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ABsSTRACT. We investigate the limiting behavior as 7 tends to oo of the best
polynomial approximations in the Sobolev-Laguerre space W-2([0, 00); e~%)
with respect to the Sobolev- Laguerre inner product

= [ f e~%dz + [ f ™ (2)g ™) (z)e~*da

where v > 0 and N >1lisan 1nteger.
We also give conjectures for the same problem concerning to Sobolev-
Laguerre and Sobolev—Legendre inner products :

$1(f,9) Z 1o F W (2)g® (z)e~2d + v [5° FO)(2)g™) (z)e*da
and

bolfrg) = 3 [, FO@)g® (@)da 4 [, FO) (@)g™ (a)da.
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1. Introduction

Polynomial approximation of functions in various weighted Sobolev spaces has been
studied by many authors from different points of view (see [1] ~ [9]). In particular,
Cohen [4] studied the behavior of the best polynomial approximations for functions in
the Sobolev-Legendre space W'?[—1,1] with the Sobolev inner product

9), = 1, f(2)g(@)dz + v [1, f'(2)g'(x)dx (1.1)

as 7 tends to oco. Sobolev orthogonal polynomials with respect to (-,-), were stud-
ied in detail by Althammer [1] and Grébner [7]. Motivated by the work of Cohen
[4], we consider the best polynomial approximations in the Sobolev-Laguerre space
WHN-2[0, 0o; e7*] with the Sobolev inner products

=I5 f e %dz + v [, FM) (z) g™ (z)e~"da, (1.2)

and
N-1

o1(f,9) = 2 [7 [P (@)g® (x)e~dx + v [[° fO (2) g™ (x)e"dx,
=0 (1.3)
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where v > 0 and NV > 1 is a positive integer. Sobolev-Laguerre orthogonal polynomials
with respect to ¢(-,-) for N = 1 were studied by Brenner [2] and Marcelldn et al [10].
See also [11] for algebraic and differential properties of general Sobolev orthogonal
polynomials including Sobolev-Jacobi and Sobolev-Laguerre orthogonal polynomials.

Concerning to the limiting behavior of the best polynomial approximations in W¥+2([0,
00);e~?), we also need to consider the following so-called discrete-continuous Sobolev
inner product

W(f,g) = Z F®(0) +f0 N)(z)e 2dw. (1.4)

Let {Sr(ﬂ) ()}, and {Qn(z)}22, be the monic Sobolev orthogonal polynomials with
respect to ¢(-,-) and (-, -) respectively. In Section 2, we investigate algebraic proper-
ties of {Si” (2)}i2o, {Qn(®)}520 + and {85 (2) = lim S7(2)}32,. In Section 3, we
study the limiting behavior as v tends to oo of the bvest polynomial approximations to
f € WN2(]0,00); ™) with the Sobolev-Laguerre inner product (1.2). Finally in Sec-
tion 4, we give three conjectures relating to the limiting behavior of the best polynomial
approximations in the Sobolev-Laguerre and Sobolev-Legendre inner products

Z I f (z)g®) (z)e~dx + v [ FM(2)g™) (z)e ?dx
and
N=b g 1
> o [P (@)g W (@)dr +y [2) fP (2)g!™) (2)da.
k=0
2. ALGEBRAIC PROPERTIES
Let
L (z) = (=1)"n! z ekt ok (> 0, o € R) (2.1)

be the monic Laguerre polynomial system satisfying
zy'(z) + (a+1—2)y' +ny =0, n >0, (2.2)

where
@, =1 if j=0
YiTVala+1)---(a+j—1) if j=1,2,--

is the Pochhammer symbol. Then, the following are well known (see [13]) :

LO(z) =LV (), n>0; (2.3)
L9 (z) = Lt (z) + nL®

L\(z) = [z = @n+ o+ DILD (@) = n(n+ ) L (), n> 1. (25)
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By the Favard-Shohat theorem, if o # —1,—2,---, then {L%a) ()}, is the monic
orthogonal polynomial system.

If « = —Nis a negative integer, then we have from (2.1) and (2.4), for n > N,

() = M ) = ORI ), 26)

where
] = N(N-1)---(N=1l4+1)=(N-1+4+1), ifl<N,
0 if I> N.

In particular, we can see from (2.6) that LN (z) for n > N has x = 0 as a zero

of order N and has n — N positive zeros. Moreover, positive zeros of L%_N) () and

L;:L]P (x) for n > N interlace each other.

We now set
¢(S(x), SV (x)) = su(v), n 20,
¥ (@n(2), Qn(z)) = o, n20.
and for 7, 7 > 0,
Gij = p(at, 7)) = [T a"He dx + ¥ [ ()N (27) Medy
= 0i+j + YN [Zoirj—on

where o; = [;° a’e "dz = i!. Let

boo Po1 -+ Pon
A() = ¢:10 </5:11 ¢:1n n>0
(bnO qsnl e ¢nn
be the Hankel determinant of ¢(-,-).
Then
P00 o1t Pon
1 P10 P11 Qi
Sé”(x)zland 5727)($):m : : o hn=21
nl ¢n—1,0 ¢n—1,1 Tt ¢n—1,n
1 x e "
A, 1 1 fd = lim S
Since A, (¢) is a polynomial in 7y of degree {n N+l ifn>N , 71)12105’ (x)

= S (z), n > 0, exists.
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Proposition 2.1. We have

n—1
LTV@) =8P @)+ Y dM (ST (@), n> N (2.9)

i=n—N

where dﬁj‘_’N( ) # 0 and

d™(y) = s71(y) f; )W [ L, (2) S (2)e #dz, n— N <i<n—1.
l=n—1 (210)

Proof. Expand L ™) (z) as
L) = 80 + 5 d (050 @)
where d\" (y) = 8;1(7)¢(L(7N) S-(V)). From (2.3) and (2.6), if 0 <i <n— N —1, then
o(Ly ™M, 57y = 1] J LY (2) ST e da + 7] [ LY (2) (S () Me*da = 0.

l:
Hence (2.9) and (2.10) hold. In particular,

d™ (1) = sty R [ LY ()80 (2)e*da
= s, (D [ (LY v (2))2e"dn £ 0. O

Proposition 2.2. MSOPS {Q,(x)}§ relative to 1(-,-) is

™ 0<n<N
(@)= == 2.11
Q (Jf) {Lg N)(x)’ n>N. ( )
Furthermore,
QM (@) = 1L y(x), n> N (2.12)

so that Q%N) (x), for n > N, has n — N positive zeros.
Proof. For0<m<N—-land0<m<n-—1,

N—
V(Qm, Qn) = kEOl QW (0)Q¥ (0) = 0.

By induction on m, we obtain that Q%m) (0)=0for0<m<N-land0<m<n-—1

so that
z" 0<n<N,
@nlw) = {xNﬂn_N(a:) n > N.
Let mand n > N. Then (Qp, Qn):fooo Q%V)Q%N)e_zdx:qnémn so that {Q%N) ()} n

is an orthogonal polynomial system relative to e~® on [0, 00) so that (2.12) holds.
On the other hand, from (2.2) and (2.12),

2Q (@) + (1= 2)Q (@) +nQM (@) =0, n > N.
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Hence
Qi (@) + (1 ~ DR (@) +nQ (@) =0, n>0. (2.13)
By induction on £k = N,N —1,---,0, we can see from (2.13) that
2QUR (@) +[k—N+1- x]anf]\l,)( )+ I+ N—kQY (z)=0,n>0,0<k <N.
In particular, for £ = 0,
2Quin(2) + (=N +1-2) @iy (#) + (0 + N)@nin(2) =0, n >0
so that Qu(z) = LS ™ (z), n > N. O

By Propositions 2.1 and 2.2, we obtain the following relation :

n—1
Q@) =S5V @+ ¥ d"(1)S7(z), n> N.

i=n—N
Proposition 2.3. We have
I 58 (z)ame=*dz =0, n>m+1and 0 <m < N —1, (2.14)
I (S5 ()] M ame=rdz =0, n > m + N + 1 (2.15)

so that
S5 (z) = LO(z), 0 <n <N,

50 (z) = L (@) + s () = S (HVLO, (@) + myoa(2), 0> N
1=0 (2.16)

where Ty_1(z) € Py_1, the space of polynomials of degree < n — 1.
Proof. f 0 <m < N —1and n>m+ 1, then
22 85 (z)zme " da = 711_)11010 280 (z)ame"dx
= lim [(b(sﬁﬂhxm) — fOOO(ST(ﬂ)(:L‘))(N)(xm)Ne_mdx} —0.

Hence, (2.14) holds. In particular, from (2.14), we have 55 (z) = L (z), 0 < n <
N.If n>m+ N + 1, then

S5 (S8 (@) M gmevda = mf (S8 (@ ))(N)(W)(N)e%
- Jm e [¢< ) = [ S @) e da)
71520 (m+1 "lrf )z Ne dx = 0
so that
(559@) ™ = LY y(@), n > N. (2.17)

Integrating (2.17) N-times and using (2.3), we obtain (2.16). O
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Theorem 2.4. The following relation holds

n—1

S8 (z) = 8 (x) + X d (v)S(x), n> N (2.18)
=N
where
" (y) = s7' () J57 S (@) S (x)erdm, N <i<n—1. (2.19)

Proof. Expand S\ (z) as

n—1 _
S8 (z) = S (x) + Y- d ()87 ()

1=0

where

() = 57 (NS, 5M), 0<i<n—1.

(From (2.14) and (2.17),if 0 <7 < N — 1 < n, then

3(S,87) = [ 59 ()8 (2)e 2dw + 3] ;7 LY 5 (2) (S (2))NMe*dz = 0.
Hence, Jin)(’y) =0for0<i< N-—1andn > N so that (2.18) and (2.19) holds. O

Lemma 2.5. We have for any polynomials f(x) and g(x)

lzi()( 1) [FO10) (2) g ()]
(-1

1)L fo g N0 (z)e *dz. (2.20)

I fMN(z)g(x)e"dx = X_%

Proof. We shall prove (2.20) by induction on N > 1. If N = 1, then
Jo f'(@)g(@)edz = [f(z)g(x)e™ 5 — [;~ f ~")dx
so that (2.20) holds for N = 1. Assume that (2.20) is true up to N. Then
Jo f I (@)g(@)e da =N[_f1 (:L)l(m)g(x)eﬂzo — Jo fM () (g (@) — g(x))e dz
= [P @a)e T3+ X SO+ (0} @O @e ]
= DFHO) + GG F@)g™V D (@)e v da
(-1 [P @) @)e]y + S (=01 () [ £ a)g D )eds

¢
D
0
so that (2.20) is also true for N +1. O

Mz

+

l
N

|
—

t

Il

=0

Theorem 2.6. (Rodrigues type formula) For 0 <n < N —1,

SO (@) = Yo (~1)F(@)okan, (0, = &) (2.21)

k=0
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and for n > N,

S0 (@) = (-1t [27 S S ) g

k=1 11=0 lx=0

{61)\ n)( )}(2kN Iy ——lg) + ez)\(n) (CL')]
where m =[] + 1 and —e® () is a monic polynomial of degree n.

Proof. By the Sobolev orthogonality, we have

ST (@) = min {(y,y) = [° {y(@)? + 7(y™(2))?} e “dz | y™(z) = n!} .
Hence, S5 () must be a stationary point of the functional
Tyl = & {00 + 1P @)} e “de-+2 [ X)) — nida

where \(z) is the Lagrangian multlpher so that 1 f'(0) = 0 where f(¢) = I[y(z) +en(z)]
and 7(z) is an arbitrary function in CV|0, co).
Hence, by Lemma 2.5,

=y W ) +yyt )( I (@))e~rdz + [i7 \a)n™ (z)dz
=Jo m Tty Z( D)y (2)e® + (—1)" A (2)]dz

N—1[N—-1—14

Y| L MTIOED YN 0) [ 99 (0)

=0

Z( )nflfi)\(nflfi) (0)77(1) (0) + Zl(_l)nflfi/\(nflfi) (OO)H(Z)(OO) =0.

=0
Hence,forO_nﬁN—l:
y(z)e ™ + (=1)"A"(z) =0, (2.23)
M (0) =0, 0<k<n—1, (2.24)
AB(0) =0, 0< k<n-—1. (2.25)

JFrom (2.23), (2.24), and (2.25), and since y(z) is a monic polynomial of degree n,

AMz) = —e F2™

so that y(z)e™® = (=1)" 3 ()07 *e~20kx™. Hence, (2.21) holds.

k=0
Forn > N :
N
e |7 (=)' (N)y* (@) —y(@)| = (=1)"A"(a), (2.26)
=0
MO (0) =0, 0<k<n-—1, (2.27)
AB(0)=0,0<k<n-1-N, (2.28)

(_1)n—1—z’)\(n—1 i ( )+7N21: z( ) (N 1— z)y(N-H)(O) =0,0<i<N-—1. (2.29)
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JFrom (2.26), (2.27), and (2.28),

N-1
AMz) = —e %z N (xN + > /\kxk> :

k=0
Then from (2.26),

y(@) = 59@) = 7 (D) V() - hole)

=0

N N (2N—1)
O |1 X V@) — )|~ )
== 3 S S (U () () — )

where m = [2] 4+ 1 and h,(z) = (—1)"e*A™(z). Hence (2.22) holds. O

ol

Remark. Rodrigues type formula for Sobolev-Legendre and Sobolev-Laguerre or-
thogonal polynomials for N = 1 were obtained by W. Grébner [7] and J. Brenner

[2].
3. BEST POLYNOMIAL APPROXIMATIONS

We now set

E:={f:Ry =R f(z) € C"'(R;), f" V(z) € AC(Ry),
f(z) and f™M(z) € L*(R, : e~"dz)}

where R, := [0, 00) and for any f € E, let
B (@) = ¥ 5" (0)6(f, S7)5 ()
and -
Bu(z) = kg@ 05" (Qr, f) Qu(a)

be the best polynomial approximations to f(z) in P, with respect to ¢(-,-) and (-, -)
respectively. Set

R (z) = f(z) — B{(x), Ru(z) = f(z) — Ba(x)
to be the deviations. Then

Theorem 3.1. B{™ (z) := lim B (z), n > 0 exists and

Y00

B™®)(z) = B,(z), n>2N —1. (3.3)

n
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Proof. Set By () = Y bi(7)z*. Then from (3.1),
k=0

n

$(BY,27) = 3 bp(y)d(a*, 27) = ¢(f,27), 0 < j < n.

k=0
Hence,

[B(*, &))" o (D = [(F,29)]1_y s0 that by(y) = 559, 0 <k <n

where Agc)(qﬁ) is the determinant A, (¢) where the k-th column of A, (¢) is replaced
by [o(f, xj)]?zo. As polynomials in v, A% (¢) is of degree < max(0,n — N + 1) and
Ay (¢) is of degree max(0,n — N + 1).

Hence, lim B (z) = B (z) exists.

Y—00
Then for any 7 € P,

L[ = BO)2ezda + [[[0N (f — BY)Pe*da

< L(f 2evdz + [ [0 f—ﬂ)]Qe*‘”daz.
Let v tends to oco. Then
JlON (f — BE)2eedz < [ [f™) — 7M]? e=2dz, 7 € P, (3.4)

That is, 8;VB7(L°°) () is the best polynomial approximation of degree < n— N to fV)(z)
in L?(R, : e~®dz). Hence,

I xke—wagR&’") (z)dz =0, 0<k<n-—N, (3.5)
where R (z) = f(z) — BY (z). On the other hand, from (3.1),
SR 2¥) = I R (z)z*e2dz =0, 0 < k< N —1 and n > k.
Let v tend to co. Then
I R,(fo)(as)xke_mdx =0, 0<k<N-—1andn>k. (3.6)

We set aﬁ) = [ zbe* 9 RS (z)dz, 0 < j < N and k > 0. Then from (3.5) and
(3.6), we have

a((ffc):Oandag\?,)c:OforOSng—lananQN—l. (3.7)
By induction on j, we obtain that, for 1 <j < Nand 0 <k <N -1,

o = Zl ril( )+ (=L ]50,,9_4 (2R5) ©), n>k  (38)

m=0

Hence, from (3.7) and (3.8), we have for 0 <k <N —1andn>2N —1
) N-1[N
ang == 22

5 S e e (2RE) ©

== 3 (DR DRGS0 =0,

-1

m=0
k
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Hence,
P*RE)0)=0for 0<k<N—1andn>2N —1. (3.9)
(From (3.4) and (3.9), if n > 2N — 1, then

o (1 =B, f =B = = [ (f — B evde

<o - m) ede = w(f =7, f — )
for any m € Py,. Hence B (z) = By(z) ifn>2N —1. O

Theorem 3.2. Let n > N. Then

(1) For0< k< N —1, R (%) has at least n — N + 1 nodal zeros(i.e. zeros of odd
multiplicities) in (0,00) so that R (x) has at least n — N + 2 zeros in [0, 00)
including 0 ;

(2) If f € CN]0,00), then RV (x) has at least n — N + 1 nodal zeros in (0, 00).

Proof. From (3.2) and (3.9),

V(R ) =Y BDO)H)D(0) + [ R @) (4 Ve=d
= fooojé?lm (z)[Fla* Ne2dz =0, 0 < k < n.
Hence,
I RN (z)zme~*dz =0, 0 <m < n— N. (3.10)
Now (2) follows from (3.10). By induction on k = N, N —1,--- ,2,1,0, we obtain
I (nk)(x)xme’“dx =0,0<m<n—Nand 0<k<N. (3.11)

Hence (1) holds since R;k)(O) =0,0<k<N-1. O

Theorem 3.3. We have

BY(z) - By(z)= . BYS (@), n>N (3.12)
k=n—N+1
where
ﬁr(bn—)N—Fl Sp— N+1 fo f B g N ey, (3-13)
Proof. Let
B (@) = Ba(a) = 32 475 (@)
Then

=5t (OB = B, §7), 0< k<
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(From (3.1) and (3.11), for 0 <k <n — N,

$(BY — By, a*) = 6(f — By, a*)

= fOOO(f — Bn)xk@—mdx +,>,f0 f(N N))(xk)(N)e—wdx —0.

Hence, (3.12) holds.
Since

BB — By Sy 1) = GBI = By, an V41) = [5(f  B)an e e,
(3.13) holds. 0O

Theorem 3.3 means that in the expansion by {S,(ﬁ) ()}, B(v)( ) and By, () differ
only in the last NV coefficients.

4. CONJECTURES

Instead of ¢(-,-), we now consider a Sobolev-Laguerre inner product
¢1(f, Z fo (2)g®) (x)e~dx + v fooo fM(2)g™(z)e ?dx

where v > 0, N > 1 is an integer and let BY (x) be the best polynomial approximation
to f € WN2(]0, 00); e7%) with respect to ¢1(,-).
Conjecture 1. lim BY (x) = Bp(x), n > 2N — 1.
Y—»00

For N = 1, Conjecture 1 is true by Theorem 3.1 so that we assume N > 2. As in
the proof of Theorem 3.1, proving the Conjecture 1 is equivalent to showing

(i) 88 B8 (z) is the best polynomial approximation to f(V)(z) in P,_x with respect
to L?(R, ;e %dx)

and

(i) [OLRY)(0) =0, 0< k< N —1and n > 2N —1,

where B (z) = lim B (z) and R (z) := f(z) — B (x). It is easy to prove (i).
y—00

In order to prove (ii), let us proceed as in the proof of Theorem 3.1. First, (i) implies

that

I zke OV R (z)dz =0, 0< k< n— N. (4.1)
On the other hand, we can obtain from ¢;(f(z) — B{(z),2%) =0,0< k <n

k ~
> [y at-te i R (x)dr = 0, 0< k< N =1 and n > k. (4.2)
j=0

We now set

(”)_ fo —waJ ()]dac 0<j<Nandk>0.
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Then by (4.1) and (4.2), we have

m | O if k=0andn >0 (4.3)
Y T RI[TRE)(0) if 1<k<N—1landn>k '
and
(TL) .7 . jfl jfl*l . ~(OO)
A = SO~ T | X 005 o] [285] ),
- - 1<j<Nandk>0. (4.4)
Hence, we have by (4.1), (4.3), and (4.4),
(n) Syt N [0 pleo) N i1y [0 3(e0)
=S ) [P 0 - TS Core) (28] o) -0
0<k<N-1 (4.5)
For k = 0, (4.5) becomes
N—-1 N
> [0 RE] (0) =0
=0

so that (ii) holds if we can show that the following homogeneous system of equations
has trivial solution :

k—1 N—-1-k

S EDHGN D+ Y (DM =0, 1<kE<N -1 (4.6)

In other words, we only need to show that |Ay_1| # 0, where Ax_; is the coefficients
matrix of the system (4.6). Either by a direct computation for NV small or by a numeric
computation for 2 < N < 100, we can see that |Ay_1| # 0.

Furthermore, we conjecture :

Conjecture 2. |An_1| = H ((%:1 T

which is the number of alternating sign matrlx of order N (see [12], [14]). We can
check Conjecture 2 numerically up to N = 20.
Finally, let us consider Sobolev-Legendre inner products

da(f, Z J5 F®O (@) g® (@) da + 7 [1, FO(2)g™ (2)dz

and

ba(f,9) = Zf"“( Dg® (1) + [, fN(2)g™ (z)dz.

For any f in WN2[—-1,1] := {f : [-1,1] = R | f(z) € CN-1,1], f¥D(z) €
AC[-1,1], and f®)(z) € L?[—1,1] for 0 < k < N}, let B,(y)(x) and B,(z) be the best
polynomial approximations to f with respect to ¢o(-, ) and (-, -) respectively. Then,
we conjecture :

Conjecture 3. lim B (z) = By(z), n > 3N — 1.

Y—00
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For N =1, Conjecture 3 was proved by E. A. Cohen [4], which motivates this work.
As in the case of Sobolev-Laguerre inner products, proving Conjecture 3 can be reduced
to showing

O (f(z) — B (2))sec1 =0, 0< k< N—1and n > 3N — 1, (4.7)
where B (z) := lim BY(z). In fact, we can show (4.7) for small N by direct or
Y—0o0

numerical computation.
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