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Abstract. For a projective variet) of codimension 2 if?"1+2 defined over the complex number
field C, it is traditionally said thatX has no apparert + 1)-ple points if the(k + 1)-secant

lines of X do not fill up the ambient projective spaEé+2, equivalently, the locus ak + 1)-ple
points of a generic projection of to P"+1 is empty. We show that a smooth threefoldPhas

no apparent triple points if and only if it is contained in a quadric hypersurface. We also obtain
an enumerative formula counting the quadrisecant lines passing through a general point of

PP® and give necessary cohomological conditions for smooth threefolBS8 imithout apparent
quadruple points. This work is intended to generalize the work of F. Severi [fSe] and A. Aure [Au],
where it was shown that a smooth surfacéfhhas no triple points if and only if it is either a
quintic elliptic scroll or contained in a hyperquadric. Furthermore we give open questions along
these lines.

Mathematics Subject Classification (20004MO07, 14N05, 14J30

1. Introduction

Let X be a nondegenerate smooth projective subvariety of defjesal codi-
mension two irP"+2 defined over the complex number fiéld Denote bys; (X)
the closure of a union of ak-secant lines oX in P"+2. Then one can consider
the following descending filtration associateddo

P"*2 = S5(X) 2 S3(X) 2 -+ 2 S;-1(X) 2 Si(X) = -+ = Seu(X),

whereS (X) is the subvariety swept out by the lines containedirit is clear
that the first number for which S, (X) = S, (X) satisfies the inequality < d.
Furthermore, ifX is contained in a hypersurfaéeof degreen, thenS,(X) C F
for all k > m by Bezout theorem.

As it was shown by Z. Ran§,, 2(X) g P*+2, i.e. the(n + 2)-secant lines
of X do not fill up the whole spac@**2 for n > 1, which can be viewed as a
generalization of the classical “trisecant lemma” for curve®incf. [R3] for
details.
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For a smooth surface i, F. Severi showed that 3(X) # P?, then either
X is contained in a quadric hypersurface $(X) is a hypersurface ruled in
planes, each plane intersecting the surface in a curve of degree at least 3 [fSe].
It was conjectured by C. Peskine and proved by A. Aure that the quintic elliptic
scroll (which is cut out by cubic hypersurfaces) is the only surfadg*isuch
thatS3(X) # P*and HO(P4, Zx(2)) = 0 [Au].

On the other hand, in [R1] it was proved by using vector bundle techniques
that for the varietyX” defined by a section of rank two vector bundle oRet?,
the following statements are equivalent ier< n:

(1) Swea(X) #P¥2;
(2) X is contained in a hypersurface of degree

Note that if dim(X) > 4, then, by Serre’s construction, a smooth variety of
codimension two i 2 is always defined by a section of rank two vector bundle
overP"+2 because it is necessarily subcanonical.

One can also show that the above equivalence holds for arbitrary arithmeti-
cally Cohen-Macaulay codimension two subvarieties of dimensgio (cf.
Proposition 3.7).

On the other hand, smooth threefolds of codimension two need not be sub-
canonical, but one always has the following inclusions:

PP # S5(X) € Sa(X) € S3(X) C So(X) = P°.

Thus itis natural to ask whether there exist smooth threefoldsSujth(X) # P°
and H°(Zx (k)) = 0, k = 2, 3, thus extending the work of F. Severi [fSe] and
A. Aure [Au] to the case of smooth threefoldsii. Recently, there are some
related works about threefoldsI#t due to Mezzetti and Portelli [MP1], [MP2].

In the present paper we show that a smooth threefoRP inas no apparent
triple points (i.e S3(X) # P®) if and only if it is contained in a quadric hypersur-
face and give some necessary cohomological conditions for nontrivial smooth
threefolds without apparent quadruple points (cf. Theorem 3.9). We note that
such nontrivial examples (if exist) are also on the boundary of the Peskine-Zak
conjecture (cf. Remark 3.10(b)). Here, threefolds without apparent quadruple
points are called ‘nontrivial’ if they are not contained in a cubic hypersurface.

The method we use to prove the main theorems (Theorem 3.4, Theorem 3.9,
Theorem 4.2) is to check how the absence of apparent quadruple points affects
Castelnuovo’s regularity of the vector bundlgin the exact sequeng8.0) and
to apply the Kodaira-Le Potier vanishing theorem for ample vector bundles.

Furthermore, in Theorem 4.2 of Sect. 4 we obtain an enumerative formula
for the quadrisecant lines passing through a general poifif dfy using the
Giambelli-Thom-Porteous formula for the degeneracy locus of a morphism be-
tween vector bundles.

One more motivation to study the family of quadrisecant lines of a smooth
threefoldX comes from the following. LeX be a smooth threefold of arbitrary
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codimension. If dinf4(X) < 4 then the Castelnuovo-Eisenbud-Goto regularity
conjecture is true for any codimension [K2], [R2], i.e.
regX < degX — codimX + 1.

In fact, Z. Ran showed that for any smooth threefoldPin » > 9 one has
dimS4(X) < 4 and, consequently, the regularity conjecture is true in this case
[R2]. See also [K2] for connections between the Castelnuovo-Eisenbud-Goto
regularity of smooth threefolds and fourfolds and their multisecant loci.

AcknowledgementsThis paper was started when | took part in the special program on symbolic
computation at MSRI in 1998. It is my pleasure to thank Professor B. Sturmfels and his family
for their hospitality. | have greatly benefitted from the suggestions and encouragement of several
professors, especially Changho Keem, Christian Peskine, Henry Pinkham, Sorin Popescu, and
Fyodor Zak.

2. Basic background

In this section we recall the definitions and basic results which will be used in
subsequent sections. We work over an algebraically closed field of characteristic
zero. For a coherent sheafon PV it is said to ben-regular if H (PV, F(m —
i)) = 0 foralli > 0, and the regularity af is defined by the formula

regF = min{m € Z : F is m-regulas.

In particular, for a projective subschemie regX is defined as refy. In
general, re” may be negative; however, it is not hard to show thakreg 2
andX is 2-regular if and only ifX is of minimal degree.

Lemma 2.1.

(a) If £ is am-regular coherent sheaf ové@®", then& ® Opwv (k) is generated
by global sections for alt > m.

(b) LetF be ap-regular vector bundle an@ be ag-regular vector bundle over
PN. ThenF ® G is (p + ¢)-regular, andS*(F), A*(F) are (kp)-regular.

Proof. See [L], p. 428. O

Definition 2.2. Suppose thakX is a smooth projective variety, arftlis a vector
bundle overX. one define€ is ample if the Serre line bundi@p¢+ (1) on a
projective bundlé?(£*) is an ample line bundle.

Remark 2.3.Let £ be a vector bundle of rankover a smooth projective variety
X, andL is an ample line bundle such that L* is globally generated thefh
is an ample vector bundle.

Proposition 2.4 (Le Potier).Assume tha¥ is a smooth variety of dimension
n, and £ is an ample vector bundle ok of ranke. Then,H! (X, £*) = O for
i <n-—e.
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Proof. This is a generalization of Kodaira’s vanishing theorem for ample line
bundles to the case of ample vector bundles, see [Po]. ]

Theorem 2.5 (The (dimension+2)-secant Lemmal.et X C PV be a smooth

n-dimensional subvariety and I&tbe an irreducible subvariety parameterizing

a family {L,} of lines inP". Assume that for a generdl,, the length of a

scheme-theoretic intersectidn, N X is at least(n 4 2). Then we have
dimUyeyLy) <n+ 1

Proof. See [R3].
It is also quite useful to know the following result due to B. Segre:

Theorem 2.6 (B. Segre, [bSe])Let X" c PV be an irreducible variety of
dimensiom. Let ¥, (X) C G(1, N) be a component of maximal dimension of
the variety of lines contained iK. Then,

(@) ifdimXy(X) = 2n — 2, thenX = P".
(b) if dimX.(X) = 2n — 3, thenX is either a quadric or a scroll ifP?'s over
acurve.

On the other hand, for any smooth cuwén IP3, there exists a smooth surface
S containingC, see [Ha, Ch IV exercise 6.9]. However, in ca&ec P"+2, n >
2, this condition is very strong and we have the following equivalent conditions
by Grothendieck’s Lefschetz theorem:

(a) X is a complete intersection.
(b) There exists amoothhypersurfac& c P"*+2 containingX.

3. Remarks on smooth threefolds
of codimension two without apparent triple or 4-ple points

Let’s consider the monoidal construction for a smooth threefoid P> defined
over the complex number field. Let, : X — P* be a generic projection
from a general ponp = (0,0,0,0,0,1) = Z(Ty, T1, To, T3, T4) ¢ X with
homogeneous coordinaté®, : 71 : T» : Tz : T4 : Ts) in P5. we have the
following exact sequence:

(3.0) 0= Ex = Ops(—=3) ® Ops(—2) ® Ope(—1) & Ops —2 11,,O0x — 0

where€x = Ker(wz) is a vector bundle of rank 4 ov@. It follows that every
fiber of 7, : X — P* has length at most 4 by Theorem 2.5, which imptigss
surjective (see [L], [K1] for details).

Lemma 3.1. Let X be a smooth threefold iB° andE£x* be the dual o€y. One
gets the following:
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(@) &x*is (—3)-regular if and only ifX is not contained in a hyperquadric.

(b) Ex*is (—4)-regular if and only ifX is not contained in a cubic hypersurface
and H'(Ix(2)) = H(Ox(1)) = H*(Ox) = 0.

(c) Suppose thaX is arithmetically Cohen-Macaulay. X is not contained in
a hypersurface of degrdethen&x* is —(k + 1)-regular.

Proof. (a) Our argument is similar to that in [Al]. By definitio&y ™ is (—3)-
regular iff H'(P*, £x*(—3 — i)) = 0 fori > 0. By Serre’s duality, this is
equivalent toH/ (P*, £x(2 — j)) = 0 for 0 < j < 3. Forj = 3, this follows
from Kodaira’s vanishing theorem, i. #3(Ex (—1)) = H?(Ox(—1)) = 0. From
the exact cohomology sequence associated to (3.0), it follows that

j =0, H(P* £x(2)) = 0ifand only if H2(Zx(2)) = 0,

j =1, HYEx(1) = 0iff X is linearly normal (Zak’s theorem),
j =2, H*Ex) =0ifand only if H1(Ox) = 0 (Barth’s theorem)

So, we are done. (b) and (c) are straightforward by the same argument used in
(a). Note thatX is arithmetically Cohen-Macaulay if and onlyff' (Zx (j)) = 0
forall j € Zand 1< i < dim(X). O
Remark 3.2.

(@) Inthe proof of Lemma 3.1. (a),(b), smoothnesXad$ needed but we do not
have to assume smoothness¥oin Lemma 3.1.(c).

(b) For asmooth threefold in P> which is contained in either a hyperquadric or
an irreducible cubic hypersurface, it is known [DP] thats arithmetically
Cohen-Macaulay.

For a smooth threefold in P°, if X is either a cubic scroll or a complete
intersection of two quadrics, then there is no trisecant lin& oHowever, we
get the following general fact.

Lemma 3.3. Let X be a smooth threefold of degréden P°. Let X3(X) be the
locus of all trisecant lines oX in the grassmanniaf(1, 5). Then,
dimX3(X) =5

unlessX is either a cubic scroll or a complete intersection of two quadrics.

Proof. This actually comes from the “classical trisecant lemma " for curves in
P3, i.e. let X5(C) be the locus of all trisecant lines of a curgec P2 in the
grassmanniafy (1, 3). Then, dim¥3(C) < 1 and furthermore, by Castelnuovo’s
genus bound, ditB3(C) = 1 unlessitis either atwisted cubic curve oracomplete
intersection of two quadrics.
Consider the incidence correspondence
@3={(,H):¢C H} C Z3(X) x P>

with two projectionsr, andr, to X'3(X) andPs” respectively. Note that the fibers
of 1 are all irreducible of dimension 3. So di#g = dimX3(X) + 3. If we can
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show that all generic fibers af,, 7o (H) = {(¢, H) : £ C H} = X3(X N H)
are 3-dimensional, then didny = 8 and din¥’3(X) = 5.

Claim. dmX3(X N H) =3
For a smooth surfacé = X N H in P4, consider similarly
@, ={(t, H): £ C H} C Z3(S) x P¥* —— p¥*

23(85) c G(1,4)

Then, the fibers at, are all irreducible of dimension 2. So dia = dimX3(S)+

2. By the classical “trisecant lemma" for curvesPi#y all generic fibers ofr,,

m YW (H) ={(¢, H): £ C H} = X3(S N H) are exactly 1-dimensional because

it is neither a twisted cubic curve nor a complete intersection of two quadrics, so
dim®, = 5 and dim¥3(S) = 3 and we are done. O

On the other hand, a smooth threefaldc P° is said to be without apparent
quadruple points if the quadrisecant lines¥ofio not fill upP® (i.e. dimS,(X) <
4), equivalently a general projection &fto P* has no quadruple points.

Next, we check how the absence of apparent quadruple points of a smooth
threefold affects its cohomological properties and defining equations.

Theorem 3.4. Let X be a smooth threefold of degreen P°.

(@) dimS3(X) < 4ifand only if X is contained in a hyperquadric;
(b) If dimS4(X) < 4 and X is not lying on a cubic hypersurface, then either
dimH(X, Ox (1)) # 0or dimH?(X, Oy) # O.

Proof. For a proof of (a), ‘if’ part is trivial by Bezout theorem. Now, suppdse
is not contained in a hyperquadriz and din3(X) < 4. Therefore, we have an
exact sequence

0— gX — OIEM(—:L) D OIpm

Wherep = (O, 0,0,0,0, 1) = Z(To, T1, Ty, T3, T4) ¢ X, Tyt P5 --s P*is

a generic projection anély is a vector bundle of rank 2 ([L], [K2]). Then, by
Lemma 3.1.(a)fx™ is (—3)-regular and consequentlyy*(—3) = Ex*(—2) ®
Opa(—1) is globally generated (see Lemma 2.1.(a)) &gd(—2) is an ample
vector bundle oveP* (see Remark 2.3). Therefore Le Potier’s vanishing theorem
implies H (P*, £x(2)) = 0for0< i < 2. S0,X is 2-normal and the following
morphism

w1=[T5,1]
s o Ox > 0

HO%wy)

H°(Opa(D)) ® H°(Ops(2) —— H°(P*, 7, Ox(2)) =~ H°(X, Ox(2))

is an isomorphism. By dimension counting, di#f(P®, Ixps(2)) = LandX is
contained in a hyperquadri@ whose quadratic equation is
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T52 + a1Ts(boTo + b1 T + baTo + b3T3 + baTy) + Z C,'jTiTj =0.
0<i,j<4
However, this contradicts our assumption.
For a proof of (b), suppos¥ is not contained in a cubic hypersurface and

dimS4(X) < 4. Therefore, we have an exact sequence
wr= 2, 1
0— EX —> OP4(—2) D O]p4(—1) (&) O]}M ZM ]JTP*OX — 0
and regx* < (—3) as in proof of(a). Assume thatx* is (—4)-regular. Then,
Ex'(—4) = Ex*(—3) ® Opa(—1) is globally generated argy* (—3) is an ample
vector bundle. By Le Potier’s vanishing theorer! (P, £x(3)) = 0 for all

i =0, 1. Therefore X is 3-normal and the following morphism
0 ;
HO(Ops(1) @ HO(Ops(2)) & HO(Oz4(3)) 2 HO(, Ox(3))

is an isomorphism. So, by dimension counting, 8ifiZy (3)) = 1 andX lieson
an irreducible cubic hypersurface which contradicts our assumption. Therefore,
Ex™ is not(—4)-regular.

Thus, If dimS4(X) < 4 and dinHH°(Zx(3)) = 0 thenX should satisfy
dimHY(X, Ox(1)) # 0 or dimH?(X, Ox) # 0 by Lemma 3.1.(b). o

Corollary 3.5. Let X be a smooth threefold of degreén P°.

(a) Suppose thaX is neither a cubic scroll nor a complete intersection of two
quadrics andS3(X) # P°, thenSs(X) is the unique quadric hypersurface
containingX.

(b) If X is not2-normal, thenS,(X) = P°.

(c) Suppos& be arithmetically Cohen-Macaulay, not necessary smooth. Then
we have dii4(X) < 4if and only if it is contained in a cubic hypersurface.

(d) For a smooth surface if?*, we can similarly show that i§3(X) # P* and
H°(Zx(2)) = 0thenH(X, Ox) # 0.

Proof. For a proof of(a), by Lemma 3.3X has always a 5-dimensional family
of trisecant lines unlesX¥ is either a cubic scroll or a complete intersection of
two quadrics. By Theorem 3.4.(a), if dfy(X) < 4 thenX is contained in a
hyperquadriaQ and consequenth§s(X) C Q.

By the way, since any projective variety of dimension 3 or less can not contain
5-dimensional family of lines,(see also Theorem 2.6), we I5g¢¥) = Q which
is theuniquequadric hypersurface containidg. (b),(c) and (d) easily follow
from the proof of Theorem 3.4.(b). For (d), note also that the only irregular
smooth surface of codimension two such thatX) # P* and H°(Zx(2)) =0
is a quintic elliptic scroll which is cut out by cubic hypersurfaces, see [Au] for a
proof. O

Remark 3.6.Fyodor L. Zak pointed out that Theorem 3.4.(a) can be shown from
Aure’s work, by taking a generic hyperplane section and using the inextensibility
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of a quintic elliptic scroll. Also, one can prove an analog of Severi’'s theorem for
varieties of codimension two with arbitrary singularities. To witXif c P"*?
is such a variety, then there are the following possibilities:

(a) dimS3(X) < n.Inthis case&X is either acomplete intersection of two quadrics
or a cone over a twisted cubic curveld or a cubic scroll irP* (that is, the
image ofP? under the map defined by the linear system of conics passing
through a given point) or the Segre vari@y x P? c P5;

(b) dimS3(X) = n + 1. In this case there are two possibilities:

(i) S3(X) is a quadric. Conversely, X c Q, whereQ"*! c P**?is a
guadric, thers3(X) C Q andS3(X) = Q except in the cases listed in
(a);

(i) S3(X) is a “scroll”, i.e. a union of the members of a one-dimensional
family of P* in P*+2, In this caseX contains a family of (degenerate)
hypersurfaces of degree at least thre@’iis;

(€) S3(X) = P+2,

To prove the above it suffices to use the well known and easy fact that an
dimensional variety containing@m — 3)-dimensional family of lines is either
a quadric or a “scroll”, see Theorem 2.6. O

According to Ch. Peskine, the following proposition is known, but, since we
do not know of any reference, we give its proof based on the techniques used in
the proof of Theorem 3.4.

Proposition 3.7. LetX c P"+2 be an arithmetically Cohen-Macaulay (not nec-
essary smooth) projective subvariety of codimension two. Then fon all
n, 2 < n, we have the following equivalence:

(@) Spr1(X) # P2
(b) X is not contained in a hypersurface of degee

Proof. Let’'s assume thaX is not contained in a hypersurface of degreand
Sn+1(X) # P"+2, Therefore, we have an exact sequence
0= &x = Opiri(—m+ 1) ® - ® Opntr(—1) & Opni1 — JT[,*OX -0

where £y is a vector bundle of rank: becauseX is arithmetically Cohen-
Macaulay. Note that reg " is — (m +1)-regular by Lemmaa.(c) andEx " (—m)
is an ample vector bundle. Similarly, we gét(P"*+%, Ex(m)) =0fori =0, 1
by Le Potier’s vanishing theorem. FurthermaXeas m-normal and the following
morphism

P HO(Opiai)) — HO(ry, Ox(m))

i=1
is an isomorphism. However, by this isomorphism we haveHfidTy (m)) = 1
and X lies on an irreducible hypersurface of degreevhich contradicts our
assumption. O
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We remark that in the proof of Theorem 3.4, the global generatici(-efl)
for some vector bundl€ is required for showing ampleness&éand in order to
show the globally generatednesstgf-1), Castelnuovo-Mumford regularity of
£ is used in the proof of Theorem 3.4.

The following generalized Castelnuovo-Mumford criterion for vector bundles
to be globally generated is useful to weaken the assumption of Theorem 3.4.

Lemma 3.8 (Castelnuovo-Mumford).Let M be a coherent sheaf on

P" = P(V*) with no nonzero skyscraper subsheaves, and fety < n —1and
m be integers. Suppose thad is (m + 1)-regular, thatH' (M @m — i)) = 0 for
i > n — g, and that the comultiplication maps

(x%) HMm—-1-1i) - VQH Mm —1i))

are surjective forl <i <n—¢g — 1. Thenforany < j < g, the module of
j-th syzygies ofi’(M) is generated in degrees m + ;.

Proof. This is a strict application of the proof of proposition given in lecture 14,
[Mu]. See also lemma 8.8 in [EPW]. ]

The following Theorem is a slight generalization of Theorem 3.4.(b) by using
the above Lemma 3.6.

Theorem 3.9. LetX be a smooth threefold if*. Suppose thak is not contained
in a cubic hypersurface. If the following two multiplicative maps

H°(Ops(1)) ® H'(Ox (1)) - HY(Ox(2))
H°(Ops(1)) ® H*(Ox) — H*(Ox(1))

are injective, ther4(X) = P°.

Proof. SupposeX is not contained in a cubic hypersurface andX) # P°.
Then, we have an exact sequence
—_[72

0 Ex — Op(—2) ® Ope(—1) @ O "5 1 0y = 0
and re@dx* is at least{—3)-regular as shown in Theoren¥31t is easy to check
that the surjective condition on the comultiplicative mapg#n) is equivalent
to the injective condition on the following multiplicative maps

H%(Opr (1)) ® HI (M*(=m — 1= j)) — H/(M*(=m — j))
forg +1 < j < n — 1. Note also thafX is 2-normal,H°(Zx(3)) = 0 and
M = Ex*(—4) is 1l-regular by Lemma 2.1.(b). Thugy = Ex*(—4) satisfies
the assumption in Lemma 3.7 fer = 0, andg = 1.

Therefore M = Ex*(—4) is generated by global sections. As in the proof of
Theorem 3.4.(b), by Le Potier’s vanishing theorem for an ample vector bundle
Ex*(=3), H'(P* Ex(3)) =0foralli =0, 1.

Similarly, by dimension counting, difi°(Zx(3)) = 1 and X lies on an
irreducible cubic hypersurface which contradicts our assumption. O
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Remark 3.10.

(@) If X is not contained in a quadric hypersurfag@ethen the locus of triple
points under the generic projectionXinto P*is a curve by Theorem 3.4.(a)
and Lemma 3.3. It is still open that this triple curve is irreducible except the
Palatini scroll of degree 7.

(b) (Peskine-Zak Conjecturd. Let X C P° be a nondegenerate (not necessary
smooth) threefold and I&k be its sheaf ofideals. For> 1,7 > 0,i+j = 3,
it is possible to describe all varieties for whi¢H (PV, Zx (j)) # 0. In par-
ticular, fori = 1, j = 2, itis conjectured by Peskine and Van de Ven that all

threefolds are quadratically normal except the Palatini scroll of degree 7. So,

we might guess there are a few examples such thatidii°, Zy ps(3)) = 0,
dimS4(X) < 4 and either dinff1(X, Ox (1)) # 0 or dimH?(X, Ox) # 0.

(c) Itis useful to remark that for any integér> 7 with exceptiond = 8, 10,
there exist smooth threefolds PP which are not arithmetically Cohen-
Macaulay, see [Mi, Corollary 1.2.].

4. The quadruple-point formula and open questions

Let X be a smooth threefold of degrdein P°> and S be a general hyperplane
section surface. For a generic pojmte P°, we know that there are at most
finitely many quadrisecant lines @&f passing througlp. Thus, denote by4(X)
the number of all quadrisecant lines ¥fthroughp. It would be interesting to
compute such a numbej(X) in terms of basic invariants o¥f, i.e.d, x (Ox),
x(Os) and the sectional genus as like the double-point formula for space
curves, see Remark 4.4.

Consider the following exact sequence mentioned in Sect. 3, twisted by

Op(3);
(4.0) 0 — Ex(3) = Ope @ Ops(1) ® Opsa(2) ® Ope (3) —= 7, Ox (3) — O.

LetY, ={yeY =m,(X)| n[jl(y) has length exactlg}. Let¢, , be a line
joining two pointsp andy. Since the finite subschemgl(y) C ¢, ,isoflength

4 for all y € Yy, itis 3-normal and the following commutative diagram

. w3®C(y
B, Op () ® C(y) 222 7, 0x(3) ® C(y)

HOUpy. 04,y () —— HOlyy. O,1,(3))

is an isomorphism. As a result, the natural morphism in the left side of (4.0)
Ex(B) = Ops ® Opa(1) @ Ops(2) & Ops(3)

is a zero map for aly € Y,4. By the way, for ally € Y3
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@ Opali) ® Cy) 28
i=0
is isomorphic and the morphisfy (3) — Ops & Opa(1) ® Opa(2) & Opa(3)
has rank 1. Therefore,
Ya = {y € P*| rank(€x(3) — Ops) = rank(Ex — Opa(—3)) = 0}

and soq4(X) = degV, can be computed using the Giambelli-Thom-Porteous
formula for the degeneracy locus of a morphism between vector bundles, see
[Fu, Sect.6].

7. 0x(2) @ C(y)

Lemma 4.1. For a vector bundl&€€y in the exact sequendd.0)
1
c1(€x) =—d =6, c(Ex) =5(d*+9d) + 12—,

1
c3(Ex) = —6(d3 +9d? +32d) + 71(d + 2) — 2 (Oy) —

1 7l 7
ca(Ex) = Zl(d“+6d3+11dz+6d)+— — E(c12+cl+1)

2
+x(Os)(2d — 3) + 65 (Ox).

Proof. If we can compute;(w,, Ox) for i = 1,2, 3, 4, then by additivity of
Chern polynomials we can also get€y). By the Grothendieck-Riemann-Roch
theorem, putting t@7y) to be the Todd class of the tangent bungijeof X,

(4.1.1) ch(rr,, Ox) - td(P*) = m,, (ch(Ox) - td(Tx)).
By direct computations,
ch(r,, Ox) - td(P*)
=c1+ }(cf — 2c5 + 5ey) + i(2(:3 — 6c10p 4 6c3 4 15¢2 — 30c, + 35¢1)

24( 4c1cz+4c163+2c2 4C4+10(c1 3c1c2+3c9

+35(Cl — 2C2)+50C]),
wherec; = ¢;(,,Ox). On the other hand,

7. (h(Ox) - td(Ty))
a() | aXP+e®) | a®eX)
2 + 12 + 24 )

wherec; (X) is thei-th Chern class oX.
Remark the following identities for any smooth projective threefd|d

(4.1.2) Kx - H?> = 2 — 2 — 24 (adjunction formula),

= T[P* (1 +
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(4.1.3) Fc1(X)ca(X) = x(Ox) (Noether formula).

and in particular, we have also the identities for a smooth threeéfdld P° as
follows;

(4.1.4) cp(X) = (15— d)H? + 6HKx + K2 (example 4.1.3 [Ha, p433]),
(4.1.5) K% - H = 3(d?+d) — 9(r — 1) + 6x(Os) (double-point formula).

By using the above identities, we get
7p, (€h(Ox) - td(Tx))
d m-1

=dH+(d+1-mH*+ (§ -+ x(O5))H? + x (Ox)H".

Therefore, we have the following equalities by comparing both sidé4. bfl):
1
C1(7TP*O)() =d, Cz(JT[,*Ox) = é(dz +3d)+m —1,

1
c3(m,, Ox) = éd(d +1)(d+8) + 7w (d+4) + 2(x(Os) — 2),

7'[2 4

1
ca(m,,Ox) = Zl(d"' + 184°% + 71d% — 42d) + >~ 3
+x(Os)(2d + 15 — 6x(Ox) — 12.

Consequently, by additivity of Chern polynomials, we have
¢ (Ex) - (m,,Ox) = (L—=1)(1—2t)(1 - 3).

Therefore, we can get(Ey) as described above. O

(d? +11d + 23

Theorem 4.2. Let X be a smooth threefold of degreein P> with the Euler
characteristicsy (Oy), x (Os), and the sectional genus. Then, the number of
all quadrisecant lines o through a general point iP°, g4(X) is given as
follows:

1 2
q4(X)=Zl(d4—6d3+11d2—54d+72)+%—%(d2—5d+7)

+2x(Os)d + 6x (Ox) — 9x (Os).

Proof. As we mentioned before(, is defined as the degeneracy locus of the
following morphismg : £x — Opa(—3). So, by the Giambelli-Thom-Porteous
formula [Fu, Sect. 6]

qa(X) = degts = AL (c(Ops(=3) — Ex))
C1 Cp C3Cy
lcicce
= det 0 11 Ci C; = c‘l1 — 3c%cz + 2c1c3 + cg — ¢4,
001
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wherec; = ¢;(Opa(—3) — Ex) is thei-th Chern class 00ps(—3) — Ex.
Lets; = 5;(Ex) be thei-th Segre class. In general, the Chern classes and
Segre classes of a vector bundle are formally related as follows:

(4.2.1) (14 it + cot® + cat> + cat®) = (L + 17 + 522 + 535 + -+ )7L
So,
¢ (Opa(=3) — &x)
= ¢;(Opa(=3))s:(Ex)
= (1 — 3) (1 + st + s0t2 + s3t° + s541%)
=14+ (57— 3t + (52 — 3S1)[2 + (s3 — 3S2)l3 + (54 — 3S3)l4.

Thus, we can compute all Segre classe§oby using Lemma 4.1 an@.2.1).
As a result, we get the (Ops(—3) — Ex) as follows:

Cl(O]p4(—3) — Sx) = d + 3,
1
c2(Opa(—3) — Ex) = E(d2 +9d) + 7 + 6,

c3(Ops(—3) — Ex) = é(dS +181° + 77d) + 7(d + 7) + 2(x (Os) + 8),

1 2
ca(Opa(=3) — £x) = 7-(d" + 304° + 2634° + 666) + %

+%(d2 +17d 4 61) + x(Os)(2d + 21) — 6x (Ox).

Finally, by pluggingc; (Ops(—3) — Ex) into (4.3) we obtain the desired
formula ong4(X). O

Corollary 4.3. Let X be a smooth threefold of degrdein P° with the Euler
characteristicsy (Oy), x (Os), and the sectional genus. Suppose(X) = 0.
Then the sectional genusis given as follows:

1
n=§(d2—5d+7)—

%\/6d4—72d3 +31812—4681— 144 Osg)d + 225648 O5) —43% Oy).

Proof. It is obtained by solving the equatiea(X) = 0 in Theorem 4.2 and
Castelnuovo’s genus bound for curve$h O

Remark 4.4 We are also able to compute by the same method used in the proof
of Theorem 4.2 the well known formulas enumerating secant lines of a smooth
curveC in IP? and trisecant lines of a smooth surfat@ P* through a general
point. For examples, let us denote such numbetg y) andgs(S) respectively.
Then,
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(d—-1Dd-2
-

1
q3(S) = degls = é(d —Dd—-2)(d—-3) —n(d—3) +2x(Os) — 2

q2(C) = degr, = g(0)

whereY, = {y € P?| rank€c — Op2(—1)) = 0}, Y3 = {y € P3| rank& —
(’)]ps(—Z)) = 0} are the degeneracy loci induced by the following two monoidal
morphisms respectively:

0— SC — OPZ(—].) D 0[@2 L)JTP*OC —> O,
0— E — Ops(—2) @ Ops(—1) ® Ops —2 7, O5 — 0.

Furthermore, we'd like to mention here that for a smooth threefold of arbitrary
codimension, the quadruple-point formula is given in terms of algebraic cycles,
see [PR], [KI, p 389].

Examples 4.5Let's computeg,(X) for well known threefolds irfP®. First note
that if X is contained in a cubic hypersurface thgiX) = 0. Puth®(Zx(3)) =
dimH°(Zx (3)).

Table 4.6.

q4(X) d 7 x(Ox) x(Os) h%(Zx(3))

Castelnuovo 3-fold 0 52 1 1 nonzero
Bordiga 3-fold 0 63 1 1 nonzero
Palatini scroll 1 74 1 1 0
K3 scroll 1 98 2 2 0

Open questions 4.7.

(a) Classify all smooth threefolds P with g4(X) = 0, h°(Zx(3)) = 0.

(b) Fyodor L. Zak asked what in general can be said about geometric and co-
homological properties of a (smooth) projective varigty c PV such that
Su+1(X) # PV and HO(Zy (m)) = 0 for somen < =~

N—n—-1"
Remark 4.8 (F. Zak).

(a) Itshould be pointed out that, in accordance with 4.7 (b), a true generalization
of Aure’s work would be to classify all nonsingulaf” c PN with n =
%(NY— 1) andSs(X) # PV (the first really interesting case being fourfolds
in P).

(b) LetG (N, 1) be the Grassmann variety of lineshiy, let V2 be its section
by a general linear subspace of codimenséor- 1 in (G(N, 1)), and let
VN=2 pe the variety irP" swept out by the lines front' (thus, forN = 4
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one gets a quintic elliptic scroll and f&f = 5 a scroll over a K3 surface).
Then, denoting byyy_1(V) the number of al(N — 1)-secant lines oV
through a general point i&", it can be shown thaty_1(V) = N (mod 2.

The difference between the even- and odd-dimensional cases reduces to the
fact that a general linear complex has a centeNifs even. O

Now, let us consider the structure of the quadrisecant ISgu%) c P® if
the quadrisecant lines &f do not fill up the ambient spad®.

Proposition 4.9. SupposeX be a smooth threefold of degrde> 9 without
apparent-uple points inP°. If X is not contained in a cubic hypersurface, then
S4(X) is a hypersurface itP®.

Proof. Let X4(X) be the locus of 4-secant lines in tB€1, 5) as before. Remark
that dim¥4(X) < 5. Since din;(X) < 4, we get din¥4(X) # 5 by Theorem
2.6 and so dimvs(X) < 4. Next, if we assume diths(X) < 3 then for a smooth
sectional curv& = X N H,N H, C P2, we can easily show dithy(C) = @(see
Lemma 3.3) which mean€ has no 4-secant lines. On the other hakdis
2-normal by Corollary 3.5.(b). Hence,

H%(Zx(3)) — H°(Zxnm, (3))

is surjective and furthermor&®(Z¢(3)) # 0 implies H%(Zxnpu, (3)) # O for

d > 9 by Roth-type lifting theorem (see theorem 0.1 in [Me]). Therefore, our
assumption%(Zx (3)) = 0 impliesH(Z¢(3)) = 0. By the way, from Lemma

2 in [Ma] a smooth curve® with HO(IC/]ps(B)) = 0 has always 4-secant lines,
and we reach a contradiction. Now we assumeXijiX) = 4. By Theorem 2.6
again,S4(X) is just 4-dimensional and we are done. O
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