

Contents lists available at [SciVerse ScienceDirect](http://www.elsevier.com/locate/jsc)

Journal of Symbolic Computation

lournal of

journal homepage: www.elsevier.com/locate/jsc

The degree complexity of smooth surfaces of codimension 2

Je[a](#page-0-0)man Ahn^a, Sijong Kwak^{[b](#page-0-1)}, Yeongseok Song^{[c,](#page-0-2)[1](#page-0-3)}

^a *Mathematics Education, Kongju National University, 182 Sinkwan-dong Kongju-si Chungnam, 314-702, Republic of Korea* ^b *Department of Mathematics, Korea Advanced Institute of Science and Technology, 373-1 Gusung-dong, Yusung-Gu, Daejeon, Republic of Korea*

^c School of Mathematics, Korea Institute for Advanced Study (KIAS), 85 Hoegiro, dongdaemun-gu, Seoul, Republic of Korea

a r t i c l e i n f o

Article history: Received 21 April 2011 Accepted 26 December 2011 Available online 5 January 2012

Keywords: Degree complexity Graded lexicographic order Generic initial ideal Partial elimination ideal Algebraic surfaces of codimension 2

A B S T R A C T

For a given term order, the degree complexity of a projective scheme is defined by the maximal degree of the reduced Gröbner basis of its defining saturated ideal in generic coordinates [\(Bayer](#page-13-0) [and](#page-13-0) [Mumford,](#page-13-0) [1993\)](#page-13-0). It is well known that the degree complexity with respect to the graded reverse lexicographic order is equal to the Castelnuovo–Mumford regularity [\(Bayer](#page-13-1) [and](#page-13-1) [Stillman,](#page-13-1) [1987\)](#page-13-1). However, much less is known if one uses the graded lexicographic order [\(Ahn,](#page-13-2) [2008;](#page-13-2) [Conca](#page-13-3) [and](#page-13-3) [Sidman,](#page-13-3) [2005\)](#page-13-3).

In this paper, we study the degree complexity of a smooth irreducible surface in \mathbb{P}^4 with respect to the graded lexicographic order and its geometric meaning. As in the case of a smooth curve [\(Ahn,](#page-13-2) [2008\)](#page-13-2), we expect that this complexity is closely related to the invariants of the double curve of a surface under a generic projection. As results, we prove that except in a few cases, the degree complexity of a smooth surface *S* of degree *d* with $h^0(\mathit{\mathcal{I}}_S(2)) \neq 0$ in \mathbb{P}^4 is given by 2 + $\left(\frac{\deg \operatorname{Y}_1(S)-1}{2}\right)-g(\operatorname{Y}_1(S))$, where *Y*₁(*S*) is a double curve of degree $\binom{d-1}{2}$ − *g*(*S* ∩ *H*) under a generic projection of *S*. In particular, this complexity is actually obtained at the monomial

$$
\chi_0\chi_1\chi_3\left(\begin{smallmatrix}\deg Y_1(S)-1\\2\end{smallmatrix}\right)-g(Y_1(S))
$$

where $k[x_0, x_1, x_2, x_3, x_4]$ is a polynomial ring defining \mathbb{P}^4 . Exceptional cases are a rational normal scroll, a complete intersection surface of $(2, 2)$ -type, or a Castelnuovo surface of degree 5 in \mathbb{P}^4

E-mail addresses: jeamanahn@kongju.ac.kr (J. Ahn), skwak@kaist.ac.kr (S. Kwak), lassei@kaist.ac.kr (Y. Song).

¹ Tel.: +82 10 9833 5645; fax: +82 2 958 3786.

^{0747-7171/\$ –} see front matter © 2012 Elsevier Ltd. All rights reserved. [doi:10.1016/j.jsc.2012.01.001](http://dx.doi.org/10.1016/j.jsc.2012.01.001)

whose degree complexities are in fact equal to their degrees. This complexity can also be expressed in terms of degrees of defining equations of *I^S* in the same manner as the result of A. Conca and J. Sidman [\(Conca](#page-13-3) [and](#page-13-3) [Sidman,](#page-13-3) [2005\)](#page-13-3). We also provide some illuminating examples of our results via calculations done with *Macaulay 2* [\(Grayson](#page-13-4) [and](#page-13-4) [Stillman,](#page-13-4) [1997\)](#page-13-4).

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In [Bayer and Mumford](#page-13-5) [\(1993\)](#page-13-5), D. Bayer and D. Mumford introduced the degree complexity of a homogeneous ideal *I* with respect to a given term order τ as the maximal degree of the reduced Gröbner basis of *I*, and this is exactly the highest degree of minimal generators of the initial ideal of *I*. Even though the degree complexity depends on the choice of coordinates, it is constant in generic coordinates since the initial ideal of *I* is invariant under a generic change of coordinates, which is the so-called the generic initial ideal of *I* [\(Eisenbud,](#page-13-6) [1995\)](#page-13-6).

For the graded lexicographic order (resp. the graded reverse lexicographic order), we denote by *M*(*I*) (resp. *m*(*I*)) the degree complexity of *I in generic coordinates*. For a projective scheme *X*, the degree complexity of *X* can also be defined as $M(I_X)$ (resp. $m(I_X)$) for the graded lexicographic order (resp. the graded reverse lexicographic order) where *I^X* is the defining saturated ideal of *X*.

D. Bayer and M. Stillman have shown in [Bayer and Stillman](#page-13-7) [\(1987\)](#page-13-7) that *m*(*I*) is exactly equal to the Castelnuovo–Mumford regularity reg(*I*). Then what can we say about *M*(*I*)? A. Conca and J. Sidman proved in [Conca and Sidman](#page-13-8) [\(2005\)](#page-13-8) that if *I^C* is the defining ideal of a smooth irreducible complete intersection curve *C* of type (a, b) in \mathbb{P}^3 then $M(I_C)$ is $1 + \frac{ab(a-1)(b-1)}{2}$ with the exception of the case $a = b = 2$, where $M(I_C)$ is 4. Recently, J. [Ahn](#page-13-9) has shown in Ahn [\(2008\)](#page-13-9) that if I_C is the defining ideal of a non-degenerate smooth integral curve of degree *d* and genus $g(C)$ in \mathbb{P}^r (for $r \geq 3$), then $M(I_C) = 1 + {d-1 \choose 2} - g(C)$ with two exceptional cases.

In this paper, we would like to compute the degree complexity of a smooth surface S in \mathbb{P}^4 with respect to the graded lexicographic order. Our main results are, with the exception of three cases, if *S* ⊂ \mathbb{P}^4 is a smooth irreducible surface of degree *d* with $h^0(\jmath_s(2))\neq 0$, then the degree complexity $M(I_S)$ of *S* is given by 2 + $\binom{\deg Y_1(S)-1}{2}$ – $g(Y_1(S))$, where $Y_1(S)$ is a smooth double curve of *S* in \mathbb{P}^3 under a generic projection and deg $Y_1(S) = {d-1 \choose 2} - g(S \cap H)$. Moreover, this complexity is actually obtained at the monomial

$$
\chi_0\chi_1\chi_3\,\bigl(\begin{smallmatrix}\deg Y_1(S)-1\\2\end{smallmatrix}\bigr)-g(Y_1(S))
$$

where $k[x_0, x_1, x_2, x_3, x_4]$ is a polynomial ring defining \mathbb{P}^4 .

On the other hand, $M(I_S)$ can also be expressed in terms of degrees of defining equations of I_S in the same manner as the result of Conca and Sidman [\(Conca and Sidman,](#page-13-8) [2005\)](#page-13-8) (see [Theorem](#page-9-0) [4.9\)](#page-9-0). Note that if *S* is a locally Cohen–Macaulay surface with $h^0(\mathit{I}_S(2)) \neq 0$ then there are two types of surfaces *S*. One is a complete intersection of $(2, \alpha)$ -type and the other is arithmetically Cohen–Macaulay of degree 2 α – 1. For those cases, deg $Y_1(S)$, $g(Y_1(S))$ and $g(S \cap H)$ can be obtained in terms of α .

Consequently, if *S* is a complete intersection of $(2, \alpha)$ -type for some $\alpha \geq 3$ then $M(I_S)$ = $\frac{1}{2}$ (α⁴ − 4α³ + 5α² − 2α + 4). If *S* is arithmetically Cohen–Macaulay of degree 2α − 1, α \geq 4, then $M(I_S) = \frac{1}{2}(\alpha^4 - 6\alpha^3 + 13\alpha^2 - 12\alpha + 8)$ (see [Theorem](#page-9-0) [4.9\)](#page-9-0). Exceptional cases are a rational normal scroll, a complete intersection surface of $(2, 2)$ -type, or a Castelnuovo surface of degree 5 in \mathbb{P}^4 . In these cases, $M(I_S) = \deg(S)$ (see [Proposition](#page-8-0) [4.5\)](#page-8-0).

The main ideas are divided into two parts: one is to show that the degree complexity $M(I_S)$ is given by the maximum of reg($Gin_{Glex}(K_i(I_S))$) + *i* for *i* = 0, 1 and the other part is to compare the schemes of multiple loci defined by partial elimination ideals and their classical scheme structures defined by the Fitting ideals of an $\mathcal{O}_{{\mathbb P}^3}$ -module $\pi_*\mathcal{O}_S$ where π is a generic projection of S to ${\mathbb P}^3.$

2. Notations and basic facts

- We work over an algebraically closed field *k* of characteristic zero.
- Let $R = k[x_0, \ldots, x_r]$ be a polynomial ring over *k*. For a closed subscheme *X* in \mathbb{P}^r , we denote the defining saturated ideal of *X* by

$$
I_X = \bigoplus_{m=0}^{\infty} H^0(\mathfrak{1}_X(m)).
$$

- For a homogeneous ideal *I*, the Hilbert function of *R*/*I* is defined by $H(R/I, m) := \dim_k(R/I)$ for any non-negative integer *m*. We denote its corresponding Hilbert polynomial by $P_{R/I}(z) \in \mathbb{Q}[z]$. If $I = I_X$ then we simply write $P_X(z)$ instead of $P_{R/I_X}(z)$.
- We write $\rho_a(X) = (-1)^{\dim(X)} (P_X(0) 1)$ for the arithmetic genus of *X*.
- For a homogeneous ideal *I* ⊂ *R*, consider a minimal free resolution

$$
\cdots \to \bigoplus_j R(-i-j)^{\beta_{i,j}(I)} \to \cdots \to \bigoplus_j R(-j)^{\beta_{0,j}(I)} \to I \to 0
$$

of *I* as a graded *R*-modules. We say that *I* is *m*-regular if $\beta_{i,j}(I) = 0$ for all $i \ge 0$ and $j > m$. The Castelnuovo–Mumford regularity of *I* is defined by

 $reg(I) := min\{m \mid I \text{ is } m\text{-regular}\}.$

• Given a term order τ , we define the initial term $\text{in}_{\tau}(f)$ of a homogeneous polynomial $f \in R$ to be the greatest monomial of *f* with respect to τ . If $I \subset R$ is a homogeneous ideal, we also define the initial ideal in_τ (*I*) to be the ideal generated by $\{\text{in}_{\tau}(f) \mid f \in I\}$. A set $G = \{g_1, \ldots, g_n\} \subset I$ is said to be a Gröbner basis if

$$
(in_{\tau}(g_1),\ldots,in_{\tau}(g_n))=in_{\tau}(I).
$$

• For an element $\alpha = (\alpha_0, \ldots, \alpha_r) \in \mathbb{N}^r$ we define the notation $x^{\alpha} = x_0^{\alpha_0} \cdots x_r^{\alpha_r}$ for monomials. Its degree is $| \alpha | = \sum_{i=0}^{r} \alpha_i$.

For two monomial terms x^α and x^β , the *graded lexicographic order* is defined by $x^\alpha \geq_{\text{GLex }} x^\beta$ if and only if $|\alpha| > |\beta|$ or $|\alpha| = |\beta|$ and if the left most nonzero entry of $\alpha - \beta$ is positive. The *graded reverse lexicographic order* is defined by $x^\alpha\geq_{\rm GRLex} x^\beta$ if and only if we have $|\alpha|>|\beta|$ or $|\alpha|=|\beta|$ and if the right most nonzero entry of $\alpha - \beta$ is negative.

- In characteristic 0, we say that a monomial ideal *I* has the Borel-fixed property if, for any monomial *m* such that $x_i m \in I$, then $x_j m \in I$ for all $j \leq i$.
- Given a homogeneous ideal $I \subset R$ and a term order τ , there is a Zariski open subset $U \subset GL_{r+1}(k)$ such that $in_{\tau}(g(I))$ is constant. We will call $in_{\tau}(g(I))$ for $g \in U$ the generic initial ideal of *I* and denote it by $Gin_{\tau}(I)$. Generic initial ideals have the Borel-fixed property (see [\(Eisenbud,](#page-13-6) [1995;](#page-13-6) [Green,](#page-13-10) [1998\)](#page-13-10)).
- For a homogeneous ideal $I \subset R$, let $m(I)$ and $M(I)$ denote the maximum of the degrees of minimal generators of Gin_{GRLex}(*I*) and Gin_{GLex}(*I*) respectively.
- \bullet If *I* is a Borel fixed monomial ideal then reg(*I*) is exactly the maximal degree of minimal generators of *I* (see [\(Bayer and Stillman,](#page-13-7) [1987;](#page-13-7) [Green,](#page-13-10) [1998\)](#page-13-10)). This implies that

 $m(I) = \text{reg}(Gin_{\text{GRLex}}(I))$ and $M(I) = \text{reg}(Gin_{\text{GLex}}(I)).$

3. Gröbner bases of partial elimination ideals

Definition 3.1. Let *I* be a homogeneous ideal in *R*. If $f \in I_d$ has leading term in(f) = $x_0^{d_0} \cdots x_r^{d_r}$, we will set $d_0(f) = d_0$, the leading power of x_0 in f. We let

$$
\widetilde{K}_i(I) = \bigoplus_{d \geq 0} \{f \in I_d \mid d_0(f) \leq i\}.
$$

If $f \in \widetilde{K}_i(I)$, we may write uniquely

$$
f = x_0^i \overline{f} + g,
$$

where $d_0(g) < i$. Now we define $K_i(I)$ as the image of $\widetilde{K}_i(I)$ in $\overline{R} = k[x_1 \dots x_r]$ under the map $f \to \overline{f}$ and we call $K_i(I)$ the *i*-th partial elimination ideal of I . \Box

Remark 3.1. We have an inclusion of the partial elimination ideals of *I*:

$$
I \cap \overline{R} = K_0(I) \subset K_1(I) \subset \cdots \subset K_i(I) \subset K_{i+1}(I) \subset \cdots \subset \overline{R}.
$$

Note that if *I* is in generic coordinates and $i_0 = \min\{i \mid I_i \neq 0\}$ then $K_i(I) = \bar{R}$ for all $i \geq i_0$. \Box

The following result gives the precise relationship between partial elimination ideals and the geometry of the projection map from \mathbb{P}^r to \mathbb{P}^{r-1} . For a proof of this proposition, see [\(Green,](#page-13-10) [1998,](#page-13-10) Propostion 6.2).

Proposition 3.2. Let $X \subset \mathbb{P}^r$ be a reduced closed subscheme and let I_X be the defining ideal of X. Suppose $p = [1, 0, \ldots, 0] \in \mathbb{P}^r \setminus X$ and that $\pi : X \to \mathbb{P}^{r-1}$ is the projection from the point $p \in \mathbb{P}^r$ to the *hyperplane where* $x_0 = 0$. Then, set-theoretically, $K_i(I_X)$ is the ideal of $\{q \in \pi(X) \mid \text{mult}_q(\pi(X)) > i\}$.

For each $i > 0$, note that we can give a scheme structure on the set

 $Y_i(X) := \{q \in \pi(X) \mid \text{mult}_q(\pi(X)) > i\}$

from the *i*-th partial elimination ideal *Ki*(*I*). Let

 $Z_i(X) := \text{Proj}(\overline{R}/K_i(I_X)),$

where $\bar{R} = k[x_1 \dots x_r]$. Then it follows from [Proposition](#page-3-0) [3.2](#page-3-0) that

$$
Z_i(X)_{\text{red}} = Y_i(X).
$$

Remark 3.3. Let $X \subset \mathbb{P}^r$ be a smooth variety of codimension two and let $\pi : X \to \mathbb{P}^{r-1}$ be a generic projection of *X*. A classical scheme structure on the set $Y_i(X)$ is given by *i*-th Fitting ideal of the $\mathcal{O}_{\mathbb{P}^{r-1}}$ module π∗O*^X* (see [\(Kleiman et al.,](#page-13-11) [1996;](#page-13-11) [Mezzetti and Portelli,](#page-13-12) [1997\)](#page-13-12)). Throughout this paper, we use the notation $Y_i(X)$ in the sense that it is a closed subscheme defined by the Fitting ideal of $\pi_* \mathcal{O}_X$, as distinguished from the notation $Z_i(X)$. We show that if $S\subset \mathbb{P}^4$ is a smooth surface lying in a quadric hypersurface then *Y*1(*S*) and *Z*1(*S*) have the same reduced scheme structure (see [Theorem](#page-5-0) [4.2\)](#page-5-0), which will be used in the proof of [Proposition](#page-8-0) [4.5.](#page-8-0) \Box

It is natural to ask: what is a Gröbner basis of *Ki*(*I*)? Recall that any non-zero polynomial *f* in *R* can be uniquely written as $f = x_0^t \bar{f} + g$ where $d_0(g) < t$. Conca and Sidman [\(Conca and Sidman,](#page-13-8) [2005\)](#page-13-8) show that if *G* is a Gröbner basis for an ideal *I* then the set

 $G_i = \{ \bar{f} \mid f \in G \text{ with } d_0(f) \leq i \}$

is a Gröbner basis for *Ki*(*I*). However if *I* is in generic coordinates then there is a more refined Gröbner basis for $K_i(I)$, which plays an important role in this paper.

Proposition 3.4. *Let I be a homogeneous ideal in generic coordinates and G be a Gröbner basis for I with respect to the graded lexicographic order. Then, for each* $i \geq 0$ *,*

(a) *the i-th partial elimination ideal Ki*(*I*) *is in generic coordinates;*

(b) $G_i = \{f \mid f \in G \text{ with } d_0(f) = i\}$ is a Gröbner basis for $K_i(I)$. \Box

Proof. (a) is in fact proved in Proposition 3.3 in [Conca and Sidman](#page-13-8) [\(2005\)](#page-13-8). For a proof of (b), it suffices to show that $\langle \text{in}(G_i) \rangle = \text{in}(K_i(I))$ by the definition of Gröbner bases. Since $G_i \subset K_i(I)$, we only need to show that $\langle \text{in}(G_i) \rangle \supset \text{in}(K_i(I))$. Now, we denote $\mathcal{G}(I)$ by the set of minimal generators of *I*. Let *m* ∈ in($K_i(I)$) be a monomial. Then there is a monomial generator $M \text{ } \in \text{ } \mathcal{G}(in(K_i(I)))$ such that *M* divides *m*.

We claim that $x_0^i M \in \mathcal{G}(\text{in}(I))$ if and only if $M \in \mathcal{G}(\text{in}(K_i(I)))$.

If the claim is proved then we will be done. Indeed, for $M \in \mathcal{G}(\text{in}(K_i(I)))$, we see that $x_0^iM \in$ $G(\text{in}(I))$. This implies that there exists a polynomial $f = x_0^i \overline{f} + g \in G$ with $d_0(g) < i$ such that

$$
\text{in}(f) = x_0^i \text{in}(\bar{f}) = x_0^i M.
$$

This means that $M = \text{in}(\bar{f}) \in \langle \text{in}(G_i) \rangle$. Thus we have $m \in \langle \text{in}(G_i) \rangle$.

Here is a proof of the claim: suppose that $x_0^iM \in \mathcal{G}(\text{in}(I))$ then we can say that $x_0^iM \in \text{in}(I)$. Thus there is a polynomial $f = x_0^i \bar{f} + g \in I$ such that $d_0(g) < i$ and $\text{in}(f) = x_0^i \text{in}(\bar{f}) = x_0^i M$. By the definition of partial elimination ideals, we have that $\bar{f} \in K_i(I)$, which means $M \in \text{in}(K_i(I))$. Assume that $M \notin \mathcal{G}(\text{in}(K_i(I)))$. Then for some monomial $N \in \mathcal{G}(\text{in}(K_i(I)))$ such that N divides M. This implies that

$$
x_0^i N \in \text{in}(I) \quad \text{and} \quad x_0^i N \mid x_0^i M,
$$

which contradicts the fact that x_0^iM is a minimal generator of $\text{in}(I)$. Thus M is contained in $\mathcal{G}(\text{in}(K_i(I)))$.

Conversely, suppose that there is $M \in \mathcal{G}(\text{in}(K_i(I)))$ such that $x_0^iM \notin \mathcal{G}(\text{in}(I))$. Then we may choose a monomial $x_0^j N \in \mathcal{G}(\text{in}(I))$ satisfying

$$
x_0 \nmid N \quad \text{and} \quad x_0^j N \mid x_0^i M. \tag{1}
$$

Note that [\(1\)](#page-2-0) implies that $i \ge j \ge 0$. Since $N \in \text{in}(K_i(I))$ and $K_0(I) \subset K_1(I) \subset \cdots$, it is obvious that $N \in \text{in}(K_i(I))$ and *N* divides *M*. Now, we claim that *N* can be chosen to be different from *M*. If $N = M$ then *j* must be less than *i*. Denote N by $x_1^{j_1} \cdots x_r^{j_r}$ and choose a nonzero $j_t \in \{j_1, \ldots, j_r\}$. By (a), note that *Ki*(*I*) is in generic coordinates and so we may assume that in(*Ki*(*I*)) has the Borel-fixed property. Therefore, if we set $N' = N/x_j$, then $x_0^{j+1}N' \in \text{in}(I)$. Replace x_0^jN by $N'' = x_0^{j+1}N'$. Then $N^{'} \in \text{in}(K_{j+1}(I))$. Since $j+1 \leq i$, we can say that $N^{'} \in \text{in}(K_i(I))$ and $N^{'}$ divides *M* with $N^{'} \neq M$. This contradicts the assumption that $M \in \mathcal{G}(\text{in}(K_i(I)))$. \Box

Remark 3.5. The condition ''in generic coordinates" is crucial in [Proposition](#page-3-1) [3.4](#page-3-1) (b) as the following example shows. Let $I = (x_0^2, x_0x_1, x_0x_2, x_3)$ be a monomial ideal. Then $G = \{x_0^2, x_0x_1, x_0x_2, x_3\}$ is a Gröbner basis for *I*. Then we can easily check that

$$
G_1 = \{ \bar{f} \mid f \in G \text{ with } d_0(f) \le 1 \} = (x_1, x_2, x_3),
$$

\n
$$
G_1^{'} = \{ \bar{f} \mid f \in G \text{ with } d_0(f) = 1 \} = (x_1, x_2).
$$

This shows that *G* ′ \int_1 is not a Gröbner basis for $K_1(I)$. \Box

We have the following corollary from [Proposition](#page-3-1) [3.4.](#page-3-1)

Corollary 3.6. *For a homogeneous ideal* $I \subset R = k[x_0, \ldots, x_r]$ *in generic coordinates, we have*

$$
M(I) = \max\{M(K_i(I)) + i \mid 0 \leq i \leq \beta\},\
$$

where $\beta = \min\{j \mid I_j \neq 0\}$. \Box

Proof. Note that $K_\beta(I) = \bar{R}$ for $\beta = \min\{j \,|\, I_j \neq 0\}$ by definition. We know that $M(I)$ can be obtained from the maximal degree of generators in $Gin(I)$. Remember that $\mathcal{G}(I)$ is the set of minimal generators of *I*. Then by [Proposition](#page-3-1) [3.4,](#page-3-1) every generator of $Gin(I)$ is of the form x_0^iM where $M \in \mathcal{G}(Gin(K_i(I)))$ for some *i*. This means that $M(I) \leq M(Gin(K_i(I))) + i$ for some *i*. On the other hand, if for each *i*, we choose $M \in \mathcal{G}(K_i(I))$, then by [Proposition](#page-3-1) [3.4,](#page-3-1) x_0^iM is contained in $\mathcal{G}(Gin(I))$. Hence we conclude that

$$
M(I) = \max\{M(K_i(I)) + i \mid 0 \leq i \leq \beta\}.\quad \Box
$$

[Corollary](#page-4-0) [3.6](#page-4-0) together with the following theorem can be used to obtain the degree-complexities of the smooth surface lying in a quadric hypersurface in $\mathbb{P}^4.$ For a proof of this theorem, see [\(Ahn,](#page-13-9) [2008,](#page-13-9) Theorem 4.4).

Theorem 3.7. Let C be a non-degenerate smooth curve of degree d and genus $g(C)$ in \mathbb{P}^r for some $r \geq 3$. *Then,*

$$
M(I_C) = \max\left\{d, 1 + {d-1 \choose 2} - g(C)\right\}. \quad \Box
$$

4. Degree complexity of smooth irreducible surfaces in \mathbb{P}^4

Let S be a non-degenerate smooth irreducible surface of degree d and arithmetic genus $\rho_a({\sf S})$ in ${\mathbb P}^4$ and let I_5 be the defining ideal of *S* in $R = k[x_0, \ldots, x_4]$. In this section, we study the scheme structure of

$$
Z_i(S) := \text{Proj}(\bar{R}/K_i(I_S)), \text{ where } \bar{R} = k[x_1, x_2, x_3, x_4].
$$

arising from a generic projection in order to get a geometric interpretation of the degree-complexity $M(I_S)$ of S in \mathbb{P}^4 with respect to the degree lexicographic order.

We recall without proof the standard facts concerning generic projections of surfaces in \mathbb{P}^4 to $\mathbb{P}^3.$ Let $S\subset \mathbb{P}^4$ be a non-degenerate smooth irreducible surface of degree d and arithmetic genus $\rho_a(S)$ and $\pi : S \to \pi(S) \subset \mathbb{P}^3$ be a generic projection.

(a) The singular locus of $\pi(S)$ is a curve $Y_1(S)$ with only singularities a number *t* of ordinary triple points with transverse tangent directions. The inverse image $\pi^{-1}(Y_1(S))$ is a curve with only singularities 3*t* nodes, 3 nodes above each triple point of *Y*1(*S*) (see [\(Pinkham,](#page-13-13) [1986\)](#page-13-13)). This implies (using [Proposition](#page-3-0) [3.2\)](#page-3-0) that the ideals $K_i(I_S)$ have finite colength if $j > 2$. This fact is used in the proofs of [Proposition](#page-9-1) [4.6](#page-9-1) and [Theorem](#page-7-0) [4.3.](#page-7-0)

(b) If a smooth surface $S\subset \mathbb{P}^4$ is contained in a quadric hypersurface then there are no ordinary triple points in *Y*₁(*S*). This implies that the double curve *Y*₁(*S*) is smooth by (a).

(c) The double curve $Y_1(\mathsf{S})$ is irreducible unless S is a projected Veronese surface in \mathbb{P}^4 (see [\(Mezzetti](#page-13-12) [and Portelli,](#page-13-12) [1997\)](#page-13-12)).

(d) The reduced induced scheme structure on $Y_1(S)$ is defined by the first Fitting ideal of the $\mathcal{O}_{\mathbb{P}^3}$ module $\pi_*\mathcal{O}_S$ (see [\(Mezzetti and Portelli,](#page-13-12) [1997\)](#page-13-12)).

(e) The degree of *Y*₁(*S*) is $\binom{d-1}{2}$ − *g*(*S* ∩ *H*) where *S* ∩ *H* is a general hyperplane section and the number of apparent triple points *t* is given in [Le Barz](#page-13-14) [\(1981\)](#page-13-14) by

$$
t = {d-1 \choose 3} - g(S \cap H)(d-3) + 2\chi(\mathcal{O}_S) - 2.
$$

The following lemma shows that the Hilbert function of *I^S* can be obtained from those of partial elimination ideals *Ki*(*I^S*).

Lemma 4.1. Let $S \subset \mathbb{P}^4$ be a smooth surface with defining ideal I_S in $R = k[x_0, x_1, \ldots, x_4]$. Consider a *projection* $\pi_q : S \longrightarrow \mathbb{P}^3$ from a general point $q = [1, 0, 0, 0, 0] \notin S$. Then,

$$
H(R/I_S, m) = \sum_{i\geq 0} H(\overline{R}/K_i(I_S), m - i).
$$

In particular,

$$
P_S(z) = P_{Z_0(S)}(z) + P_{Z_1(S)}(z-1) + P_{Z_2(S)}(z-2). \quad \Box
$$

Proof. The equality on Hilbert functions basically comes from the following combinatorial identity

$$
\binom{m+d}{d} = \sum_{i=0}^{m} \binom{m-i+d-1}{d-1}.
$$

For a smooth surface $S \subset \mathbb{P}^4$, $Z_i(S) = \emptyset$ for $i \geq 3$ by the (dimension +2)-secant lemma (see [\(Ran,](#page-13-15) [1991\)](#page-13-15)) and so $\bar{R}/K_i(I_S)$ is Artinian. Thus $P_{Z_i(S)}(z) = 0$ for $i \ge 3$ (see [\(Ahn,](#page-13-9) [2008,](#page-13-9) Lemma 3.4) for details). \Box

The following theorem says that the first partial elimination ideal $K_1(I_S)$ gives the reduced induced scheme structure on the double curve $Y_1(S)$ in \mathbb{P}^3 (i.e., $I_{Z_1(S)} = I_{Y_1(S)}$).

Theorem 4.2. Suppose that S is a reduced irreducible surface in \mathbb{P}^4 . Then,

- (a) *the first partial elimination ideal* $K_1(I_S)$ *is a saturated ideal, so we have* $K_1(I_S) = I_{Z_1(S)}$;
- (b) if S is a smooth surface contained in a quadric hypersurface, then $K_1(I_S) = I_{Y_1(S)}$, which implies that $K_1(I_S)$ *is a radical ideal.* \Box

Proof. (a) Assume that S is a reduced irreducible surface in \mathbb{P}^4 of degree *d*. Take a general point $q\in\mathbb{P}^4;$ we may assume $q=[1,0,\ldots,0].$ Then the generic projection of S into \mathbb{P}^3 from the point q is defined by a single polynomial $F \in k[x_1, x_2, x_3, x_4]$ of degree *d* and $K_0(I_S) = (F)$, which is a radical ideal.

Let $\overline{M} = (x_1, x_2, x_3, x_4)$ be the irrelevant maximal ideal of $\overline{R} = k[x_1, x_2, x_3, x_4]$ and let $\overline{V} =$ $\langle x_1, x_2, x_3, x_4 \rangle$ be the vector space over *k*. By the definition of a saturated ideal, $K_1(I_S)$ is saturated if and only if

$$
(K_1(I_S): \bar{\mathcal{M}}) = K_1(I_S).
$$

Hence it is enough to show that

$$
(K_1(I_S): \bar{\mathcal{M}})/K_1(I_S)=0.
$$

For the proof, consider the Koszul complex

$$
\cdots \to \mathcal{K}_m^{-p-1} \to \mathcal{K}_m^{-p} \to \mathcal{K}_m^{-p+1} \to \cdots,
$$

where \mathcal{K}_m^{-p} = $\wedge^p \bar{V} \otimes K_0(I_S)_{m-p}$. From Corollary 6.7 in [Green](#page-13-10) [\(1998\)](#page-13-10), the \bar{R} -module ($K_1(I_S)$): $\bar{\mathcal{M}})_{d}/K_{1}(I_{S})_{d}$ injects into $H^{-1}(\mathcal{K}_{d+3}^{\bullet})$ for each d . Note that

$$
H^{-1}(\mathcal{K}^{\bullet}_{d+3})=H(\wedge^1 \bar{V} \otimes K_0(I_5)_{d+2})=\text{Tor}_{1}^{\bar{R}}(\bar{R}/\bar{M}, K_0(I_5))_{d+3}.
$$

Since the ideal $K_0(I_S)$ is generated by a single polynomial F , we have that

$$
Tor_1^{\bar{R}}(\bar{R}/\bar{\mathcal{M}}, K_0(I_S))=0.
$$

This proves that $(K_1(I_S) : \overline{\mathcal{M}})/K_1(I_S) = 0$, as we wished.

(b) Consider the graded \overline{R} -module homomorphism

$$
\varphi : \overline{R}(-1) \oplus \overline{R} \to R/I_S \text{ defined by } \varphi(f, g) = [x_0 f + g]
$$

where [$x_0f + g$] is the quotient image of the polynomial $x_0f + g$ in R/I_S . Since the surface S is contained in a quadric hypersurface *Q*, we assume $q = [1, 0, 0, 0, 0] \notin Q$ and the defining equation of *Q* is of the form :

$$
F = x_0^2 - x_0 L(x_1, x_2, x_3, x_4) - F'(x_1, x_2, x_3, x_4) \in I_5.
$$

Now we claim that φ is surjective. Note that

$$
x_0^2 \equiv x_0 L(x_1, x_2, x_3, x_4) + F^{'}(x_1, x_2, x_3, x_4) \mod I_S.
$$

Hence, this equation can be used to show that, for every homogeneous polynomial $G \in R$, there are polynomials f and g in \overline{R} such that

 $G \equiv x_0 f + g \mod I_S$.

This implies that the \bar{R} -module homomorphism φ is surjective and we have the following diagram:

0 0 0 ↓ ↓ ↓ ⁰ −→ *^K*0(*I^S*) −→ *^R*¯ −→ *^R*¯/*K*0(*I^S*) −→ ⁰ ↓ ↓ ↓ ⁰ −→ *K*1(*I^S*) −→ *^R*¯ [⊕] *^R*¯(−1) ϕ −→ *R*/*I^S* −→ 0 ↓ ↓ ↓ ⁰ −→ *^K*1(*I^S*)(−1) −→ *^R*¯(−1) −→ *^R*¯/*K*1(*I^S*)(−1) −→ ⁰ ↓ ↓ ↓ 0 0 0

where $\widetilde{K}_1(I_S) = \{f \in I_S \mid d_0(f) \leq 1\}$ is an \overline{R} -module. Let $\mathcal{O}_{Z_1(S)}$ be the sheafification of $\overline{R}/K_1(I_S)$. By sheafifying the rightmost vertical sequence, we have

$$
0 \longrightarrow \mathcal{O}_{\pi(S)} \longrightarrow \pi_*\mathcal{O}_S \longrightarrow \mathcal{O}_{Z_1(S)}(-1) \longrightarrow 0. \tag{2}
$$

Let $I_{Z_1(S)} = \mathcal{K}_1(I_S)$ be the sheafification of the ideal $K_1(I_S)$. In [Kleiman et al.](#page-13-11) [\(1996,](#page-13-11) (3.4.1), p. 302), S. Kleiman, J. Lipman and B. Ulrich proved that

$$
\mathcal{I}_{Y_1(S)} = \text{Fitt}_1^{\mathbb{P}^3}(\pi_* \mathcal{O}_S) = \text{Fitt}_0^{\mathbb{P}^3}(\pi_* \mathcal{O}_S / \mathcal{O}_{\pi(S)}) = \text{Ann}_{\mathbb{P}^3}(\mathcal{O}_{Z_1(S)}(-1)),
$$

and this defines *the reduced scheme structure* on $Y_1(S)$ (see [\(Mezzetti and Portelli,](#page-13-12) [1997,](#page-13-12) p. 3)).

On the other hand, from the sequence [\(2\)](#page-6-0), we have

$$
\mathcal{I}_{Y_1(S)} = \text{Ann}_{\mathbb{P}^3}(\mathcal{O}_{Z_1(S)}(-1)) = \mathcal{K}_1(I_S) = \mathcal{I}_{Z_1(S)}.
$$

Then it follows from (a) that

$$
I_{Z_1(S)} = K_1(I_S)^{sat} = K_1(I_S) = I_{Y_1(S)}.
$$

Since $I_{Y_1(S)}$ is a radical ideal, we conclude that $I_{Z_1(S)} = K_1(I_S)$ is also a radical ideal. \Box

If $S \subset \mathbb{P}^4$ is contained in a quadric hypersurface, then by [Theorem](#page-5-0) [4.2,](#page-5-0) $K_1(I_S)$ is saturated and radical. So, it defines the reduced scheme structure on $Y_1(S)$. Note also that the double curve $Y_1(S)$ is smooth (see the standard fact (b) in the beginning of this section). We use this fact to prove the following theorem.

Theorem 4.3. Let S be a smooth irreducible surface of degree d lying on a quadric hypersurface in \mathbb{P}^4 . Let *Y*₁(*S*) *be the double curve of genus* $g(Y_1(S))$ *defined by a generic projection* π *of S* to \mathbb{P}^3 *. Then, we have the following;*

 $\mathcal{A}(\mathbf{a}) M(\mathbf{I}_S) = \max\{d, 1 + \deg Y_1(S), 2 + \binom{\deg Y_1(S)-1}{2} - g(Y_1(S))\};$ (b) *M*(*I^S*) *can be obtained at one of monomials*

$$
x_1^d, \ x_0x_2^{\deg Y_1(S)}, \ x_0x_1x_3^{\left(\deg Y_1(S)-1\right)-g(Y_1(S))}. \quad \Box
$$

Proof. Note that by [Corollary](#page-4-0) [3.6,](#page-4-0)

$$
M(I_S) = \max_{0 \le i \le \beta} \{ \text{reg}(Gin(K_i(I_S))) + i \},
$$

where $\beta = \min\{j \mid K_j(I_S) = \overline{R}\}$. Since *S* is contained in a quadric hypersurface, Gin(*I_S*) contains the monomial x_0^2 . This means that $Sin(K_2(I_S)) = \overline{R}$. On the other hand, $Sin(K_0(I_S)) = (x_1^d)$ by the Borel fixed property because $\pi(S)$ is a hypersurface of degree *d* in \mathbb{P}^3 and $I_{\pi(S)} = K_0(I_S)$. Thus Gin(*I_S*) is of the form

$$
(x_0^2, x_0g_1, x_0g_2, \ldots, x_0g_m, x_1^d).
$$

Note that g_1, \ldots, g_m are monomial generators of $\text{Gin}(K_1(I_5)) = \text{Gin}(I_{Y_1(S)})$ by [Proposition](#page-3-1) [3.4.](#page-3-1) Therefore, by [Theorem](#page-4-1) [3.7,](#page-4-1)

$$
reg(Gin(K_1(I_S))) = max \left\{ deg Y_1(S), 1 + {deg Y_1(S) - 1 \choose 2} - g(Y_1(S)) \right\}
$$

and consequently,

$$
M(I_S) = \max \left\{ d, 1 + \deg Y_1(S), 2 + {\deg Y_1(S) - 1 \choose 2} - g(Y_1(S)) \right\}.
$$

For a proof of (b), consider $Gin(K_1(I_S)) = \langle g_1, g_2, \ldots, g_m \rangle$ in (a). Note that the double curve $Y_1(S)$ is smooth in \mathbb{P}^3 . By a similar argument used in (a), $\text{Gin}(K_1(I_S))$ contains $x_2^{\deg(Y_1(S))}$ because the image of $Y_1(S)$ under a generic projection to \mathbb{P}^2 is a plane curve of degree deg($Y_1(S)$). Finally, consider all monomial generators of the form $x_1 \cdot h_j(x_2, x_3, x_4)$ in $\{g_1, g_2, \ldots, g_m\}$. Then, $\{h_j(x_2, x_3, x_4)$ | 1 ≤ *j* ≤ *m*} is a minimal generating set of Gin($K_1(I_{Y_1(S)})$) by [Proposition](#page-3-1) [3.4.](#page-3-1) Recall that $K_1(I_{Y_1(S)})$ defines $\binom{\deg Y_1(S)-1}{2} - g(Y_1(S))$ distinct nodes in \mathbb{P}^2 . So, $\text{Gin}(K_1(I_{Y_1(S)}))$ should contain the monomial *x*₃^{(deg Y₁(S)−1})−*g*(*Y*₁(S)) (see also [\(Conca and Sidman,](#page-13-8) [2005,](#page-13-8) Corollary 5.3)). Therefore, Gin(*I_S*) contains monomials x_1^d , $x_0x_2^{\deg(Y_1(S))}$ and $x_0x_1x_3$ (^{deg *Y*₁(5)-1})−g(*Y*₁(S))</sup>. □

Remark 4.4. In the proof of [Theorem](#page-7-0) [4.3,](#page-7-0) we showed that if a smooth irreducible surface *S* is contained in a quadric hypersurface then $M(I_S)$ is determined by two partial elimination ideals $K_0(I_S)$ and $K_1(I_S)$ since $K_i(I_S) = R$ for all $i \geq 2$. \Box

The following theorem shows that if $d > 6$ then $M(l_s)$ is determined by the degree complexity of the first partial elimination ideal $K_1(I_S)$.

Proposition 4.5. *Let S be a smooth irreducible surface of degree d in* P 4 *. Suppose that S is contained in a quadric hypersurface. Then*

$$
M(I_S) = \begin{cases} 3 & \text{if } S \text{ is a rational normal scroll with } d = 3 \\ 4 & \text{if } S \text{ is a complete intersection of } (2,2)\text{-type} \\ 5 & \text{if } S \text{ is a Castleunovo surface with } d = 5 \\ 2 + \binom{\text{deg } Y_1(S) - 1}{2} - g(Y_1(S)) & \text{for } d \ge 6 \end{cases}
$$

*where Y*₁(S) ⊂ \mathbb{P}^3 is a double curve of degree $\binom{d-1}{2}-g$ (S ∩ H) under a generic projection of S to \mathbb{P}^3 . \Box

.

Proof. Since $K_2(I_5) = \overline{R}$, [Theorem](#page-7-0) [4.3](#page-7-0) implies that

$$
M(I_S) = \max \left\{ d, 1 + \deg Y_1(S), 2 + {\deg Y_1(S) - 1 \choose 2} - g(Y_1(S)) \right\}
$$

If deg $Y_1(S) > 5$ then by the genus bound,

$$
1 + \deg Y_1(S) \le 2 + { \deg Y_1(S) - 1 \choose 2} - g(Y_1(S)).
$$

We claim that if $d \geq 6$, then $d \leq 1 + \deg Y_1(S)$. Notice that from our claim, we have the degree complexity of a surface lying on a quadric hypersurface in \mathbb{P}^4 for $d\geq 6$ as follows;

$$
M(I_S) = 2 + \binom{\deg Y_1(S) - 1}{2} - g(Y_1(S)).
$$

In the Montreal lecture notes [\(Eisenbud and Harris,](#page-13-16) [1982\)](#page-13-16), Eisenbud and Harris gave the genus bound for non-degenerate integral curves of degree d and arithmetic genus ρ_a in \mathbb{P}^r . Indeed, if we set

$$
\pi(d,r) = \binom{m}{2}(r-1) + m\epsilon,
$$

where $m = \lfloor \frac{d-1}{r-1} \rfloor$ and $\epsilon = d - m(r - 1) - 1$, then we have the following genus bound:

$$
\rho_a \leq \pi(d,r) = \binom{m}{2}(r-1) + m\epsilon.
$$

From the genus bound, we know that

$$
g(S \cap H) \le \pi(d, 3) = \begin{cases} (\frac{d}{2} - 1)^2 & \text{if } d \text{ is even;} \\ (\frac{d-1}{2})(\frac{d-3}{2}) & \text{if } d \text{ is odd.} \end{cases}
$$

Then we can show that π (*d*, 3) $\leq \binom{d-1}{2} - d + 1$ if $d = \deg(\mathcal{S} \cap H) \geq 6.$ Thus, if $d \geq 6$ then

$$
d \le 1 + {d-1 \choose 2} - g(S \cap H) = 1 + \deg Y_1(S).
$$

So, our claim is proved and only three cases of $d = 3, 4, 5$ remain.

Case 1: If deg *S* = 3 then *S* is a rational normal scroll with $g(S \cap H) = 0$ and the double curve $Y_1(S)$ is a line. So, by a simple computation, $M(I_S) = 3$.

Case 2: If deg *S* = 4 then *S* is a complete intersection of (2,2)-type with $g(S \cap H) = 1$ and the double curve $Y_1(S)$ is a plane conic of deg $Y_1(S) = 2$. So, by a simple computation, $M(I_S) = 4$.

Case 3: If deg *S* = 5 then *S* is a Castelnuovo surface with $g(S \cap H) = 2$ and the double curve $Y_1(S) \subset \mathbb{P}^3$ is a smooth elliptic curve of degree 4. In this case, we can also compute

$$
M(I_S) = 5 = \deg S > 2 + {(\deg Y_1(S) - 1) \choose 2} - g(Y_1(S)) = 4. \quad \Box
$$

Proposition 4.6. Let S be a smooth irreducible surface of degree d and arithmetic genus $\rho_a(S)$ in \mathbb{P}^4 . Let *Y*_{*i*}(*S*) *be the multiple locus defined by a generic projection of <i>S* to \mathbb{P}^3 for *i* \geq 0. Assume that *S* is contained *in a quadric hypersurface. Then, the following identity holds;*

$$
g(Y_1(S)) = {d-1 \choose 3} - {d-1 \choose 2} + g(S \cap H) - \rho_a(S) + 1. \quad \Box
$$

Proof. Let *P^S* (*z*) be the Hilbert polynomial of a smooth irreducible surface of degree *d* and arithmetic genus $\rho_a(S)$. Since $Y_2(S) = \emptyset$, $P_{Y_2(S)}(z) = 0$ and, by [Lemma](#page-5-1) [4.1,](#page-5-1)

$$
P_S(z) = P_{Y_0(S)}(z) + P_{Y_1(S)}(z-1). \tag{3}
$$

Note that $Y_0(\mathsf{S})$ is the image of a generic projection, which is a hypersurface of degree d in $\mathbb{P}^3.$ Plugging $z = 0$ in the Eq. [\(3\)](#page-9-2), we see from [Algebraic geometry](#page-13-17) [\(1977,](#page-13-17) p. 54) that

$$
P_S(0) = \rho_a(S) + 1
$$
 and $P_{Y_0(S)}(0) = {d-1 \choose 3} + 1$,

and thus

$$
P_{Y_1(S)}(-1) = -\deg Y_1(S) + 1 - g(Y_1(S)) = -\binom{d-1}{2} + g(S \cap H) + 1 - g(Y_1(S)).
$$

Therefore, we have the following identity:

$$
g(Y_1(S)) = {d-1 \choose 3} - {d-1 \choose 2} + g(S \cap H) - \rho_a(S) + 1. \quad \Box
$$

Remark 4.7. By [Proposition](#page-9-1) [4.6,](#page-9-1) when $d \ge 6$, $M(I_S)$ can be expressed with only three invariants of *S*: its degree, sectional genus, and arithmetic genus, as follows:

$$
M(I_S) = \binom{\binom{d-1}{2} - g(S \cap H) - 1}{2} - \binom{d-1}{3} + \binom{d-1}{2} - g(S \cap H) + \rho_a(S) + 1. \quad \Box
$$

In order to compute *M*(*I^S*) in terms of degrees of defining equations as Conca and Sidman did in [Conca and Sidman](#page-13-8) [\(2005\)](#page-13-8), we need the following remark. This shows that a smooth surface in \mathbb{P}^4 has a nice algebraic structure when it is contained in a quadric hypersurface.

Remark 4.8. Let *S* be a locally Cohen–Macaulay surface lying on a quadric hypersurface *Q* in P 4 . Then *S* satisfies one of following conditions (see [\(Kwak,](#page-13-18) [1999,](#page-13-18) Theorem 2.1));

- (a) *S* is a complete intersection of $(2, \alpha)$ -type.
	- (i) $I_S = (Q, F)$, where *F* is a polynomial of degree α .

(ii) $reg(S) = \alpha + 1$.

- (b) *S* is arithmetically Cohen–Macaualy of degree $2\alpha 1$.
	- (i) $I_S = (Q, F_1, F_2)$, where F_1 and F_2 are polynomials of degree α .
	- (ii) $reg(S) = \alpha$. \Box

From the above [Remark](#page-9-3) [4.8,](#page-9-3) we can compute $g(S \cap H)$ and $\rho_q(S)$ in terms of the degree of defining equations of *S* by finding the Hilbert polynomial of *S* in two ways. Therefore, we have the following Theorem.

Theorem 4.9. Let S \subset \mathbb{P}^4 be a smooth irreducible surface of degree d and arithmetic genus $\rho_a(\mathsf{S})$, which *is contained in a quadric hypersurface.*

(a) *Suppose S is of degree* 2α , $\alpha > 3$. *Then*,

$$
M(I_S) = \frac{1}{2}(\alpha^4 - 4\alpha^3 + 5\alpha^2 - 2\alpha + 4).
$$

(b) *Suppose S is of degree* $2\alpha - 1$, $\alpha \geq 4$ *. Then*

$$
M(I_S) = \frac{1}{2}(\alpha^4 - 6\alpha^3 + 13\alpha^2 - 12\alpha + 8). \quad \Box
$$

Proof. For a proof of (a), by the Koszul complex we have the minimal free resolution of the defining ideal *I*_S as follows:

$$
0 \longrightarrow R(-\alpha - 2) \longrightarrow R(-2) \oplus R(-\alpha) \longrightarrow I_S \longrightarrow 0.
$$

Hence the Hilbert function of *R*/*I^S* is given by

$$
H(R/I_S, m) = \alpha m^2 + (-\alpha^2 + 3\alpha)m + \frac{1}{6}\alpha(2\alpha^2 - 9\alpha + 13)
$$

= $\frac{2\alpha}{2}m^2 + (\alpha + 1 - g(S \cap H))m + \rho_a(S) + 1.$

Hence $g(S \cap H) = (\alpha - 1)^2$ and $\rho_a(S) = \frac{1}{6}\alpha(2\alpha^2 - 9\alpha + 13) - 1$. If $Y_1(S)$ is the double curve of *S* then

$$
\deg Y_1(S) = \binom{2\alpha - 1}{2} - g(S \cap H) = \alpha(\alpha - 1).
$$

By [Remark](#page-9-4) [4.7,](#page-9-4)

$$
g(Y_1(S)) = {2\alpha - 1 \choose 3} - {2\alpha - 1 \choose 2} + g(S \cap H) - \rho_a(S) + 1.
$$

Thus we conclude that

$$
M(I_S) = 2 + \binom{\alpha(\alpha - 1) - 1}{2} - g(Y_1(S))
$$

= $\binom{\alpha(\alpha - 1) - 1}{2} - \binom{2\alpha - 1}{3} + \binom{2\alpha - 1}{2} - (\alpha - 1)^2 + \rho_\alpha(S) + 1$
= $\frac{1}{2}(\alpha^4 - 4\alpha^3 + 5\alpha^2 - 2\alpha + 4).$

For a proof of (b), let S be a smooth surface of degree 2 α $-$ 1 lying on a quadric hypersurface in $\mathbb{P}^4.$ Note that *S* is arithmetically Cohen–Macaulay of codimension 2. By the Hilbert–Burch Theorem [\(Eisenbud,](#page-13-19) [2005\)](#page-13-19) we have the minimal free resolution of the defining ideal *I^S* as follows:

$$
0 \longrightarrow R(-\alpha - 1)^2 \begin{pmatrix} L_1 & L_2 \\ L_3 & L_4 \\ F_5 & F_6 \end{pmatrix} R(-2) \oplus R(-\alpha)^2 \longrightarrow I_S \longrightarrow 0,
$$

where L_1 , L_2 , L_3 , L_4 are linear forms and F_5 , F_6 are forms of degree $\alpha - 1$. Hence the Hilbert function of *R*/*I^S* is given by

$$
H(R/I_S, m) = \frac{1}{2}(2\alpha - 1)m^2 + \left(4\alpha - \alpha^2 - \frac{3}{2}\right)m + \frac{1}{3}\alpha^3 - 2\alpha + \frac{11}{3}\alpha - 1
$$

$$
= \frac{(2\alpha - 1)}{2}m^2 + \left(\frac{2\alpha - 1}{2} + 1 - g(S \cap H)\right)m + \rho_a(S) + 1.
$$

Hence we have that $g(S \cap H) = 2\binom{\alpha - 1}{2}$ 2) and $\rho_a(S) = 2\binom{\alpha-1}{2}$ 3 . If *Y*1(*S*) be the double curve of *S* then

$$
\deg Y_1(S) = \binom{2\alpha - 2}{2} - g(S \cap H) = \binom{2\alpha - 2}{2} - 2\binom{\alpha - 1}{2}.
$$

On the other hand, we have

$$
g(Y_1(S)) = {2\alpha - 2 \choose 3} - {2\alpha - 2 \choose 2} + g(S \cap H) - \rho_\alpha(S) + 1
$$

= $(\alpha - 2)(\alpha^2 - 3\alpha + 1)$

and thus we conclude that

$$
M(I_S) = 2 + {deg Y_1(S) - 1 \choose 2} - g(Y_1(S))
$$

= $\frac{1}{2}(\alpha^4 - 6\alpha^3 + 13\alpha^2 - 12\alpha + 8).$

Example 4.10 (*Macaulay 2*). We give some examples of $Gin(I_S)$ and $M(I_S)$ computed by using *Macaulay 2* [\(Grayson and Stillman,](#page-13-20) [1997\)](#page-13-20).

(a) Let *S* be a rational normal scroll in \mathbb{P}^4 whose defining ideal is

$$
I_S = (x_0x_3 - x_1x_2, x_0x_1 - x_3x_4, x_0^2 - x_2x_4).
$$

Using Macaulay 2, we can compute the generic initial ideal of *I^S* with respect to GLex:

$$
Gin(IS) = (x02, x0x1, x0x2, x13).
$$

Thus reg($\text{Gin}_{\text{Glex}}(K_0)$) = 3 and reg($\text{Gin}_{\text{Glex}}(K_1)$) = 1. Therefore,

$$
M(I_S) = \deg S = 3.
$$

(b) Let *S* be a complete intersection of $(2, 2)$ -type in \mathbb{P}^4 . Then,

$$
Gin(I_5) = (x_0^2, x_0x_1, \mathbf{x_1^4}, x_0x_2^2).
$$

Hence, we see $M(I_S) = \deg S = 4$.

(c) Let *S* be a Castelnuovo surface of degree 5 in \mathbb{P}^4 . Then, we can compute

$$
Gin(IS) = (x02, x0x12, x15, x0x1x2, x0x24, x0x1x32).
$$

Hence, we see $M(I_S) = \text{deg } S = 5$.

(d) Let S be a complete intersection of (2, 3)-type in \mathbb{P}^4 . Then, we see that $M(I_S)=8$ from [Theorem](#page-9-0) [4.9.](#page-9-0) On the other hand, we can compute the generic initial ideal:

$$
Gin(I_{S}) = (x_0^2, x_0x_1^2, x_1^6, x_0x_1x_2^2, x_0x_2^6, x_0x_1x_2x_3^2, \mathbf{x_0}\mathbf{x_1}\mathbf{x_3}^6, x_0x_1x_2x_3x_4^2, x_0x_1x_2x_4^4).
$$

This also shows $M(I_S) = 8$.

(e) Let *S* be a smooth surface of degree 7 lying on a quadric which is not a complete intersection in \mathbb{P}^4 . Then, the minimal resolution of *I_S* is given by Hilbert–Burch Theorem and thus we have

$$
I_S = (L_1L_4 - L_2L_3, L_1F_5 - L_2F_6, L_3F_5 - L_4F_6),
$$

where L_i is a linear form and F_5 , F_6 are forms of degree 3. This is the case of $\alpha = 4$ in [Theorem](#page-9-0) [4.9](#page-9-0) and we see $M(I_S) = 20$. This can also be obtained by the computation of generic initial ideal of I_S using *Macaulay 2*:

$$
Gin(I_{5}) = (x_{0}^{2}, x_{0}x_{1}^{3}, x_{1}^{7}, x_{0}x_{1}^{2}x_{2}, x_{0}x_{1}x_{2}^{4}, x_{0}x_{2}^{9}, x_{0}x_{1}^{2}x_{3}^{2}, x_{0}x_{1}x_{2}^{3}x_{3}^{2}, x_{0}x_{1}x_{2}^{2}x_{3}^{5},
$$

\n
$$
x_{0}x_{1}x_{2}x_{3}^{8}, \mathbf{x}_{0}\mathbf{x}_{1}\mathbf{x}_{3}^{18}, x_{0}x_{1}x_{2}^{2}x_{3}^{4}x_{4}, x_{0}x_{1}^{2}x_{3}x_{4}^{2}, x_{0}x_{1}x_{2}^{2}x_{3}x_{4}^{2}, x_{0}x_{1}x_{2}x_{3}^{2}x_{4}^{2},
$$

\n
$$
x_{0}x_{1}x_{2}x_{3}^{7}x_{4}^{2}, x_{0}x_{1}x_{2}^{3}x_{4}^{3}, x_{0}x_{1}^{2}x_{4}^{4}, x_{0}x_{1}x_{2}^{2}x_{3}x_{4}^{4}, x_{0}x_{1}x_{2}x_{3}x_{4}^{4}, x_{0}x_{1}x_{2}x_{3}x_{4}^{5},
$$

\n
$$
x_{0}x_{1}x_{2}x_{3}^{5}x_{4}^{6}, x_{0}x_{1}x_{2}^{2}x_{4}^{7}, x_{0}x_{1}x_{2}x_{3}^{4}x_{4}^{8}, x_{0}x_{1}x_{2}x_{3}^{3}x_{4}^{10}, x_{0}x_{1}x_{2}x_{3}^{2}x_{4}^{12},
$$

\n
$$
x_{0}x_{1}x_{2}x_{3}x_{4}^{14}, x_{0}x_{1}x_{2}x_{4}^{16}).
$$

(f) Let *S* be a complete intersection of $(2, 4)$ -type in \mathbb{P}^4 . Then, we see that $M(I_S)$ = 38 from [Theorem](#page-9-0) [4.9.](#page-9-0) This can be given by the computation of generic initial ideal of *I^S* :

$$
Gin(I_{5}) = (x_{0}^{2}, x_{0}x_{1}^{3}, x_{1}^{8}, x_{0}x_{1}^{2}x_{2}^{2}, x_{0}x_{1}x_{2}^{6}, x_{0}x_{2}^{12}, x_{0}x_{1}^{2}x_{2}x_{3}^{2}, x_{0}x_{1}x_{2}^{5}x_{3}^{2},
$$

\n
$$
x_{0}x_{1}^{2}x_{2}^{5}, x_{0}x_{1}x_{2}^{4}x_{3}^{5}, x_{0}x_{1}x_{2}^{3}x_{3}^{7}, x_{0}x_{1}x_{2}^{2}x_{3}^{11}, x_{0}x_{1}x_{2}x_{3}^{17}, x_{0}x_{1}x_{3}^{26},
$$

\n
$$
x_{0}x_{1}^{2}x_{3}^{4}x_{4}, x_{0}x_{1}x_{2}^{4}x_{3}^{4}x_{4}, x_{0}x_{1}x_{2}^{3}x_{3}^{6}x_{4}, x_{0}x_{1}x_{2}x_{3}^{10}x_{4}, x_{0}x_{1}^{2}x_{2}x_{3}x_{4}^{2},
$$

\n
$$
x_{0}x_{1}x_{2}^{5}x_{3}x_{4}^{2}, x_{0}x_{1}x_{2}^{2}x_{3}^{2}x_{4}, x_{0}x_{1}x_{2}^{4}x_{3}^{3}x_{4}^{2}, x_{0}x_{1}x_{2}x_{3}^{2}x_{4}^{2}, x_{0}x_{1}x_{2}x_{3}^{1}x_{4}^{2},
$$

\n
$$
x_{0}x_{1}x_{2}^{3}x_{3}^{4}x_{4}^{4}, x_{0}x_{1}x_{2}x_{3}^{5}x_{4}^{4}, x_{0}x_{1}x_{2}x_{3}^{5}x_{4}^{4}, x_{0}x_{1}x_{2}x_{3}x_{4}^{5}, x_{0}x_{1}x_{2}^{4}x_{3}x_{4}^{5},
$$

\n
$$
x_{0}x_{1}x_{2}^{3}x_{3}^{4}x_{4}^{4}, x_{0}x_{1}x_{2}x_{3}^{5}x_{4}^{4}, x_{0}x_{1}x_{2}x_{
$$

Even though we cannot compute the generic initial ideals for the cases $\alpha \geq 5$ by using computer algebra systems, we know the degree-complexity of smooth surfaces lying on a quadric by theoretical computations. We give the following data in [Tables](#page-12-0) [1](#page-12-0) and [2:](#page-12-1)

Table 1

The complete intersection S of (2, α)-type in $\mathbb{P}^4.$

Table 2

The smooth surface $S \subset \mathbb{P}^4$ of degree $(2\alpha - 1)$ lying on a quadric.

Remark and Question 4.11. Let *S* be a non-degenerate smooth surface of degree *d* and arithmetic genus $\rho_a({\sf S})$, not necessarily contained in a quadric hypersurface in ${\mathbb P}^4.$ Our question is: What can be the degree complexity $M(I_S)$ of *S*? It is expected that $K_1(I_S)$ and $K_2(I_S)$ are radical ideals and the degree

complexity $M(I_S)$ is given by

$$
M(I_S) = \max \begin{cases} \deg(S) \\ \text{reg(Gin}_{\text{Glex}}(K_1(I_S))) + 1 \\ \text{reg(Gin}_{\text{Glex}}(K_2(I_S))) + 2 \\ = \max \begin{cases} d \\ M(I_{Y_1(S)}) + 1 \\ t + 2. \end{cases} \end{cases}
$$

Note that *t* is the number of apparent triple points of $S \subset \mathbb{P}^4$ and $Y_1(S)$ is the double curve (possibly singular with ordinary double points) under a generic projection. \Box

Acknowledgements

We are very grateful to the anonymous referee for valuable and helpful suggestions. In addition, the program *Macaulay 2* has been useful to us in computations of concrete examples, and in understanding the degree complexity of smooth surfaces in \mathbb{P}^4 . The first author was supported in part by the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (grant No. 2010-0025762). The second author was supported in part by the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (grant No. 2010-0001652).

References

- Ahn, Jeaman, 2008. The degree-complexity of the defining ideal of a smooth integral curve. J. Symbolic Comput. 43 (6–7), 422–441.
- Bayer, Dave, Mumford, David, 1993. What can be computed in algebraic geometry?. In: Computational algebraic geometry and commutative algebra (Cortona, 1991). In: Sympos. Math., vol. XXXIV. Cambridge Univ. Press, Cambridge, pp. 1–48.

Bayer, David, Stillman, Michael, 1987. A criterion for detecting *m*-regularity. Invent. Math. 87 (1), 1–11.

Conca, Aldo, Sidman, Jessica, 2005. Generic initial ideals of points and curves. J. Symbolic Comput. 40 (3), 1023–1038.

- Eisenbud, David, 2005. The geometry of syzygies. In: A second course in commutative algebra and algebraic geometry. In: Graduate Texts in Mathematics, vol. 229. Springer-Verlag, New York.
- Eisenbud, David, 1995. Commutative Algebra with a View toward Algebraic Geometry. In: Graduate Texts in Mathematics, vol. 150. Springer-Verlag, New York.
- Eisenbud, David, Harris, Joe, Curves in projective space. With the collaboration of David Eisenbud. Seminaire de Mathematiques Superieures [Seminar on Higher Mathematics], 85. Presses de l'Universite de Montreal, Montreal, Que., 1982. 138 pp. ISBN: 2-7606-0603-1.
- Green, Mark, 1998. Generic Initial Ideals, in Six lectures on Commutative Algebra. In: Elias, J., Giral, J.M., Miró-Roig, R.M., Zarzuela, S. (Eds.), Progress in Mathematics, vol. 166. Birkhäuser, pp. 119–186.
- Grayson, Daniel R., Stillman, Michael E., 1997. Macaulay 2: a software system for algebraic geometry and commutative algebra, available over the web at [http://www.math.uiuc.edu/Macaulay2.](http://www.math.uiuc.edu/Macaulay2)

1977. Algebraic geometry. In: Graduate Texts in Mathematics, vol. 52. Springer-Verlag, New York-Heidelberg.

Kwak, Sijong, 1999. Castelnuovo-Mumford regularity bound for smooth threefolds in P 5 and extremal examples. J. Reine Angew. Math. 509, 21–34.

Kleiman, Steven, Lipman, Joseph, Ulrich, Bernd, 1996. The multiple-point schemes of a finite curvilinear map of codimension one. Ark. Mat. 34 (2), 285–326.

Le Barz, Patrick, 1981. Formules pour les multisecantes des surfaces. (French) [Formulas for the multisecants of surfaces]. C. R. Acad. Sci. Paris Ser. I Math. 292 (17), 797–800.

Mezzetti, Emilia, Portelli, Dario, 1997. A tour through some classical theorems on algebraic surfaces. An. Stiint. Univ. Ovidius Constanta Ser. Mat. 5 (2), 51–78.

Pinkham, Henry C., 1986. A Castelnuovo bound for smooth surfaces. Invent. Math. 83 (2), 321–332.

Ran, Ziv., 1991. The (dimension $+2$)-secant lemma. Invent. Math. 106 (1), 65–71.