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Abstract. For a projective varietyX of codimension 2 inPn+2 defined over the complex number
field C, it is traditionally said thatX has no apparent(k + 1)-ple points if the(k + 1)-secant
lines ofX do not fill up the ambient projective spaceP

n+2, equivalently, the locus of(k + 1)-ple
points of a generic projection ofX to P

n+1 is empty. We show that a smooth threefold inP
5 has

no apparent triple points if and only if it is contained in a quadric hypersurface. We also obtain
an enumerative formula counting the quadrisecant lines ofX passing through a general point of
P
5 and give necessary cohomological conditions for smooth threefolds inP

5 without apparent
quadruple points. This work is intended to generalize the work of F. Severi [fSe] andA.Aure [Au],
where it was shown that a smooth surface inP

4 has no triple points if and only if it is either a
quintic elliptic scroll or contained in a hyperquadric. Furthermore we give open questions along
these lines.

Mathematics Subject Classification (2000):14M07, 14N05, 14J30

1. Introduction

Let X be a nondegenerate smooth projective subvariety of degreed and codi-
mension two inPn+2 defined over the complex number fieldC. Denote bySk(X)

the closure of a union of allk-secant lines ofX in Pn+2. Then one can consider
the following descending filtration associated toX

Pn+2 = S2(X) ⊇ S3(X) ⊇ · · · ⊇ St−1(X) ⊇ St(X) = · · · = S∞(X),

whereS∞(X) is the subvariety swept out by the lines contained inX. It is clear
that the first numbert for whichSt(X) = S∞(X) satisfies the inequalityt ≤ d.
Furthermore, ifX is contained in a hypersurfaceF of degreem, thenSk(X) ⊂ F

for all k > m by Bezout theorem.
As it was shown by Z. Ran,Sn+2(X) � Pn+2, i.e. the(n + 2)-secant lines

of X do not fill up the whole spacePn+2 for n ≥ 1, which can be viewed as a
generalization of the classical “trisecant lemma” for curves inP3; cf. [R3] for
details.

S. Kwak
Korea Advanced Institute of Science and Technology, Department of Mathematics,
373-1 Kusong-Dong,Yusong-Ku, Taejon 305-701, Korea (e-mail: sjkwak@math.kaist.ac.kr)
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For a smooth surface inP4, F. Severi showed that ifS3(X) 
= P4, then either
X is contained in a quadric hypersurface orS3(X) is a hypersurface ruled in
planes, each plane intersecting the surface in a curve of degree at least 3 [fSe].
It was conjectured by C. Peskine and proved by A. Aure that the quintic elliptic
scroll (which is cut out by cubic hypersurfaces) is the only surface inP4 such
thatS3(X) 
= P4 andH 0(P4, IX(2)) = 0 [Au].

On the other hand, in [R1] it was proved by using vector bundle techniques
that for the varietyXn defined by a section of rank two vector bundle overPn+2,
the following statements are equivalent form ≤ n:

(1) Sm+1(X) 
= Pn+2;
(2) X is contained in a hypersurface of degreem.

Note that if dim(X) ≥ 4, then, by Serre’s construction, a smooth variety of
codimension two inPn+2 is always defined by a section of rank two vector bundle
overPn+2 because it is necessarily subcanonical.

One can also show that the above equivalence holds for arbitrary arithmeti-
cally Cohen-Macaulay codimension two subvarieties of dimension≥ 2 (cf.
Proposition 3.7).

On the other hand, smooth threefolds of codimension two need not be sub-
canonical, but one always has the following inclusions:

P5 
= S5(X) ⊆ S4(X) ⊆ S3(X) ⊆ S2(X) = P5.

Thus it is natural to askwhether there exist smooth threefoldswithSk+1(X) 
= P5

andH 0(IX(k)) = 0, k = 2,3, thus extending the work of F. Severi [fSe] and
A. Aure [Au] to the case of smooth threefolds inP5. Recently, there are some
related works about threefolds inP5 due to Mezzetti and Portelli [MP1], [MP2].

In the present paper we show that a smooth threefold inP5 has no apparent
triple points (i.e.S3(X) 
= P5) if and only if it is contained in a quadric hypersur-
face and give some necessary cohomological conditions for nontrivial smooth
threefolds without apparent quadruple points (cf. Theorem 3.9). We note that
such nontrivial examples (if exist) are also on the boundary of the Peskine-Zak
conjecture (cf. Remark 3.10 (b)). Here, threefolds without apparent quadruple
points are called ‘nontrivial’ if they are not contained in a cubic hypersurface.

The method we use to prove the main theorems (Theorem 3.4, Theorem 3.9,
Theorem 4.2) is to check how the absence of apparent quadruple points affects
Castelnuovo’s regularity of the vector bundleEX in the exact sequence(3.0) and
to apply the Kodaira-Le Potier vanishing theorem for ample vector bundles.

Furthermore, in Theorem 4.2 of Sect. 4 we obtain an enumerative formula
for the quadrisecant lines passing through a general point ofP5 by using the
Giambelli-Thom-Porteous formula for the degeneracy locus of a morphism be-
tween vector bundles.

One more motivation to study the family of quadrisecant lines of a smooth
threefoldX comes from the following. LetX be a smooth threefold of arbitrary
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codimension. If dimS4(X) ≤ 4 then the Castelnuovo-Eisenbud-Goto regularity
conjecture is true for any codimension [K2], [R2], i.e.

regX ≤ degX − codimX + 1.

In fact, Z. Ran showed that for any smooth threefold inPn, n ≥ 9 one has
dimS4(X) ≤ 4 and, consequently, the regularity conjecture is true in this case
[R2]. See also [K2] for connections between the Castelnuovo-Eisenbud-Goto
regularity of smooth threefolds and fourfolds and their multisecant loci.

Acknowledgements.This paper was started when I took part in the special program on symbolic
computation at MSRI in 1998. It is my pleasure to thank Professor B. Sturmfels and his family
for their hospitality. I have greatly benefitted from the suggestions and encouragement of several
professors, especially Changho Keem, Christian Peskine, Henry Pinkham, Sorin Popescu, and
Fyodor Zak.

2. Basic background

In this section we recall the definitions and basic results which will be used in
subsequent sections.We work over an algebraically closed field of characteristic
zero. For a coherent sheafF onPN it is said to bem-regular ifHi(PN,F(m −
i)) = 0 for all i > 0, and the regularity ofF is defined by the formula

regF = min {m ∈ Z : F is m-regular}.
In particular, for a projective subschemeX, regX is defined as regIX. In

general, regF may be negative; however, it is not hard to show that regX ≥ 2
andX is 2-regular if and only ifX is of minimal degree.
Lemma 2.1.

(a) If E is am-regular coherent sheaf overPN , thenE ⊗ OPN (k) is generated
by global sections for allk ≥ m.

(b) LetF be ap-regular vector bundle andG be aq-regular vector bundle over
PN . ThenF ⊗ G is (p + q)-regular, andSk(F), Λk(F) are (kp)-regular.

Proof. See [L], p. 428. ��
Definition 2.2. Suppose thatX is a smooth projective variety, andE is a vector
bundle overX. one definesE is ample if the Serre line bundleOP(E∗)(1) on a
projective bundleP(E∗) is an ample line bundle.

Remark 2.3.Let E be a vector bundle of ranke over a smooth projective variety
X, andL is an ample line bundle such thatE ⊗ L∗ is globally generated thenE
is an ample vector bundle.

Proposition 2.4 (Le Potier).Assume thatX is a smooth variety of dimension
n, andE is an ample vector bundle onX of rank e. Then,Hi(X, E∗) = 0 for
i ≤ n − e.
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Proof. This is a generalization of Kodaira’s vanishing theorem for ample line
bundles to the case of ample vector bundles, see [Po]. ��
Theorem 2.5 (The (dimension+2)-secant Lemma).LetX ⊂ PN be a smooth
n-dimensional subvariety and letY be an irreducible subvariety parameterizing
a family {Ly} of lines in PN . Assume that for a generalLy , the length of a
scheme-theoretic intersectionLy ∩ X is at least(n + 2). Then we have

dim(∪y∈YLy) ≤ n + 1.

Proof. See [R3].

It is also quite useful to know the following result due to B. Segre:

Theorem 2.6 (B. Segre, [bSe]).Let Xn ⊂ PN be an irreducible variety of
dimensionn. LetΣ∞(X) ⊂ G(1, N) be a component of maximal dimension of
the variety of lines contained inX. Then,

(a) if dimΣ∞(X) = 2n − 2, thenX = Pn.
(b) if dimΣ∞(X) = 2n − 3, thenX is either a quadric or a scroll inP2’s over

a curve.

On the other hand, for any smooth curveC inP3, there exists a smooth surface
S containingC, see [Ha, Ch IV exercise 6.9]. However, in caseXn ⊂ Pn+2, n ≥
2, this condition is very strong and we have the following equivalent conditions
by Grothendieck’s Lefschetz theorem:

(a) X is a complete intersection.
(b) There exists asmoothhypersurfaceY ⊂ Pn+2 containingX.

3. Remarks on smooth threefolds
of codimension two without apparent triple or 4-ple points

Let’s consider the monoidal construction for a smooth threefoldX in P5 defined
over the complex number field. Letπp : X → P4 be a generic projection
from a general pontp = (0,0,0,0,0,1) = Z(T0, T1, T2, T3, T4) /∈ X with
homogeneous coordinates(T0 : T1 : T2 : T3 : T4 : T5) in P5. we have the
following exact sequence:

(3.0) 0 → EX → OP4(−3)⊕OP4(−2)⊕OP4(−1)⊕OP4
ω3−−−→πp∗OX → 0

whereEX = Ker(ω3) is a vector bundle of rank 4 overP4. It follows that every
fiber ofπp : X → P4 has length at most 4 by Theorem 2.5, which impliesω3 is
surjective (see [L], [K1] for details).

Lemma 3.1. LetX be a smooth threefold inP5 andEX
∗ be the dual ofEX. One

gets the following:
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(a) EX
∗ is (−3)-regular if and only ifX is not contained in a hyperquadric.

(b) EX
∗ is (−4)-regular if and only ifX is not contained in a cubic hypersurface

andH 1(IX(2)) = H 1(OX(1)) = H 2(OX) = 0.
(c) Suppose thatX is arithmetically Cohen-Macaulay. ifX is not contained in

a hypersurface of degreek thenEX
∗ is −(k + 1)-regular.

Proof. (a) Our argument is similar to that in [Al]. By definition,EX
∗ is (−3)-

regular iff Hi(P4, EX
∗(−3 − i)) = 0 for i > 0. By Serre’s duality, this is

equivalent toHj(P4, EX(2− j)) = 0 for 0 ≤ j ≤ 3. Forj = 3, this follows
fromKodaira’s vanishing theorem, i.e.H 3(EX(−1)) = H 2(OX(−1)) = 0. From
the exact cohomology sequence associated to (3.0), it follows that

j = 0, H 0(P4, EX(2)) = 0 if and only ifH 0(IX(2)) = 0,

j = 1, H 1(EX(1)) = 0 iff X is linearly normal (Zak’s theorem),

j = 2, H 2(EX) = 0 if and only ifH 1(OX) = 0 (Barth’s theorem).

So, we are done. (b) and (c) are straightforward by the same argument used in
(a). Note thatX is arithmetically Cohen-Macaulay if and only ifHi(IX(j)) = 0
for all j ∈ Z and 1≤ i ≤ dim(X). ��
Remark 3.2.

(a) In the proof of Lemma 3.1. (a),(b), smoothness ofX is needed but we do not
have to assume smoothness ofX in Lemma 3.1.(c).

(b) For a smooth threefoldX inP5 which is contained in either a hyperquadric or
an irreducible cubic hypersurface, it is known [DP] thatX is arithmetically
Cohen-Macaulay.

For a smooth threefoldX in P5, if X is either a cubic scroll or a complete
intersection of two quadrics, then there is no trisecant line ofX. However, we
get the following general fact.

Lemma 3.3. LetX be a smooth threefold of degreed in P5. LetΣ3(X) be the
locus of all trisecant lines ofX in the grassmannianG(1,5). Then,

dimΣ3(X) = 5

unlessX is either a cubic scroll or a complete intersection of two quadrics.

Proof. This actually comes from the “classical trisecant lemma " for curves in
P3, i.e. letΣ3(C) be the locus of all trisecant lines of a curveC ⊂ P3 in the
grassmannianG(1,3). Then, dimΣ3(C) ≤ 1 and furthermore, by Castelnuovo’s
genusbound,dimΣ3(C) = 1unless it is eithera twistedcubic curveoracomplete
intersection of two quadrics.

Consider the incidence correspondence
Φ3 = {(",H) : " ⊂ H } ⊂ Σ3(X) × P5∗

with twoprojectionsπ1 andπ2 toΣ3(X)andP5∗
respectively.Note that the fibers

of π1 are all irreducible of dimension 3. So dimΦ3 = dimΣ3(X) + 3. If we can
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show that all generic fibers ofπ2, π2
−1(H) = {(",H) : " ⊂ H } = Σ3(X ∩ H)

are 3-dimensional, then dimΦ3 = 8 and dimΣ3(X) = 5.

Claim. dimΣ3(X ∩ H) = 3

For a smooth surfaceS = X ∩ H in P4, consider similarly

Φ2 = {(�, H) : � ⊂ H } ⊂ Σ3(S) × P4∗
π2−−−→ P4∗

π1

�
Σ3(S) ⊂ G(1,4)

Then, the fibersofπ1 areall irreducible of dimension2.SodimΦ2 = dimΣ3(S)+
2. By the classical “trisecant lemma" for curves inP3, all generic fibers ofπ2,
π2

−1(H) = {(",H) : " ⊂ H } = Σ3(S ∩ H) are exactly 1-dimensional because
it is neither a twisted cubic curve nor a complete intersection of two quadrics, so
dimΦ2 = 5 and dimΣ3(S) = 3 and we are done. ��

On the other hand, a smooth threefoldX ⊂ P5 is said to be without apparent
quadruple points if the quadrisecant lines ofX do not fill upP5 (i.e. dimS4(X) ≤
4), equivalently a general projection ofX to P4 has no quadruple points.

Next, we check how the absence of apparent quadruple points of a smooth
threefold affects its cohomological properties and defining equations.

Theorem 3.4. LetX be a smooth threefold of degreed in P5.

(a) dimS3(X) ≤ 4 if and only ifX is contained in a hyperquadric;
(b) If dimS4(X) ≤ 4 andX is not lying on a cubic hypersurface, then either

dimH 1(X,OX(1)) 
= 0 or dimH 2(X,OX) 
= 0.

Proof. For a proof of (a), ‘if’ part is trivial by Bezout theorem. Now, supposeX

is not contained in a hyperquadricQ and dimS3(X) ≤ 4. Therefore, we have an
exact sequence

0 → EX → OP4(−1) ⊕ OP4
ω1=[T5,1]−−−→ πp∗OX → 0

wherep = (0,0,0,0,0,1) = Z(T0, T1, T2, T3, T4) /∈ X, πp : P5 ��� P4 is
a generic projection andEX is a vector bundle of rank 2 ([L], [K2]). Then, by
Lemma 3.1.(a),EX

∗ is (−3)-regular and consequently,EX
∗(−3) = EX

∗(−2) ⊗
OP4(−1) is globally generated (see Lemma 2.1.(a)) andEX

∗(−2) is an ample
vector bundle overP4 (seeRemark 2.3). Therefore LePotier’s vanishing theorem
impliesHi(P4, EX(2)) = 0 for 0≤ i ≤ 2. So,X is 2-normal and the following
morphism

H 0(OP4(1)) ⊕ H 0(OP4(2))
H0(ω1)−−−→H 0(P4, πp∗OX(2)) � H 0(X,OX(2))

is an isomorphism. By dimension counting, dimH 0(P5, IX/P5(2)) = 1 andX is
contained in a hyperquadricQ whose quadratic equation is
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T 2
5 + a1T5(b0T0 + b1T1 + b2T2 + b3T3 + b4T4) +

∑
0≤i,j≤4

cijTiTj = 0.

However, this contradicts our assumption.
For a proof of (b), supposeX is not contained in a cubic hypersurface and

dimS4(X) ≤ 4. Therefore, we have an exact sequence

0 → EX → OP4(−2) ⊕ OP4(−1) ⊕ OP4
ω2=[T 2

5 ,T5,1]−−−→ πp∗OX → 0

and regEX
∗ ≤ (−3) as in proof of(a). Assume thatEX

∗ is (−4)-regular. Then,
EX

∗(−4) = EX
∗(−3)⊗OP4(−1) is globally generated andEX

∗(−3) is an ample
vector bundle. By Le Potier’s vanishing theorem,Hi(P4, EX(3)) = 0 for all
i = 0,1. Therefore,X is 3-normal and the following morphism

H 0(OP4(1)) ⊕ H 0(OP4(2)) ⊕ H 0(OP4(3))
H0(ω2)−−−→H 0(πp∗OX(3))

is an isomorphism. So, by dimension counting, dimH 0(IX(3)) = 1 andX lies on
an irreducible cubic hypersurface which contradicts our assumption. Therefore,
EX

∗ is not(−4)-regular.
Thus, If dimS4(X) ≤ 4 and dimH 0(IX(3)) = 0 thenX should satisfy

dimH 1(X,OX(1)) 
= 0 or dimH 2(X,OX) 
= 0 by Lemma 3.1.(b). ��
Corollary 3.5. LetX be a smooth threefold of degreed in P5.

(a) Suppose thatX is neither a cubic scroll nor a complete intersection of two
quadrics andS3(X) 
= P5, thenS3(X) is the unique quadric hypersurface
containingX.

(b) If X is not2-normal, thenS4(X) = P5.
(c) SupposeX be arithmetically Cohen-Macaulay, not necessary smooth. Then

we have dimS4(X) ≤ 4 if and only if it is contained in a cubic hypersurface.
(d) For a smooth surface inP4, we can similarly show that ifS3(X) 
= P4 and

H 0(IX(2)) = 0 thenH 1(X,OX) 
= 0.

Proof. For a proof of(a), by Lemma 3.3,X has always a 5-dimensional family
of trisecant lines unlessX is either a cubic scroll or a complete intersection of
two quadrics. By Theorem 3.4.(a), if dimS3(X) ≤ 4 thenX is contained in a
hyperquadricQ and consequently,S3(X) ⊂ Q.

By theway, since any projective variety of dimension 3 or less can not contain
5-dimensional family of lines,(see alsoTheorem2.6), wehaveS3(X) = Qwhich
is theuniquequadric hypersurface containingX. (b),(c) and (d) easily follow
from the proof of Theorem 3.4.(b). For (d), note also that the only irregular
smooth surface of codimension two such thatS3(X) 
= P4 andH 0(IX(2)) = 0
is a quintic elliptic scroll which is cut out by cubic hypersurfaces, see [Au] for a
proof. ��
Remark 3.6.Fyodor L. Zak pointed out that Theorem 3.4.(a) can be shown from
Aure’s work, by taking a generic hyperplane section and using the inextensibility
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of a quintic elliptic scroll. Also, one can prove an analog of Severi’s theorem for
varieties of codimension two with arbitrary singularities. To wit, ifXn ⊂ Pn+2

is such a variety, then there are the following possibilities:

(a) dimS3(X) ≤ n. In this caseX is eitheracomplete intersectionof twoquadrics
or a cone over a twisted cubic curve inP3 or a cubic scroll inP4 (that is, the
image ofP2 under the map defined by the linear system of conics passing
through a given point) or the Segre varietyP1 × P2 ⊂ P5;

(b) dimS3(X) = n + 1. In this case there are two possibilities:
(i) S3(X) is a quadric. Conversely, ifX ⊂ Q, whereQn+1 ⊂ Pn+2 is a

quadric, thenS3(X) ⊂ Q andS3(X) = Q except in the cases listed in
(a);

(ii) S3(X) is a “scroll”, i.e. a union of the members of a one-dimensional
family of Pn in Pn+2. In this caseX contains a family of (degenerate)
hypersurfaces of degree at least three inPn’s;

(c) S3(X) = Pn+2.

To prove the above it suffices to use the well known and easy fact that anm-
dimensional variety containing a(2m − 3)-dimensional family of lines is either
a quadric or a “scroll”, see Theorem 2.6. ��

According to Ch. Peskine, the following proposition is known, but, since we
do not know of any reference, we give its proof based on the techniques used in
the proof of Theorem 3.4.

Proposition 3.7. LetX ⊂ Pn+2 be an arithmetically Cohen-Macaulay (not nec-
essary smooth) projective subvariety of codimension two. Then for allm ≤
n,2 ≤ n, we have the following equivalence:

(a) Sm+1(X) 
= Pn+2

(b) X is not contained in a hypersurface of degeem.

Proof. Let’s assume thatX is not contained in a hypersurface of degreem and
Sm+1(X) 
= Pn+2. Therefore, we have an exact sequence
0 → EX → OPn+1(−m + 1) ⊕ · · · ⊕ OPn+1(−1) ⊕ OPn+1 → πp∗OX → 0

whereEX is a vector bundle of rankm becauseX is arithmetically Cohen-
Macaulay. Note that regEX

∗ is−(m+1)-regular by Lemma3.1.(c) andEX
∗(−m)

is an ample vector bundle. Similarly, we getHi(Pm+1, EX(m)) = 0 for i = 0,1
by LePotier’s vanishing theorem. Furthermore,X ism-normal and the following
morphism

m⊕
i=1

H 0(OPn+1(i)) −→ H 0(πp∗OX(m))

is an isomorphism. However, by this isomorphism we have dimH 0(IX(m)) = 1
andX lies on an irreducible hypersurface of degreem which contradicts our
assumption. ��
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We remark that in the proof of Theorem 3.4, the global generation ofE(−1)
for some vector bundleE is required for showing ampleness ofE and in order to
show the globally generatedness ofE(−1), Castelnuovo-Mumford regularity of
E is used in the proof of Theorem 3.4.

The followinggeneralizedCastelnuovo-Mumford criterion for vector bundles
to be globally generated is useful to weaken the assumption of Theorem 3.4.

Lemma 3.8 (Castelnuovo-Mumford).LetM be a coherent sheaf on
Pn = P(V ∗) with no nonzero skyscraper subsheaves, and let0 ≤ q ≤ n−1and
m be integers. Suppose thatM is (m + 1)-regular, thatHi(M(m − i)) = 0 for
i ≥ n − q, and that the comultiplication maps

(∗∗) H i(M(m − 1− i)) → V ⊗ Hi(M(m − i))

are surjective for1 ≤ i ≤ n − q − 1. Then for any0 ≤ j ≤ q, the module of
j -th syzygies ofH 0∗ (M) is generated in degrees≤ m + j .

Proof. This is a strict application of the proof of proposition given in lecture 14,
[Mu]. See also lemma 8.8 in [EPW]. ��

The following Theorem is a slight generalization of Theorem 3.4.(b) by using
the above Lemma 3.6.

Theorem 3.9. LetX beasmooth threefold inP5. Suppose thatX is not contained
in a cubic hypersurface. If the following two multiplicative maps

H 0(OP5(1)) ⊗ H 1(OX(1)) → H 1(OX(2))

H 0(OP5(1)) ⊗ H 2(OX) → H 2(OX(1))

are injective, thenS4(X) = P5.

Proof. SupposeX is not contained in a cubic hypersurface andS4(X) 
= P5.
Then, we have an exact sequence

0 → EX → OP4(−2) ⊕ OP4(−1) ⊕ OP4
ω2=[T 2

5 ,T5,1]−−−→ πp∗OX → 0

and regEX
∗ is at least(−3)-regular as shown in Theorem 3.4. It is easy to check

that the surjective condition on the comultiplicative maps in(∗∗) is equivalent
to the injective condition on the following multiplicative maps

H 0(OPn(1)) ⊗ Hj(M∗(−m − 1− j)) → Hj(M∗(−m − j))

for q + 1 ≤ j ≤ n − 1. Note also thatX is 2-normal,H 0(IX(3)) = 0 and
M = EX

∗(−4) is 1-regular by Lemma 2.1.(b). Thus,M = EX
∗(−4) satisfies

the assumption in Lemma 3.7 form = 0,andq = 1.
Therefore,M = EX

∗(−4) is generated by global sections. As in the proof of
Theorem 3.4.(b), by Le Potier’s vanishing theorem for an ample vector bundle
EX

∗(−3),Hi(P4, EX(3)) = 0 for all i = 0,1.
Similarly, by dimension counting, dimH 0(IX(3)) = 1 andX lies on an

irreducible cubic hypersurface which contradicts our assumption. ��
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Remark 3.10.

(a) If X is not contained in a quadric hypersurfaceQ then the locus of triple
points under the generic projection ofX intoP4 is a curve byTheorem3.4.(a)
and Lemma 3.3. It is still open that this triple curve is irreducible except the
Palatini scroll of degree 7.

(b) (Peskine-Zak Conjecture). LetX ⊂ P5 be a nondegenerate (not necessary
smooth) threefold and letIX be its sheaf of ideals. Fori ≥ 1,j ≥ 0,i+j = 3,
it is possible to describe all varieties for whichHi(PN, IX(j)) 
= 0. In par-
ticular, fori = 1, j = 2, it is conjectured by Peskine andVan deVen that all
threefolds are quadratically normal except the Palatini scroll of degree 7. So,
wemight guess therearea fewexamplessuch that dimH 0(P5, IX/P5(3)) = 0,
dimS4(X) ≤ 4 and either dimH 1(X,OX(1)) 
= 0 or dimH 2(X,OX) 
= 0.

(c) It is useful to remark that for any integerd ≥ 7 with exceptiond = 8,10,
there exist smooth threefolds inP5 which are not arithmetically Cohen-
Macaulay, see [Mi, Corollary 1.2.].

4. The quadruple-point formula and open questions

Let X be a smooth threefold of degreed in P5 andS be a general hyperplane
section surface. For a generic pointp ∈ P5, we know that there are at most
finitely many quadrisecant lines ofX passing throughp. Thus, denote byq4(X)

the number of all quadrisecant lines ofX throughp. It would be interesting to
compute such a numberq4(X) in terms of basic invariants ofX, i.e.d, χ(OX),
χ(OS) and the sectional genusπ as like the double-point formula for space
curves, see Remark 4.4.

Consider the following exact sequence mentioned in Sect. 3, twisted by
OP4(3);

(4.0) 0 → EX(3) → OP4⊕OP4(1)⊕OP4(2)⊕OP4(3)
ω3−−−→πp∗OX(3) → 0.

Let Yk = {y ∈ Y = πp(X)| π−1
p (y) has length exactlyk}. Let "p,y be a line

joining two pointsp andy. Since the finite subschemeπ−1
p (y) ⊂ "p,y is of length

4 for all y ∈ Y4, it is 3-normal and the following commutative diagram⊕3
i=0OP4(i) ⊗ C(y)

ω3⊗C(y)−−−−→ πp∗OX(3) ⊗ C(y)

�
� �

�
H 0("py,O"py (3))

�−−−→ H 0("py,Oπ−1
p (y)(3))

is an isomorphism. As a result, the natural morphism in the left side of (4.0)
EX(3) → OP4 ⊕ OP4(1) ⊕ OP4(2) ⊕ OP4(3)

is a zero map for ally ∈ Y4. By the way, for ally ∈ Y3
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2⊕
i=0

OP4(i) ⊗ C(y)
ω2⊗C(y)−−−→ πp∗OX(2) ⊗ C(y)

is isomorphic and the morphismEX(3) → OP4 ⊕ OP4(1) ⊕ OP4(2) ⊕ OP4(3)
has rank 1. Therefore,

Y4 = {y ∈ P4| rank(EX(3) → OP4

) = rank
(EX → OP4(−3)

) = 0}
and so,q4(X) = degY4 can be computed using the Giambelli-Thom-Porteous
formula for the degeneracy locus of a morphism between vector bundles, see
[Fu, Sect.6].

Lemma 4.1. For a vector bundleEX in the exact sequence(4.0)

c1(EX) = −d − 6, c2(EX) = 1

2
(d2 + 9d) + 12− π,

c3(EX) = −1

6
(d3 + 9d2 + 32d) + π(d + 2) − 2χ(OS) − 8,

c4(EX) = 1

24
(d4 + 6d3 + 11d2 + 6d) + π2

2
− π

2
(d2 + d + 1)

+χ(OS)(2d − 3) + 6χ(OX).

Proof. If we can computeci(πp∗OX) for i = 1,2,3,4, then by additivity of
Chern polynomials we can also getci(EX). By the Grothendieck-Riemann-Roch
theorem, putting td(TX) to be the Todd class of the tangent bundleTX of X,

(4.1.1) ch(πp∗OX) · td(P4) = πp∗
(
ch(OX) · td(TX)

)
.

By direct computations,

ch(πp∗OX) · td(P4)

= c1 + 1

2
(c21 − 2c2 + 5c1) + 1

12
(2c31 − 6c1c2 + 6c3 + 15c21 − 30c2 + 35c1)

+ 1

24

(
c41−4c21c2+4c1c3+2c22−4c4+10(c31−3c1c2+3c3)

+35(c21 − 2c2)+50c1
)
,

whereci = ci(πp∗OX). On the other hand,

πp∗(ch(OX) · td(TX))

= πp∗
(
1+ c1(X)

2
+ c1(X)2 + c2(X)

12
+ c1(X)c2(X)

24

)

whereci(X) is thei-th Chern class ofX.
Remark the following identities for any smooth projective threefoldX;

(4.1.2) KX · H 2 = 2π − 2− 2d (adjunction formula),
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(4.1.3) 1
24c1(X)c2(X) = χ(OX) (Noether formula).

and in particular, we have also the identities for a smooth threefoldX in P5 as
follows;

(4.1.4) c2(X) = (15− d)H 2 + 6HKX + K2
X (example 4.1.3 [Ha, p433]),

(4.1.5) K2
X · H = 1

2(d
2 + d) − 9(π − 1) + 6χ(OS) (double-point formula).

By using the above identities, we get

πp∗(ch(OX) · td(TX))

= dH + (d + 1− π)H 2 + (d
3

− π − 1

2
+ χ(OS)

)
H 3 + χ(OX)H

4.

Therefore, we have the following equalities by comparing both sides of(4.1.1):

c1
(
πp∗OX

) = d, c2
(
πp∗OX

) = 1

2
(d2 + 3d) + π − 1,

c3
(
πp∗OX

) = 1

6
d(d + 1)(d + 8) + π(d + 4) + 2(χ(OS) − 2),

c4
(
πp∗OX

) = 1

24
(d4 + 18d3 + 71d2 − 42d) + π2

2
− π

2
(d2 + 11d + 23)

+χ(OS)(2d + 15) − 6χ(OX) − 12.

Consequently, by additivity of Chern polynomials, we have
ct (EX) · ct (πp∗OX) = (1− t)(1− 2t)(1− 3t).

Therefore, we can getci(EX) as described above. ��
Theorem 4.2. Let X be a smooth threefold of degreed in P5 with the Euler
characteristicsχ(OX), χ(OS), and the sectional genusπ . Then, the number of
all quadrisecant lines ofX through a general point inP5, q4(X) is given as
follows:

q4(X) = 1

24
(d4 − 6d3 + 11d2 − 54d + 72) + π2

2
− π

2
(d2 − 5d + 7)

+2χ(OS)d + 6χ(OX) − 9χ(OS).

Proof. As we mentioned before,Y4 is defined as the degeneracy locus of the
following morphismϕ : EX → OP4(−3). So, by the Giambelli-Thom-Porteous
formula [Fu, Sect.6]

q4(X) = degY4 = ∆
(4)
1 (c(OP4(−3) − EX))

= det



c1 c2 c3 c4
1 c1 c2 c3
0 1 c1 c2
0 0 1 c1


 = c41 − 3c21c2 + 2c1c3 + c22 − c4,
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whereci = ci(OP4(−3) − EX) is thei-th Chern class ofOP4(−3) − EX.
Let si = si(EX) be thei-th Segre class. In general, the Chern classes and

Segre classes of a vector bundle are formally related as follows:

(4.2.1) (1+ c1t + c2t
2 + c3t

3 + c4t
4) = (1+ s1t + s2t

2 + s3t
3 + · · · )−1.

So,

ct (OP4(−3) − EX)

= ct (OP4(−3))st (EX)

= (1− 3t)(1+ s1t + s2t
2 + s3t

3 + s4t
4)

= 1+ (s1 − 3)t + (s2 − 3s1)t
2 + (s3 − 3s2)t

3 + (s4 − 3s3)t
4.

Thus, we can compute all Segre classes ofEX by using Lemma 4.1 and(4.2.1).
As a result, we get theci(OP4(−3) − EX) as follows:

c1(OP4(−3) − EX) = d + 3,

c2(OP4(−3) − EX) = 1

2
(d2 + 9d) + π + 6,

c3(OP4(−3) − EX) = 1

6
(d3 + 18d2 + 77d) + π(d + 7) + 2(χ(OS) + 8),

c4(OP4(−3) − EX) = 1

24
(d4 + 30d3 + 263d2 + 666d) + π2

2

+π

2
(d2 + 17d + 61) + χ(OS)(2d + 21) − 6χ(OX).

Finally, by pluggingci(OP4(−3) − EX) into (4.3) we obtain the desired
formula onq4(X). ��
Corollary 4.3. Let X be a smooth threefold of degreed in P5 with the Euler
characteristicsχ(OX), χ(OS), and the sectional genusπ . Supposeq4(X) = 0.
Then the sectional genusπ is given as follows:

π = 1

2
(d2 − 5d + 7) −

1

6

√
6d4−72d3 +318d2−468d− 144χ(OS)d +225+648χ(OS)−432χ(OX).

Proof. It is obtained by solving the equationq4(X) = 0 in Theorem 4.2 and
Castelnuovo’s genus bound for curves inP3. ��
Remark 4.4.We are also able to compute by the same method used in the proof
of Theorem 4.2 the well known formulas enumerating secant lines of a smooth
curveC in P3 and trisecant lines of a smooth surfaceS in P4 through a general
point. For examples, let us denote such numbers byq2(C) andq3(S) respectively.
Then,
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q2(C) = degY2 = (d − 1)(d − 2)

2
− g(C)

q3(S) = degY3 = 1

6
(d − 1)(d − 2)(d − 3) − π(d − 3) + 2χ(OS) − 2

whereY2 = {y ∈ P2| rank(EC → OP2(−1)
) = 0}, Y3 = {y ∈ P3| rank(ES →

OP3(−2)
) = 0} are the degeneracy loci induced by the following two monoidal

morphisms respectively:

0 → EC → OP2(−1) ⊕ OP2
ω1−−−→πp∗OC → 0,

0 → ES → OP3(−2) ⊕ OP3(−1) ⊕ OP3
ω2−−−→πp∗OS → 0.

Furthermore,we’d like tomention here that for a smooth threefold of arbitrary
codimension, the quadruple-point formula is given in terms of algebraic cycles,
see [PR], [Kl, p 389].

Examples 4.5.Let’s computeq4(X) for well known threefolds inP5. First note
that ifX is contained in a cubic hypersurface thenq4(X) = 0. Puth0(IX(3)) =
dimH 0(IX(3)).

Table 4.6.

q4(X) d π χ(OX) χ(OS) h0(IX(3))

Castelnuovo 3-fold 0 5 2 1 1 nonzero
Bordiga 3-fold 0 6 3 1 1 nonzero
Palatini scroll 1 7 4 1 1 0
K3 scroll 1 9 8 2 2 0

Open questions 4.7.

(a) Classify all smooth threefolds inP5 with q4(X) = 0, h0(IX(3)) = 0.
(b) Fyodor L. Zak asked what in general can be said about geometric and co-

homological properties of a (smooth) projective varietyXn ⊂ PN such that
Sm+1(X) 
= PN andH 0(IX(m)) = 0 for somem ≤ n

N−n−1.

Remark 4.8 (F. Zak).

(a) It should be pointed out that, in accordancewith 4.7 (b), a true generalization
of Aure’s work would be to classify all nonsingularXn ⊂ PN with n =
2
3(N − 1) andS3(X) 
= PN (the first really interesting case being fourfolds
in P7).

(b) LetG(N,1) be the Grassmann variety of lines inPN , letΣN−3 be its section
by a general linear subspace of codimensionN + 1 in 〈G(N,1)〉, and let
V N−2 be the variety inPN swept out by the lines fromΣ (thus, forN = 4
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one gets a quintic elliptic scroll and forN = 5 a scroll over a K3 surface).
Then, denoting byqN−1(V ) the number of all(N − 1)-secant lines ofV
through a general point inPN , it can be shown thatqN−1(V ) = N (mod 2).
The difference between the even- and odd-dimensional cases reduces to the
fact that a general linear complex has a center iffN is even. ��
Now, let us consider the structure of the quadrisecant locusS4(X) ⊂ P5 if

the quadrisecant lines ofX do not fill up the ambient spaceP5.

Proposition 4.9. SupposeX be a smooth threefold of degreed ≥ 9 without
apparent4-uple points inP5. If X is not contained in a cubic hypersurface, then
S4(X) is a hypersurface inP5.

Proof. LetΣ4(X) be the locus of 4-secant lines in theG(1,5) as before. Remark
that dimΣ4(X) ≤ 5. Since dimS4(X) ≤ 4, we get dimΣ4(X) 
= 5 by Theorem
2.6 and so dimΣ4(X) ≤ 4. Next, if we assume dimΣ4(X) ≤ 3 then for a smooth
sectional curveC = X∩H1∩H2 ⊂ P3, we can easily show dimΣ4(C) = ∅(see
Lemma 3.3) which meansC has no 4-secant lines. On the other hand,X is
2-normal by Corollary 3.5.(b). Hence,

H 0(IX(3)) → H 0(IX∩H1(3))

is surjective and furthermoreH 0(IC(3)) 
= 0 impliesH 0(IX∩H1(3)) 
= 0 for
d ≥ 9 by Roth-type lifting theorem (see theorem 0.1 in [Me]). Therefore, our
assumptionH 0(IX(3)) = 0 impliesH 0(IC(3)) = 0. By the way, from Lemma
2 in [Ma] a smooth curveC with H 0(IC/P3(3)) = 0 has always 4-secant lines,
and we reach a contradiction. Now we assume dimΣ4(X) = 4. By Theorem 2.6
again,S4(X) is just 4-dimensional and we are done. ��
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