H*R 16 97.55 <.0001

F*R 4 97.89 <.0001

H*F*R 8 26.32 0.0009

T*E 4 417.46 <.0001

E*H 4 172.52 <.0001

T*E*H 8 35.79 <.0001

Likelihood Ratio 3E3 3044.42 0.4587
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