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Summary

Graphical models offer simple and intuitive interpretations in terms of conditional indepen-

dence relationships, and these are especially valuable when large numbers of variables are

involved. In some settings restrictions upon experiments, number of variables, and other

forms of data collection may result in our being able to estimate only parts of a large graph-

ical model. Consider a collection C of submodels of a decomposable graph G. In this article,

we address the problem of combining component graphical models, and a theory is derived

to the effect that one can combine the collection C of decomposable graphs, G1,G2, · · · ,Gm,

into a larger decomposable graph, H, of the variables that are involved in G so that the

conditional independence relationships in G1,G2, · · · ,Gm may be preserved in H. It is also

shown that the H which contains the actual graph G as a subgraph is determined uniquely.

Keywords: Conditional independence; Graph grafting; Graph separation; Independence

graph; Maximal combined structure; Minimal connector

1 Introduction

We use the term graphical model to include the class of statistical models whose structures

are representable via graph. The inter-relationship among the variables contained in a

graphical model is interpreted in terms of conditional independence. And thus the corre-

sponding graph is often called an independence graph (Whittaker, 1990). The independence

graph is classified into two types, directed acyclic independence graph and undirected in-

dependence graph, the former being used when the relationship among the variables is in

general influential or causal and the latter when the relationship is symmetrically associa-

tive. When the relationship is influential among some variables of a model and is associative

among the other variables, the corresponding graph contains both directed and undirected
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edges. Equivalence of Markov properties among these three types of graph is discussed in

Andersson et al. (1997a, 1997b) based on the results in Frydenberg (1990). Many authors

(Wermuth, 1980; Wermuth and Lauritzen, 1983, Asmussen and Edwards, 1983; Kiiveri et

al., 1984; Andersson et al., 1997) have shown with varying degrees of generality that the

intersection of the classes of undirected independence graphs and the classes of directed

acyclic independence graphs is the class of decomposable undirected independence graphs

(Lauritzen, Speed, and Vijayan 1984).

Some attractive features of the decomposable graph are that it is triangulated (Dar-

roch, Lauritzen, Speed (1980); Leimer (1989)), that decomposability is preserved in graph-

collapsing (see Theorem 4.1) and that every directed acyclic graph is convertible into a

decomposable graph (Lauritzen and Spiegelhalter, 1988). In this regard among others, we

will confine ourselves on decomposable graphs in this article.

Graphical models are used in AI in the name of Bayesian network (Pearl, 1988) among

others when the relationship among the variables involved can be interpreted as causal or

influential and represented in terms of conditional independence. The relative efficiency

of computational techniques for performing inference over the network makes the graphical

model an extremely powerful tool for dealing with uncertainty in AI. Generating a Bayesian

network from a knowledge base or a database has been an important issue in the AI research

(Cooper and Herskovits, 1991; Poole, 1993; Goldman and Charniak, 1993; Bacchus, 1993;

Haddawy, 1994; Chickering and Heckerman, 1999). But, researches on combining partial or

conditional network models of some random variables conditional on some other variables

to obtain a larger network model are rarely found in AI or Statistics. Mahoney and Laskey

(1999) considered a problem of representing Bayesian networks using conditional probability

models and conditioning variables but they did not address an issue of combining conditional

models but an issue of combining conditioning variables for a more explicit representation

of the network model. As for combining conditional model structures, Fienberg and Kim

(1999) propose a theory to the effect that the graphical models can be combined in a

consistent manner provided that the models are convertible into log-linear models.

In some settings restrictions upon experiments, number of variables, and other forms

of data collection may result in our being able to estimate only parts of a large graphical

model. In such situations, one may have to deal with building graphical models for sets of

variables of moderate sizes and then combine the multiple graphical models in an effort to

obtain a graphical model for the set of the variables that are involved in at least one of the

“small” multiple graphical models.
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Fienberg and Kim (1999) consider a problem of combining conditional graphical log-

linear structures and derive a combining rule of them based on the relation between the

log-linear model and its conditional version. In the graph combination, the conditioning

variable is added to the set, say A, of the variables that are involved in the conditional

structures and so each graph-combination ends up with a new graph that involves the

conditioning variable in addition to the set A.

While Fienberg and Kim (1999) consider graphs of conditional graphical log-linear mod-

els, we will consider in this article the problem of combining graphs of marginal (as against

conditional) graphical models of various types of random variables under the condition that

the graph of the model of the variables that are involved in at least one of the marginal

models is decomposable.

For example, suppose that we are given a pair of simple graphical models where one

model is of random variables X1, X2, X3 with their inter-relationship that X1 is independent

of X3 conditional on X2 and the other is of X1, X2, X4 with their inter-relationship that

X1 is independent of X4 conditional on X2. From this simple pair, we can imagine a

model structure for the four variables X1, · · · , X4. The two inter-relationships are pictured

in Figure 1. We will use the notation [·]· · ·[·] as used in Fienberg (1980) to represent

a model structure. X1 and X2 are shared in both models, and assuming that none of

the variables are marginally independent of the others, the following model structures are

possible corresponding to the pair of marginals:

[12][24][25], [12][24][45], [12][25][45], [12][245]. (1)

Note that we can obtain the above pair from each of these models and that among these

four models, the first three are submodels of the last one.

We will consider another pair of simple marginals, [12][23] and [24][25], where only one

variable is shared. In this case, we have a longer list of possible joint model structures as

follows:
[12][24][23][25], [124][23][25], [124][23][35], [124][25][35], [124][235],
[125][23][34], [125][24][34], [125][234].

(2)

Model structures [124][235] and [125][234] are maximal in the sense of set inclusion among

these eight models.

•1 •2 •3 •1 •2 •4

Figure 1: Two graphs of inter-relationship
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It is important to note that some variable(s) are independent of the others conditional

on X2 in each of the two pairs and in all the models in (1) and (2). That conditional

independence takes place conditional on the same variable in the marginal structures and

also in the joint structures underlies the main results of the article.

We address the issue of combining graphical model structures and so we can not help

using independence graphs and related theories to derive desired results with more clarity

and refinement. Throughout the article, graph and model terminologies are used inter-

changeably when confusion is not likely.

The article is organized in 8 sections. Section 2 introduces notation and graphical

terminologies to use, and section 3 introduces basic notions of graph combination and

presents further discussions on decomposable graphs. Section 4 then shows unique existence

of a combined graph H which contains G as an edge-subgraph (defined in section 2) and

which is obtained based on a collection of node-subgraphs (defined in section 2) of G.

In section 5, the graph-combining is illustrated under the condition that graphs consist

of the cliques each of which is made of at most two nodes, and section 6 extends the

result of section 5 to the graphs where cliques consist of more than two nodes. While we

considered combining a pair of graphs in sections 5 and 6, section 7 deals with the problem

of combining three or more graphs. Finally, section 8 summarizes the article with some

concluding remarks.

2 Notation and graph terminologies

In the article, we will consider undirected graphs only. We denote a graph by G = (V,E),

where V is the set of the indexes of the variables involved in G and E is a collection of

ordered pairs, each pair representing that the nodes of the pair are connected by an edge.

Since G is undirected, (u, v) ∈ E is the same as (v, u) and vice versa. We say that a set of

nodes of G forms a complete subgraph of G if every pair of nodes in the set are connected by

an edge. Graph G will also be represented by a sequence of the symbol [· · ·], where each pair

of brackets represent a clique (i.e., a maximal complete subgraph) in G, the clique being

composed of the nodes whose indexes appearing in the brackets. For instance,

G = [12][23][345]

means that graph G is of 5 nodes and consists of the three cliques, one consisting of nodes 1

and 2, another of nodes 2 and 3, and the rest of nodes 3, 4, and 5. Recall that the right-hand

side of the above expression can also be interpreted as a model structure. In this context,

4



the terms graph and model structure will be used in the same sense in this article.

A path between a pair of nodes is a sequence of edges leading from one end node of the

sequence to the other. If a and b are connected by an edge, we say that a is a neighbor

node of b or vice versa. A boundary of a set A in a graph G is the set of nodes of G each of

which is a neighbor node of a node in A but not included in A, and we denote it by bd(A).

We say that a graph is connected if there is at least one path between every pair of nodes

of the graph; otherwise we call it disconnected. All the graphs considered in this article are

connected.

For a subset A of V , we define GA to be the node-subgraph of G confined to A. That

is, the relationship among the variables indexed in A with respect to G is preserved in GA.

If G = (V,E), G′ = (V,E′), and E′ ⊆ E, then we say that G′ is an edge-subgraph of G and

write as G′ ⊆e G. A subgraph of G means either a node-subgraph or an edge-subgraph of

G. If G′ is a subgraph of G, we call G a supergraph of G′. We will adopt a convention that

Gi = (Vi, Ei) stands for a subgraph of G. Suppose that there are m node-subgraphs of G,

G1, · · · ,Gm, then, for 1 ≤ j ≤ m, we will denote the graph G∪ji=1Vi
by G(j). We will also

denote by V (G) and E(G) respectively the set of the nodes and the set of the edges of graph

G.

A subset C ⊆ V is said to separate A from B if it intersects all paths between every

a ∈ A and every b ∈ B, and if C is a subset of every set D that separates A from B, then we

say that C is a minimal separator of A from B. In a similar context, we define the notion

of connector. We will say that C ⊆ V connects Ai, i = 1, 2, · · · , l, in G if

(i) ∪li=1Ai = V ,

(ii) Ai \ C 6= ∅ for i = 1, 2, · · · , l,

(iii) C separates Ai from Aj , j 6= i, and C does not separate any subset of Ai from the

rest of Ai for i = 1, · · · , l, and

(iv) for every node in C, it has a neighbor node in C.

We will call such a set C a connector of Ai, i = 1, 2, · · · , l in G. If ∪li=1Ai = ∪kj=1Bj = V ,

{A1, · · · , Al} 6= {B1, · · · , Bk}, and C connects A1, · · · , Al and D connects B1, · · · , Bk, then

we say that C and D are different connectors. Two sets A and B will be said to be

discrepant if neither is a subset of the other. We will call the set C a minimal connector

of Ai, i = 1, 2, · · · , l, in G if it is not a union of discrepant minimal separators and any

subset of it fails to separate any of the Ai’s from the others in G; and denote by σ(G) the
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collection of the minimal connectors in G. Note that a (minimal) connector is a special form

of a (minimal) separator. Thus, every property that is satisfied by a separator also holds

for a connector. However, a (minimal) separator is not necessarily a (minimal) connector

because of condition (iv).

Suppose that the graph G of a decomposable graphical model for a random vector X

consists of k cliques, C1, · · · , Ck, and let C(j) = ∪ji=1Ci and sj = Cj ∩ C(j−1). If the cliques

are labeled such that the probability model for X may be expressed as (see Darroch et al.

(1980))

P (X = x) = P (xC1)
k∏
i=2

P (xCi)
P (xsi)

,

we can call the sets s2, · · · , sk, the minimal connectors of G because of the decomposability

of the graph.

If a node is not a minimal connector nor contained in a minimal connector and if it

belongs to a clique which contains only one minimal connector, then we will call the node

an exterior-node. If a node is not an exterior-node, we will call it an interior node.

3 Conditional independence and combined model structures

Suppose we have a set of random variables and a list L of inter-relationships among them

that are expressed in terms of conditional independence. Assuming that the probability

model for the set of random variables is graphical, we can have an independence graph, G
say, corresponding to the model (Whittaker, 1990).

Properties of conditional independence are described in detail in Dawid (1979, 1980)

and it is well known that the separation in G is equivalent to the conditional independence

as appearing in L (the separation theorem in Whittaker (1990)). Now suppose that we have

two sets of random variables whose probability models each are graphical. If the probability

model for the union of the two sets is also graphical, what is the possible model structure

for this model? We can rewrite this statement as follows:

Suppose that we have two lists of inter-relationships corresponding two sets of

random variables and that each of the lists can be depicted by an independence

graph. If the inter-relationships among the variables in the union of the two sets

can also be depicted by an independence graph, what is the possible list of the

inter-relationships for the union of sets?

Let the two lists be L1 and L2 and their union Lu. We aim to derive an approach that
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is useful for obtaining an independence graph that reflects the conditional independence

relationships displayed in Lu. L1 and L2 are respectively about two different sets V1 and V2

of random variables. So obtaining an independence graph corresponding to Lu is the same

as obtaining a new list, Lnew say, of conditional independence relationships for V1 ∪ V2. In

this sense, the latter operation is an application of the notion of conditional independence.

As far as model structures are concerned, working with independence graphs is much

easier than working with lists of conditional independence relationships. In this respect, we

will look into the issue of obtaining Lnew from L1 and L2 from the perspective of model

structures or independence graphs.

We consider a couple of examples that may help us get an insight into the relation

between a pair of graphical models and their combined version. To avoid confusion, we will

call the combined version a joint model structure. A formal definition of the combination

of model structures is given below.

Definition 3.1 Suppose there are m marginal graphs, G1, · · · ,Gm. Then we say that graph

H of a set of variables V is a combined model structure corresponding to G1, · · · ,Gm, if

∪mi=1Vi = V (3)

and

HVi = Gi, for i = 1, · · · ,m. (4)

We will call H a maximal combined structure (MCS) corresponding to G1, · · · ,Gm if any

additional edge to H destroys equation (4) for at least one i of 1, · · · ,m, and denote by

M(G1, · · · ,Gm) the collection of all such MCSs.

According to the definition, a combined model structure (or combined structure, for

short) is a node-supergraph of each Gi, i = 1, · · · ,m. There may be many combined

structures that are obtained from a collection of marginal structures. For instance, there

are four combined structures of [12] and [23] such as

[123], [12][23], [12][13], and [13][23]. (5)

Under the decomposability assumption, one of the four graphs in (5) is the actual structure

for the variables indexed in {1, 2, 3}. As more nodes get involved in marginal structures, we

may obtain more combined structures from them. So, if we wish to find the true structure

for V based on a collection of {Gi}mi=1 with V = ∪mi=1Vi, we need to look into the properties

that are shared in both combined structure and marginal structure.
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When G is decomposable, its minimal connectors are complete; otherwise, its minimal

connectors are not necessarily complete in G. For instance, in the non-decomposable graph

G as given below, each of

{2, 3, 4}, {2, 4, 5}, {2, 3, 5}, {3, 4, 5}

is a minimal connector but not complete in G.

r1 r2 r4
r3 ���@

@@ r5���@
@@
r6

When G is not decomposable, s ∈ σ(G) may not form a complete subgraph in G while it

may be complete in a node-subgraph of G. This sort of discrepancy of a minimal connector in

graphical appearance between a graph and its node-subgraph may be a source of difficulty

in searching for a graph from a collection of node-subgraphs of the graph. If we do not

confine ourselves on decomposable graphs, the following node-subgraphs, Ga and Gb, are

possible from each of the graphs in Figure 2, for

a = {1, 2, 3, 4} and b = {3, 4, 5, 6} : (6)

r1 r2
r
3
@
@@ r

4
@
@@

Ga

r5
r
3
�
��r

4
�
��
r6

Gb

In Figure 2, the graphs in panels 1, 2, 3 are decomposable, and the rest are not decom-

posable. Note that the minimal connectors of Ga and Gb, {2, 3} and {4, 5}, respectively,

are complete in the graphs in panels 1, 2, and 3, while {2, 3} and {4, 5} are not necessarily

complete in the non-decomposable graphs in the figure.

Theorem 3.1 If G is decomposable, then each s ∈ σ(G) is complete.

Proof: See the proof of Proposition 2.5 of Lauritzen (1996). 2

We will see below (see Theorem 4.1) that every node-subgraph of a decomposable graph

is also decomposable. This implies, by Theorem 3.1, that, as for a decomposable graph,

the minimal connectors are always given in the form of a complete subgraph in the graph

and its node-subgraphs. This property may help us in searching for a graph based on a
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Figure 2: Graphs each of which yields the node-subgraphs, Ga and Gb for a, b as in (6).

collection of its node-subgraphs. This is a main reason that we confine ourselves, in this

article, on decomposable graphs.

There may be two minimal connectors one of which is contained in the other. For

instance, in the graph below, {2} and {2, 3} are both minimal connectors. Note that they

connect different collections of subsets. {2} connects the sets {1, 2, 3, 4} and {2, 5} while

{2, 3} connects the three parts, {1, 2, 3}, {2, 3, 4}, and {2, 5}.

r1 r2
r
3
@
@@ r

4
@
@@
r 5

We will borrow the symbol “⊥” from Dawid (1979) to represent conditional indepen-

dence. Let Xa,Xb,Xc be three random vectors. Then a ⊥ b|c represents that Xa and

Xb are conditionally independent given Xc. In the lemma below, CG(v) is a clique which

includes a node v in a given graph G and ΞG(v) is the collection of such CG(v)’s.

Lemma 3.1 Let G′ be a node-subgraph of G and suppose that, for three disjoint subsets

a, b, c of V (G′), a ⊥ c|b. Then

(i) a ⊥ c|b in G.

(ii) CG(a) ⊥ CG(c)|b in G.

(iii) ΞG(a) ⊥ ΞG(c)|b in G.
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Proof: Since

a ⊥ c|b in G′, (7)

there is no path in G′ between a and c that bypasses b. If (i) does not hold, it is obvious that

(7) does not hold either. Now suppose that result (ii) does not hold. Then there must be

a path from a node in a to a node in c bypassing b. This implies negation of the condition

a ⊥ c|b. Therefore, result (ii) must hold. As for (iii), suppose that (iii) does not hold. Then

there must exist some cliques, say C1 and C2, in Ξa and Ξb, respectively, for which (ii) does

not hold. Hence if (ii) holds, so must (iii). 2.

This lemma states that a separator of a node-subgraph of G is also a separator of G.

According to the lemma, we can have

Theorem 3.2 Suppose there are m marginal structures Gi, i = 1, 2, · · · ,m. Then

(i) for any combined structure H of the m marginal structures,

∪mi=1σ(Gi) ⊆ σ(H).

(ii) for any MCS H,

∪mi=1σ(Gi) = σ(H).

Proof: We prove (i) first. Suppose that there exists a connector a in some of {Gi; i =

1, · · · ,m}. Then by Lemma 3.1 a is also a connector in any combined structure of {Gi}mi=1.

To show (ii) now, suppose there exists a set b in σ(H) \ ∪mi=1σ(Gi). Since b ∈ σ(H), it

separates H into at least two graphs. Without loss of generality, we may assume that b

separates H into two parts, say H1 and H2, and let C1, C2 be cliques containing b in H.

Note that Ci \{a} 6= ∅ for i = 1, 2. This implies that H is not an MCS since we may add an

edge connecting a node in C1 \ {a} to another in C2 \ {a} to obtain H′ which still satisfies

expressions (3) and (4). This contradicts that H is an MCS, which completes the proof of

(ii). 2

We know that, for two graphs G′ and G with G′ ⊆e G, every graph-separateness in G
is preserved in G′. As connoted from Theorem 3.2, we can thus see that the true joint

structure of V is an edge-subgraph of a combined structure of a collection of marginal

structures {Gi}mi=1 with ∪mi=1Vi = V . But searching for the true joint structure from a set

of marginal structures is like searching for a coin in a beach when V is “large”.

Example 3.1 We consider the problem of how many joint structures we need to look at

in search of the true joint structure and some related issue. Suppose we have two marginal
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structures, G1 = [12][23] and G2 = [24][25]. Since σ(G1) = σ(G2) = {2}, {2} is also a

connector for V = {1, 2, 3, 4, 5}. We can then see that only the two joint structures

[125][234] and [124][235] (8)

are the MCSs corresponding to the marginal structures, G1 and G2.

There are 9 connected edge-subgraphs of each graph in (8), and since the model structure

[12][23][24][25] is a common edge-subgraph of both of the graphs in (8), there are in total

19 different combined structures, including the two in (8), corresponding to G1 and G2.

Note that, in this example, there are 19 combined structures corresponding to the pair

of marginal structures while there are only 2 MCSs and that each of the 19 structures is an

edge-subgraph of one of two MCSs. The example calls our attention to the importance of the

MCS. The actual combined structure from which a given collection of marginal structures

are obtained is nothing but an edge-subgraph of an MCS. This is why it is desirable that

we search for a collection of MCSs from a collection of marginal model structures.

For a given set of marginal graphs, we can easily obtain the set of minimal connectors.

Theorem 3.3 Let G be a decomposable graph. Then σ(G) is the collection of the intersec-

tions of the neighboring cliques of the graph.

Proof: See Appendix B.

According to this theorem, we can now find σ(G) for any decomposable graph G simply

by taking all the intersections of the cliques of the graph.

4 Existence of maximal combined structures

In Example 3.1, the combined model structures are sought for starting from the MCSs

corresponding to a given set of marginal model structures. An apparent feature of an MCS

in contrast to a combined structure is stated in Theorem 3.2 (ii). The following theorem is

stated as Corollary 2.8 in Lauritzen (1996).

Theorem 4.1 Every node-subgraph of a decomposable graph is decomposable.

It is obvious that decomposability of an edge-subgraph of a decomposable graph is not

guaranteed. Suppose there are m node-subgraphs of G. Let S = ∪mi=1 ∪s∈σ(Gi) s. Then, we

can see that each set s in σ(Gi) is a minimal connector of GS unless it contains an exterior-

node of GS . If s is neither a connector nor contains an exterior-node of GS , then neither
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can it be a connector of Gi. Therefore, every set in ∪mi=1σ(Gi) is a minimal connector in GS
except the sets in ∪mi=1σ(Gi) each of which contains an exterior-node of GS .

Lemma 4.1 Suppose that there are m node-subgraphs of G, G1,G2, · · · ,Gm. Then

∪mi=1σ(Gi) ⊆ σ(G).

Proof: Let Ψ = ∪mi=1σ(Gi). Suppose that there exists a set s in Ψ. This implies that s is a

minimal connector of a node-subgraph Gi. Suppose, on the contrary to the result, that s is

not contained in σ(G). Then by definition, s can not be a connector in the node-subgraph,

which is a contradiction. This completes the proof. 2

Theorem 4.2 Let G be decomposable and consider m node-subgraphs of G, G1,G2, · · · ,Gm.

Then every MCS H of G1,G2, · · · ,Gm is decomposable.

Proof: Gi, i = 1, 2, · · · ,m, is decomposable by Theorem 4.1. So for each i, there is

no chordless n-cycle, n ≥ 4, by the definition of MCS, in the part of H corresponding

to Vi. Suppose there is a chordless n-cycle, n ≥ 4, in the part of H corresponding to

Vi ∪ Vj . For instance, let the cycle consists of 4 nodes v1, v2, v3, v4, where {v1, v2} ⊆ Vi and

{v3, v4} ⊆ Vj . Then we may create a clique of {v1, v2, v3, v4} and replace the cycle with the

clique to have an MCS of G1, · · · ,Gm. This contradicts that H is an MCS. Therefore, H
must be decomposable. 2

For a set of node-subgraphs of a graph G, there can be more than one MCS of the set

of node-subgraphs. But there is only one such MCS that contains G as its edge-subgraph.

Theorem 4.3 Suppose there are m node-subgraphs G1, · · · ,Gm of G.

(i) Then there exists a unique MCS H∗ of the m node-subgraphs such that G ⊆e H∗.
(ii) Let G′ ⊆e G. Then there exists a unique MCS H∗ of the m node-subgraphs of G such

that G′ ⊆e H∗.

Proof: See Appendix B.

The unique existence of MCS for a given model structure throws a promising light on

the searching road from a set of marginal model structures toward the MCS which contains

the actual model structure as an edge-subgraph.

As illustrated in Example 3.1, the size of the set of all the possible joint structures

corresponding to a set, say A, of marginal structures will be a lot larger than that of all the

possible MCSs of A. Thus it will be cost efficient to search for the MCS that contains the

actual joint structure corresponding to a given set of marginal model structures.
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•5 •6

�
�

•1 •7 •8

(8) Pair 3β

•1 •2 •3 •4
•5 •6

�
�

•7 •8 •9

(9) Pair 3γ

•1 •2 •3 •4
•5 •6

�
�

•7 •3 •8 •9

(10) Pair 4

Figure 3: Pairs of marginal model structures

5 Grafting locations and illustration of combining node-sub-
graphs when minimal connectors are singletons of nodes

In this section, we will use several pairs of marginal structures of graphical models as in

Figure 3 and propose an approach of searching for the MCS which contains an actual

joint structure of which each of the given pair is a marginal structure, or equivalently a

node-subgraph. When combining two node-subgraphs, we propose to do it as if we graft

one subgraph onto another by grafting the minimal connectors of the former subgraph at

some locations of the latter subgraph. Only the single-node connectors will be considered

in this section so that we can pay more attention on diverse instances of graph-grafting.

An extention to it will be discussed in next section along with a formal definition of the

operation of grafting subgraphs together.

Figure 3 displays 10 pairs of model structures. Each structure of the first three pairs,

Pairs 1α, 1β, and 1γ, has only one minimal connector. In Pair 1α, the marginal structures

13



share the minimal connector, node 2; as for Pair 1β, they share node 1 that is not a

connector; as for Pair 1γ, there is no node-sharing. One marginal structure of each of Pairs

2α, 2β, and 2γ contains 5 nodes with 2 minimal connectors, nodes 2 and 3, where node 2

separates the graph into three parts. The minimal connector, node 3, is shared in Pair 2α;

node 4 is shared in Pair 2β, where the node is a minimal connector in only one graph of

the pair; and no nodes are shared in Pair 2γ.

One more node is added in Pairs 3α, 3β, and 3γ, where one graph of each pair contains

3 separating nodes 2, 3, and 5, with node 2 separating the graph into three parts. Patterns

of node-sharing for these pairs are similar to the preceding three pairs. As for Pair 4, the

graphs contain 3 and 2 minimal connectors, respectively, while there is at least one graph

that contains only one connector node in each of the other pairs of Figure 3. One may have

noticed that the pair labels, 1α, · · ·, 3γ, 4, are a classifier of the pairs with respect to graph

size and node-sharing. The numeric part of the label increases as the total number of the

nodes contained in the graphs of the pair increases, and the letter part classifies the pattern

of node-sharing, ‘α’ meaning that a connector is shared, ‘β’ meaning that a node is shared

and the node is not a connector in both of the graphs, and ‘γ’ meaning that no nodes are

shared. In this respect, Pair 4 should have been dubbed “Pair 4α”. We will not consider

other types of Pair 4 since they are nothing but a more complicated versions of the smaller

pairs.

Theorem 4.3 suggests that we may work with MCSs in searching for the true joint

structure, and Theorem 3.2 (ii) proposes that the collection of the minimal connectors of

node-subgraphs of G plays a key role in determining MCSs of the node-subgraphs. As shown

in Lemma 4.1, a minimal connector of a node-subgraph of G is also a minimal connector

of G. This implies that a minimal connector of G1 can not be separated by any s ∈ σ(G2)

and vice versa and so that s can not be grafted onto G1 at its minimal connectors but at

its cliques. This will be proved in next section after looking over examples of the grafting

as given below.

Consider the marginal model structures of Pair 1γ. For convenience’ sake, we will call

the left graph by G1 and the right one by G2; and the same applies to all the other pairs

in Figure 3. There are four possible grafting locations of the minimal connector {5} in G1.

•1 ◦b� �
a

•2 ◦d •3� �
c

Figure 4: The grafting locations in G1 of Pair 1γ
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Table 1: The 16 MCSs of Pair 1γ

Grafting The MCSs for each grafting location
location

a [45][1256][23], [56][1245][23], [45][125][236], [56][125][234]

b [145][256][23], [145][25][236], [156][245][23], [156][25][234]

c [124][235][56], [12][2345][56], [126][235][45], [12][2356][45]

d [124][25][356], [12][245][356], [126][25][345], [12][256][345]

They are denoted by a, b, c, d in Figure 4. b and d in this figure mean that the minimal

connector {5} is located at that points, while a and c mean that the minimal connector

forms a clique with {1, 2} and {2, 3}, respectively. The MCSs corresponding to each of the

grafting locations are listed in Table 1. The graphs of the four models in row b of Table 1

are displayed in Figure 6 in the same order as they appear.

Next, we consider a pair of graphs where a connector partitions a graph into three parts

as in G1’s of Pair 3’s. We will take Pair 3β whose MCSs are not as many as for Pair 3γ for

which there are 112 corresponding MCSs. The grafting locations of the minimal connector

{7} of G2 in G1 are indicated as a, · · ·, h in Figure 5. The MCSs corresponding to each

grafting location are listed in Table 2.

It is worthwhile to note that there are two MCSs in Table 2 in each of which three

minimal connectors form a clique. In general, if there are two collections, S and T , of

minimal connectors where the minimal connectors in each collection are included in a clique

of the corresponding node-subgraph, then there exists an MCS of the two node-subgraphs

which contains a clique whose components include the minimal connectors in S ∪ T . Also

note that when more than two connectors of node-subgraphs are included in a clique of an

MCS, the clique separates the MCS into more than two parts.

All the grafting locations of the other pairs in Figure 3 and the number of the MCSs

for each of the grafting locations are displayed respectively in Figure 10 and Table 3 in

Appendix A.

•1 •2◦ •3◦ •4◦

•
5

•6◦
◦

��
� �

��� �� �
# �
� �
� �

a

b

c

d f

e

g
h

i

j

Figure 5: The grafting locations in G1 of Pair 3β

15



r4
r1 r2
r

5

�
��r

6

@
@@
r3

(1)

r4 ��������
r1 r2
r

5

�
��r

6

r3
(2)

r4
r1 r2
r

5

�
��r

6

�
��
r3

(3)

r6
r1 r2
r

5

�
��r

4

�
��
r3

(4)

Figure 6: The graphs of the four models in row a of Table 1

Table 2: The 19 MCSs of Pair 3β

Grafting The MCSs for each grafting location
location

a [78][127][56][25][23][34]

b [17][278][23][34][25][56], [17][27][238][34][25][56], [17][27][23][348][25][56],
[17][27][23][34][258][56], [17][27][23][34][25][568]

c [12][237][78][34][25][56]

d [12][27][378][34][25][56], [12][27][37][348][25][56]

e [12][23][347][78][25][56]

f [12][23][37][478][25][56]

g [12][23][34][257][78][56]

h [12][23][34][27][578][56], [12][23][34][27][57][568]

i [12][23][34][25][567][78]

j [12][23][34][25][57][678]
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6 Combining node-subgraphs when minimal connectors are
sets of nodes

In this section minimal connectors are of a general form, i.e., sets of nodes. So the grafting

locations are not between nodes as in the preceeding section but between sets of nodes.

The theorem below is intuitive but useful when dealing with node-subgraphs where minimal

connectors are sets of nodes.

Corollary 6.1 Let G1 be a node-subgraph of G. Then for every s ∈ σ(G1), there exist at

least a pair of neighboring cliques in G that share s.

Proof: This follows immediately from Lemma 3.1 (ii). 2

At this point, it seems worthwhile to describe the notion of graph-grafting formally as

in

Definition 6.1 Consider two node-subgraphs of G, G1 and G2. When a minimal connector

s of G2 is attached to a clique, C, of G1 so that s∪C forms a clique, we say that s is type-1

grafted onto G1 at clique C. When s separates C into l ≥ 2 parts C1, · · · , Cl in G1 so that

s ∪ C1, · · · , s ∪ Cl each forms a clique, we say that s is type-2 grafted onto G1 at C.

We have seen both types of grafting in the preceding section. The grafting locations b and

d in Figure 4 and b, d, f, h, and i in Figure 5 are for type-2 grafting; and a and c and

a, c, e, g, and i are the grafting locations, respectively, in Figures 4 and 5 for type-1

grafting. It is important to note that the grafting takes place in Figures 4 and 5 at cliques

only either in type-1 or in type-2. Later in this section, we will see that this is always the

case.

The grafting locations are counted, by Corollary 6.1, according to the same rule as

in the preceding section. For example, consider the pair of subgraphs in Figure 7, where

σ(G1) = {{2, 3}, {4, 5}} and σ(G2) = {{2, 3}, {7, 8}}. Note in this pair that {2, 3} is

common in both σ(G1) and σ(G2). By Lemma 4.1, {2, 3}, {4, 5}, {7, 8} are in σ(G). And

so the grafting locations of {7, 8} are

between {2, 3} and {4, 5}, between {4, 5} and {6}, and at the right-end clique of G1. (9)

The corresponding MCSs are given in Figure 8.

The first two MCSs in Figure 8 correspond to the first grafting location in (9) and the

third and fourth MCSs correspond respectively to the second and third locations in (9).
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Figure 8: The MCSs corresponding to the pair in Figure 7

Note that the four edges between {2, 3} and {4, 5} are all cut by {7, 8} in graphs 1 and 2 in

Figure 8. If at least one of the edges were not cut, {7, 8} could not be a connector in any

combined version of the pair in Figure 7.

The theorem below considers the situation where a node is not a minimal connector in

one subgraph of a graph-pair but contained in a minimal connector of the other subgraph.

Theorem 6.1 Consider two node-subgraphs of G, G1 and G2, and suppose that there is a

node v in V1 which is not a minimal connector of G1 and that there exists s in σ(G2) such

that v ∈ s. Then in every graph H in M(G1,G2),

(i) s forms a minimal connector in H, and

(ii) in addition, if v is contained in a clique, Cv, of G1, then each node in s is connected

directly, in H, to every node in Cv.

Proof: Result (i) is obvious by Theorem 3.2 (ii). As for result (ii), suppose that there exists

no edge, in H, between the nodes v1 and v2, v2 ∈ s and v1 ∈ Cv \ s. Since s is complete

by Theorem 3.1, the supposition implies that there exists a new minimal connector s∗ in H
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such that s∗ 6∈ σ(G1) ∪ σ(G2) since v ∈ s. This contradicts Theorem 3.2 (ii). Therefore, the

desired result follows. 2

This theorem states that in combining two marginal graphs G1 and G2, s is grafted onto

G1 at the clique Cv. We will see below that actually Cv is the only clique where s is grafted.

We need not worry about the case where the node v of this theorem is itself a minimal

connector of G1 since the minimal connectors of a graph are grafted onto another graph at

the grafting locations which are determined by the minimal connectors of the latter graph.

We simply treat the v as a minimal connector.

For two node-subgraphs, G1 and G2, of G, it is possible that there are sets s ∈ σ(G1) and

t ∈ σ(G2) such that either s ⊂ t or vice versa. For example, consider a graph G∗ as given inr1 r2 r4
r

3

�
��

@
@@ r

5

�
��

@
@@
r6r7

G∗

whose node-subgraphs are given in Figure 9. In this figure, the minimal connector of G2 is

a proper subset of that of G1. In this case, node 5 of G2 is type-1 grafted onto G1 at the

clique {1, 3, 4, 5} yielding a unique MCS which is the same as G∗ except that nodes 1, 2, 3,

4, 5 now form a clique.

We close this section presenting a couple of theorems and a corollary that are very useful

in combining graphical models no matter whether the minimal connectors are of mutiple

nodes or not.

Theorem 6.2 Let G1, G2 be two node-subgraphs of G. Then a minimal connector s ∈ σ(G2)

is grafted onto G1 at a clique only.

Proof: Let C1 and C2 be neighboring cliques in G1 and let s1 be a minimal connector

shared by the cliques. Then there can not be edges between a node in s and a node in

C1 \ s1 and between a node in s and a node in C2 \ s1. If there are, it contradicts that s1

is a minimal connector. Hence, the s must be grafted onto G1 at a clique only. 2
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Theorem 6.3 Let G1, G2 be two node-subgraphs of G and assume that for some s ∈ σ(G2),

there is a subset t in V (G1) such that t ⊆ s. Then

(i) t is contained in a clique C of G1 and is not a clique itself in G1, and

(ii) s ∈ σ(G2) is grafted onto G1 at the clique C only in either type-1 or type-2, and when it

is type-2 grafted, the minimal connectors contained in the clique remains as they are.

Proof: See Appendix B.

According to the above two theorems, we graft a minimal connector of one node-

subgraph onto another node-subgraph at a clique, and if a clique contains nodes of the

minimal connector, then the minimal connector is grafted at the clique only.

When none of the nodes of a minimal connector of a node-subgraph are contained in

another node-subgraph onto which the former is to be grafted, the minimal connector may

be grafted at a clique in such a way that Lemma 3.1 and Theorem 3.2 may not be violated.

Pairs 1β, 1γ, 2γ, 3β, and 3γ fall in this situation. As noted in section 5, the number of

the corresponding MCSs is smaller when there are more node-sharings between a pair of

node-subgraphs than when there are no or less node-sharings. For example, as for Pairs 1β

and 1γ, the numbers of the possible MCSs are 5 and 16, respectively, and they are 19 and

112 as for Pairs 3β and 3γ, respectively.

When there is a minimal connector s in G2 with s ∩ V (G1) = ∅, at which the minimal

connector can be grafted is subject to the states of node-sharing between the two node-

subgraphs. Although s is grafted at a fixed clique C of G1 in Corollary 6.2 below, the type

of grafting as summarized in the corollary applies in general when several nodes are shared

by both of G1 and G2 and some of the shared nodes are separated from the other shared

nodes by s in G2.

Corollary 6.2 Let G1, G2 be two node-subgraphs of G and assume that for some s ∈ σ(G2),

there is a subset t and a clique C in V (G1) such that t ⊆ s and t ⊂ C. Suppose that there

are m nodes v1, · · · , vm in both of G1 and G2 and that v1 is separated from the other vi’s by

s in G2. Then, s can be grafted at C in type-2 only.

Proof: See Appendix B.

Consider two decomposable graphical models M1 and M2 whose model structures are G1

and G2, respectively. According to the corollary, we can say that whenever the decomposable

graphical models share variables and the variables are separated by a minimal connector s

in G2 which is not in σ(G1), the model structures are type-2 grafted at a clique of G1 by s

of G2.
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Furthermore, we can think of the case where two graphical models share some variables

and none of them are separated by a minimal connector s of the model structure G2. We

may regard this as a particular case of Corollary 6.2 taking s as a separator of an empty set

from the shared variables. In this case, type-1 grafting is also possible. For instance, if v is

contained in model M2 only and conditionally independent of the shared variables given s,

then s can be type-1 grafted at a clique of G1 and after grafting v remains separated by s

from the other variables.

In this section, we have considered all the possible situations concerning grafting a

minimal connector s ∈ G2 at a clique of G1. Denoting s as a minimal connector in G2, we

can now summarize the results as the following grafting rules:

(R1) If a node v ∈ V1 is contained in s, s is grafted at a Cv of G1 only.

(R2) Suppose that s ∩ V1 = ∅. If V1 ∩ V2 = ∅, then s can be grafted at any clique of G1;

otherwise, s is grafted according to the rule R3.

(R3) Suppose that the set of nodes {v1, · · · , vm} = V1∩V2. If s separates some of v1, · · · , vm
from the others in G2, then s is type-2 grafted at a clique of G1; otherwise, s can be

grafted in both of the types.

7 Combining three or more node-subgraphs

So far we have considered combining a pair of model structures. But we may often come

across the cases where more than two graphical models are to be combined together. In

this section we will address the issue whether the order of models in combining matters.

Theorem 4.3 proposes that for any number of node-subgraphs, there always exists a

unique MCS which contains the actual supergraph. Suppose we are given m > 2 node-

subgraphs, G1, · · · ,Gm, for which ∪mi=1Vi = V , and that we combine graphs in the order of

indexes of the subgraphs. Recall that G(j) = G∪ji=1Vi
. According to the theorem, there exists

a unique MCS H12 inM(G1,G2) which contains G(2) as an edge-subgraph. Let F1 = G1 and

F2 = H12. We obtain M(H12,G3). Since H12 ⊇e G(2), there must exist, by Theorem 4.3

(ii), a unique graph F3 in M(H12,G3) such that F3 ⊇e G(3) and so that F3(V1∪V2) ⊇e G(2).

In the same manner we can obtain a unique graph Fj in M(Fj−1,Gj) such that Fj ⊇e G(j)

for j = 3, 4, · · · ,m.

Since G(m) = G, Fm is the unique MCS containing G as an edge-subgraph. We will

call the process of F1 through Fm sequential structure combination or SSC for short, and
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denote the collection of the MCSs such as Fm by Mseq(G1, · · · ,Gm), where the order of

subgraphs indicates the order of combination. We have just proved the following theorem.

Theorem 7.1 Suppose we have m node-subgraphs of G, G1, · · · ,Gm, for which ∪mi=1Vi = V .

Then there exists a unique graph, F , in Mseq(G1, · · · ,Gm) such that

F ⊇e G. (10)

The uniqueness property in Theorem 7.1 holds also when G is replaced in (10) by its

edge-subgraph.

Theorem 7.2 Suppose we have m node-subgraphs of G for which ∪mi=1Vi = V , and let

G′ ⊆e G. Then there exists a unique graph, F , in Mseq(G1, · · · ,Gm) such that F ⊇e G′.

Proof: Since G′ ⊆e G, it follows that G′(j) ⊆
e G(j) for j = 1, · · · ,m. At the jth step of the

SSC, we get, by Theorem 4.3, a unique MCS Fj such that Fj ⊇e G′(j). The desired graph,

F , is obtained by putting F = Fm. 2

The theorem below states that an SSC in any order of node-subgraphs yields a unique

MCS, in the sense of Theorem 4.3, for a given collection of node-subgraphs of a graph.

Theorem 7.3 Suppose there are m node-subgraphs, G1, · · · ,Gm, for which ∪mi=1Vi = V ,

consider an edge-subgraph G′ of G, and let H be a graph inM(G1, · · · ,Gm) for which H ⊇e G′.
For any permutation r1, r2, · · · , rm of 1, 2, · · · ,m, the following holds:

If F ∈Mseq(Gr1 , · · · ,Grm) satisfies that F ⊇e G′, then H = F .

Proof: See Appendix B.

8 Further Discussion and Concluding Remarks

The results of the article hold without regard to the types of variables involved in models,

and we confined our attention to the class of decomposable graphical models only. A

major reason of it is that the class of the corresponding graphs is the intersection of the

class of directed acyclic graphs (DAGs) and the class of undirected graphs. Lauritzen and

Spiegelhalter (1988) showed how to convert a DAG into a decomposable undirected graph.

Every node-subgraph of a decomposable graph is also decomposable. In this article, the

notion of minimal connector plays a key role in combining model structures in the context

that the collection, say C, of the minimal connectors of a given set of node-subgraphs is

found in the collection of the minimal connectors of the actual graph, say G, and that there
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exists a unique model structure which is an edge-supergraph of G and the collection of

whose minimal connectors is the same as C.
The aim of graph-combination of the node-subgraphs, G1, · · · ,Gm, as proposed in this

article, is not searching for the actual graph G but searching for the MCS H that contains

G as an edge-subgraph. In the searching process, Theorem 3.2 (ii) plays an important role.

According to this result, we have only to pay attention to the locations of the minimal

connectors in combining node-subgraphs. The resulting MCSs are not unique but there

exists only one MCS that contains G as an edge-subgraph. This unique existence makes

combining node-subgraphs, i.e., combining marginal model structures theoretically sound.

This is parallel to that a graphical log-linear model M is contained in the collection of the

graphical log-linear models which are obtained by applying the combining method of model

structures (the hypermodelling process of Fienberg and Kim (1999))to conditional log-linear

models of M (This is stated as Traceability Theorem in Fienberg and Kim (1999)).

Although we have used graph terminologies, the main results are about combining the

structures of decomposable graphical models. Suppose we have k collections of conditional

independence relationships among variables in k different sets of variables, V1, · · · , Vk. A

method of obtaining a reasonably good list of conditional independence relationships among

the variables in ∪ki+1Vi is proposed in this article based on the consistency principle that

the Markov properties in a graphical model are preserved in its submodels and vice versa.

The combination of model structures is implemented through graph grafting, which

takes place only at the cliques of a node-subgraph so that the conditional independence

relationships in the subgraphs are preserved during the grafting process.

We have not specified any distributional assumptions for the variables in the graphical

models. When all the variables are of the same kind, either continuous or discrete, Bildikar

and Patil (1968) show that the probability distribution for a model and that for any of its

submodels belong to the same family of distributions if the distribution is of exponential-

type. But when the graphical model is of mixed variables, a model may have a probability

distribution that is different from that of its submodel. For example, the distribution

of a submodel of a graphical model which has a conditional Gaussian (CG) distribution

(Lauritzen, 1989, 1992) is not necessarily CG. As far as the CG distribution is concerned,

we may need more restriction upon the model structure and thus upon the corresponding

MCSs. Any future research on this class of mixed graphical models as an extension of the

results of this article deserves our attention.

It is noted in section 6 that as there are more variables (i.e., nodes) shared by submodels,
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we have less MCSs corresponding to the submodels. From the simple model-pair in Figure 1,

we have as the corresponding MCS the last model structure, [12][245], in expression (1); as

for the pair, [12][23] and [24][25], the corresponding MCSs are the maximal model structures

in expression (2) as given in (8). And there are four MCSs in Figure 8 corresponding to

the model pair as in Figure 7. Since we do not know the true model structure G, neither

can we see which of the models in (8) contains the true model unless we have any further

information on the relationships among the variables involved. The information may be

given among others in the form of conditional independence, multi-way interaction, if-then

statement, cause-effect statement, the nature of variables, or observed data. For instance, if

an additional piece of information is that X2 and X3 directly influences X4, then the second

model in (8) is the only possibility. As for the case of Figure 8, information on whether X6

and X9 are conditionally independent helps much in searching for the true model.

The graphs of submodels can be from experts, data or from both. In model building, it

may be convenient to add variables to a given model one after another. In particular, vari-

ables may be added in the order of cause-effect sequence as for a recursive model (Wermuth

and Lauritzen, 1983). But when we have to merge several recursive models, we may easily

be trapped in inconsistency of inter-relationships and complexity of model structures if we

merge them heuristically one node after another. The graph-grafting method as proposed

in this article will save us from such inconsistency of inter-relationships since the method is

grounded upon the theories of conditional independence and graph separation and also from

the complexity of model structures since the grafting is operated with minimal connectors

and cliques only.

Apart from the distributional assumptions on models, the results of this article are ap-

plicable to any collection of graphical models, provided that the corresponding graphs are

equivalent to decomposable graphs (Andersson et al., 1997a). The results may open a road

leading us from a collection of marginal model structures among random variables to a col-

lection of global (as against “marginal”) model structures among the random variables that

are involved in at least one of the marginal model structures. Graphical models are widely

used in various forms in the research fields such as computer science, artificial intelligence,

social and biological sciences, decision science, and medical research. Model structures or

knowledge structures that are representable in graphs and developed for different sets of

random variables may be combined in a consistent manner towards a larger structure of

random variables by applying the methods as derived in this article.
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Appendix A
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Figure 10: The grafting locations for the graph pairs except Pairs 1γ and 3β. The grafting
locations for Pair 4 are of minimal connector {8} of G2 of the pair.
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Table 3: The numbers of the MCSs of the graph pairs in Figure 10. “GL” is the initials of
“grafting location”.

pair 1α 1β 2α 2β 2γ
GL a a b c d a a a b c d

#(MCSs for each GL) 2 1 2 1 1 6 8 8 8 8 12
#(MCSs for each pair) 2 5 6 8 68
2γ 3α 3γ 4
e f g h a a b c d e f g h i j a b
8 8 8 8 8 10 10 10 16 10 10 10 16 10 10 1 1

8 112 18
4
c d e f g h i j
1 4 4 4 1 2 1 1

Appendix B: Proofs

Proof of Theorem 3.3: Suppose that G is composed of k cliques. Then, since G is

decomposable, we can label the cliques from 1 through k, C1, · · · , Ck, so that

for all i > 1 there is a j < i such that Bi ⊆ Cj , (11)

where Bi = Ci ∩
(
∪i−1
l=1 Cl

)
(Theorem 7 of Pearl (1988) and Proposition 2.17 of Lauritzen

(1996)). This implies that Bi is a minimal connector in GAi where Ai = ∪il=1Cl. But

actually, Bi is a minimal connector of G. Suppose there are cliques, Ci1 , Ci2 , and Ci3 ,

i1 < i ≤ i2 < i3, such that there is a path from Ci1 to Ci2 passing through Ci3 but

bypassing Bi. Then this violates the clique numbering property (11) of a decomposable

graph. So such a clique Ci3 does not exist, implying that Bi is also a minimal connector

of G, i.e., {Bi} ⊆ σ(G). Since there is no minimal connectors in G other than the Bi’s,

{Bi} = σ(G). 2

Proof of Theorem 4.3: We first show (i). According to Theorem 3.2 and Lemma 4.1, we

have for any MCS H∗∗ of the m node-subgraphs

σ(H∗∗) ⊆ σ(G).

Note that σ(·) is a collection of sets of nodes and so that this inequality does not necessarily

imply that G is an edge-subgraph of H∗∗. In other words, the topology of σ(G) can be

different from that of σ(H∗∗).
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If σ(H∗∗) = σ(G), then G itself is an MCS of the m node-subgraphs. If σ(H∗∗) ⊂ σ(G)

and we let σ′ = σ(G)\σ(H∗∗), then we can change G into an MCS of the m node-subgraphs

by connecting all the node-pairs of the cliques that share an element set of σ′ so that the

neighboring cliques may form a larger clique. By doing the same for each of the other sets

in σ′, we obtain an MCS whose set of minimal connectors is the same as σ(H∗∗).
As for the uniqueness of MCS, suppose there are two different MCSs H′ and H′′ which

contains G as an edge-subgraph. By definition, neither of H′ and H′′ is an edge-subgraph

of the other. By Theorem 3.2 (ii), we have

σ(H′) = ∪mi=1σ(Gi) = σ(H′′). (12)

Thus we have

∅ 6= E(H′) \ E(G) 6= E(H′′) \ E(G) 6= ∅ (13)

since both H′ and H′′ are edge-supergraphs of G.

By Theorem 4.2, H′ and H′′ are both decomposable. So expression (13) implies that

σ(H′) 6= σ(H′′), (14)

since both H′ and H′′ are edge-supergraphs of G. For instance, let

(v1, v2) ∈ E(H′) \ E(G) and (v1, v2) 6∈ E(H′′) \ E(G). (15)

Then, there must exist a minimal connector s in H′′ such that

v1 ⊥ v2|s

but there is no minimal connector of v1 and v2 in H′. Both H′ and H′′ are decomposable

and edge-supergraphs of G. So expression (15) implies that v1 and v2 are each contained in a

pair of neighboring cliques in H′′ but not contained in the same clique. Thus it is impossible

that s ∈ σ(H′). This means expression (14), contradicting (12). Therefore, H′ = H′′.
We now prove (ii). By condition of the theorem, σ(G) ⊆e σ(G′). So, σ(H∗∗) ⊆e σ(G′).

Hence, the existence is proved in the same way as the first half of the proof of result (i) by

replacing G therein with G′. As for the uniqueness, we may apply the same argument as

the second half of the proof of result (i) by replacing G therein with G′, since G′ ⊆e G. 2

Proof of Theorem 6.3: If t shares nodes with more than one cliques in G1, this implies

that s(⊇ t) also shares nodes with multiple cliques, i.e., s can not be a minimal connector,

in a resulting MCS by Lemma 3.1, which violates Theorem 3.2.
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If t ∈ σ(G1), it is obvious that t itself is not a clique in G1. Otherwise, suppose that t is a

clique. Then, this means that t contains as a proper subset at least one minimal separator,

say s′ in G1 separating t from a clique, say C ′, and so that there is at least one node in

t \ C ′ which is separated from C ′ by s′. This implies, by Lemma 3.1, that t does not form

a complete subgraph in G, which is a contradiction to that s is a complete subgraph and

t ⊆ s. Therefore, t can not be a clique in G1. This proves result (i).

We know from Theorem 6.2 that grafting takes place at cliques only. If s ∈ σ(G1), then

it is obvious that s is type-1 grafted at a clique which contains s in G1. We will next consider

the case that s 6∈ σ(G1). That s ∈ σ(G2) means that there are at least two sets of nodes

that are separated by s in G2. Let those sets be A1, · · · , Al. Then the following three cases

are possible:

(i) V (G1) ∩
(
∪li=1 Ai

)
= ∅.

(ii) There is only one Ai which intersects with V (G1). Let it be A1.

(iii) There are more than one Ai which intersect with V (G1).

In case (i), s can be either type-1 grafted or type-2 grafted at C. When s is type-

1 grafted, the nodes of one of the l sets, A1, · · · , Al, are attached to some cliques of G1

and the other l − 1 Ai’s are separated from each other and also from V (G1) by s. By

the definition of MCS (Definition 3.1), if all the l Ai’s are separated from V (G1), then

the resulting combined structures can not be MCSs, since we can add edges still keeping

expression (4) valid. When s is type-2 grafted, C can be separated into j (2 ≤ j ≤ l) subsets

of nodes, subject to the states of G1, ending up with separating G1 into j parts. When C

is separated into two parts, the nodes of one of Ai’s are attached to some cliques in one of

the j parts of G1, those of another of Ai’s are attached to the other part of the graph, and

the rest of Ai’s are separated from the graph and also from each other by s. Analogously,

when C is separated into k(< l) parts, l − k Ai’s are separated by s from V (G1).

In case (ii), s can also be either type-1 grafted or type-2 grafted. When type-1 grafted,

the nodes in A1 \ s are attached to some cliques of G1 and A2, · · · , Al are separated from

V (G1) by s. Type-2 grafting is implemented in the same way as for case (i).

In case (iii), a type-1 grafting of s is impossible, since s 6∈ σ(G1) and there are nodes

to be separated by s in V (G1). For convenience’ sake, suppose that only the first m out

of A1, · · · , Al intersect with V (G1). Then, by the definition of MCS, the clique C can be

separated by s into j (m ≤ j ≤ l) parts, subject to the states of G1 ending up with j parts
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of G1. When C is separated into k(j ≤ k < l) parts by s, the other Ai’s, i = k + 1, · · · , l,
are separated from V (G1) and from each other by s.

When a type-2 grafting takes place, s can not separate any minimal connector of G1

because, if such a separation takes place in s′ ∈ σ(G1), s′ is no more a minimal connector in

a resulting MCS, which violates Theorem 3.2. Therefore, all the existing minimal connectors

in G1 are not affected during a type-2 grafting. 2

Proof of Corollary 6.2: By definition, graph-grafting takes place either in type-1 or in

type-2. Hence, we have only to show that type-1 grafting is impossible under the situation

of the corollary. According to Theorem 6.3, s is grafted at C only. Suppose that s is type-1

grafted at C. Then there must be a new clique C ′ added to G1 which is connected to C

through s, in other words, is separated from C by s. By the condition of the corollary,

either v1 ∈ C ′ or vj ∈ C ′ for j 6= 1. But this contradicts to that C ′ is a new addition to G1

since all the vi’s are already in G1. Therefore, we have the desired result. 2

Proof of Theorem 7.3: First of all, assume that the SSC is implemented in the order of

G1,G2, · · · ,Gm and consider the sequence {Fj ; j = 1, · · · , k} such that Fj ⊇e G′(j). Obviously,

σ(F1) = σ(G1). For j, 1 < j < m, suppose that σ(Fj) = ∪ji=1σ(Gi). Then we have, by

Theorem 3.2, that

σ(Fj+1) = σ(Fj) ∪ σ(Gj)

= ∪j+1
i=1σ(Gj).

So,

σ(F) = σ(Fm) = ∪mi=1σ(Gi) = σ(H). (16)

Now suppose that H 6= F . Then, by result (16), it implies that there exist at least one

pair of nodes in H whose location is not the same between H and F , which is impossible

since both of them are edge-supergraphs of G′. Therefore, it must be that H = F .

The preceeding argument is symmetric in the order of the node-subgraphs, which makes

the proof complete. 2
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