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SMOOTH PROJECTIVE VARIETIES
WITH EXTREMAL OR NEXT TO EXTREMAL

CURVILINEAR SECANT SUBSPACES

SIJONG KWAK

Abstract. We intend to give a classification of smooth nondegenerate pro-
jective varieties admitting extremal or next to extremal curvilinear secant sub-
spaces. Gruson, Lazarsfeld and Peskine classified all projective integral curves
with extremal secant lines. On the other hand, if a locally Cohen-Macaulay
variety Xn ⊂ Pn+e of degree d meets with a linear subspace L of dimension β
at finite points, then length (X ∩ L) ≤ d − e + β as a finite scheme. A linear
subspace L for which the above length attains maximal possible value is called
an extremal secant subspace and such L for which length (X ∩ L) = d−e+β−1
is called a next to extremal secant subspace.

In this paper, we show that if a smooth variety X of degree d ≥ 6 has
extremal or next to extremal curvilinear secant subspaces, then it is either Del
Pezzo or a scroll over a curve of genus g ≤ 1. This generalizes the results of

Gruson, Lazarsfeld and Peskine (1983) for curves and the work of M-A. Bertin
(2002) who classified smooth higher dimensional varieties with extremal secant
lines. This is also motivated and closely related to establishing an upper
bound for the Castelnuovo-Mumford regularity and giving a classification of
the varieties on the boundary.

§0. Introduction

Let X be a nondegenerate smooth projective variety of dimension n, degree d and
codimension e in Pn+e defined over an algebraically closed field k of characteristic
zero. Consider a line � in the Grassmannian G(1, n + e) which meets with X at
finitely many points. What is the maximal length of the scheme X ∩ �? It is well
known and can be proved by an elementary argument (cf. [GLP]) that

length (X ∩ �) ≤ d − e + 1.

When e = 1, i.e., X is a hypersurface, the equality is always true by the simple
Bezout theorem. A line � for which the above length attains maximal possible
value is called extremal and such an � for which length (X ∩ �) = d − e is called
a next to extremal secant line to X. More generally, if X ∩ L is a finite scheme
for a nondegenerate, locally Cohen-Macaulay variety X and a linear subspace L of
dimension β, 1 ≤ β ≤ e in Pn+e, then it can be shown (see [K3]) that

length (X ∩ L) := dimk(OPn+e/IX + IL) ≤ d − e + β.
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As in the case of secant lines, we can define extremal (resp. next to extremal) secant
subspace L to X if length (X ∩ L) = d − e + β (resp. d − e + β − 1). We should
remark here that the above upper bound is not true in general in case X is not
locally Cohen-Macaulay. Of special importance are extremal secant and next to
extremal secant lines. An obvious classical observation is that a variety X having
an m-secant line cannot be defined by equations of degree less than m. A stronger
and more modern version of this claim is that X cannot be (m − 1)-regular. More
precisely, Castelnuovo-Mumford regularity can be defined generally for a coherent
sheaf M on Pn+e as follows: M is said to be m-regular if Hi(Pn+e,M(m− i)) = 0
for all i > 0 and regM = min {m ∈ Z : M is m-regular}. For a projective scheme
X with the ideal sheaf IX , reg (X) is defined to be reg (IX). In particular, it gives
information on the existence of maximal possible multisecant lines to a projective
variety X (see Proposition 1.1 (b)). For a nondegenerate projective curve C, it was
proved by Castelnuovo and Gruson-Lazarsfeld-Peskine that reg (C) ≤ d− e+1 and
if reg (C) = d − e + 1, then C is a smooth rational curve having a (d − e + 1)-
secant line with a couple of easy exceptions (cf. [GLP]). Precisely speaking, let
C ⊂ Pn be a nondegenerate reduced irreducible projective curve of degree d ≥ n+2
with an extremal secant line. Then there are two types of surjective morphisms of
OP1 -module, i.e.

(a) OP1(1) ⊕OP1(n − 2) −→ OP1(d) −→ 0,
(b) OP1 ⊕OP1 ⊕OP1(n − 2) −→ OP1(d) −→ 0,

and their tautological projective embedding of projective bundles gives smooth
rational curves of degree d with the unique extremal (d−e+1)-secant line which are
clearly contained in rational scrolls. For further results about bounding regularity of
curves, see [D] and [No]. Note that A. Noma obtained a regularity bound including
the arithmetic genus of curves for the first time. For higher-dimensional cases, it
was recently proved in [Be] that a projective variety of dimension ≥ 2 with an
extremal secant line is one of the following:

(a) a cone over the Veronese surface in P
5;

(b) a cone over a projected Veronese surface in P4;
(c) a cone over a smooth rational scroll Σ.

Of course, these varieties play an important role in the following regularity problems
due to Castelnuovo, Mumford, Eisenbud and Goto ([EG], [GLP]):

(a) reg(X) ≤ d − e + 1;
(b) classify all extremal and next to extremal varieties.

Note that if X has an m-secant line, then reg(X) ≥ m (see Proposition 1.1). M-A.
Bertin showed in her thesis that reg (X) = d − e + 1 for all projective varieties
having a (d−e+1)-secant line, which gives further evidence to the above regularity
conjecture (a).

However, for higher-dimensional projective varieties, it is widely open to get the
sharp regularity bound and the classification of boundary examples even in the case
of smooth varieties ([K1]). With respect to the above problems, it would also be
very interesting to classify projective varieties with extremal or next to extremal
secant lines or secant subspaces which give not only some information about the
geometric structure of those special varieties but also boundary examples of the
Castelnuovo-Mumford regularity conjecture.
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In the present paper, we are intended to classify smooth projective varieties
having next to extremal secant lines and more generally having extremal or next to
extremal curvilinear secant subspaces, thus extending the work of M-A.Bertin [Be].
Roughly speaking, these varieties are either scrolls over a curve of genus g ≤ 1 or
Del Pezzo varieties. These varieties are also special from the adjunction theoretic
point of view. In particular, if we assume that a given projective variety X is
embedded by the complete linear system and has no extremal curvilinear secant
subspaces, then we have the following (Corollary 4.4): a smooth projective variety
Xn ⊂ Pn+e, n ≥ 1, e ≥ 3, has a next to extremal secant line if and only if X is one
of the following:

(a) X is either an elliptic normal curve or an elliptic surface scroll P(E) embed-
ded by the complete linear system |C0 + bf |, deg(b) = −c1(E) + 3, where E
is a normalized rank two vector bundle and C0 is a minimal section.

(b) X is a Del Pezzo variety.
Note that a smooth projective variety admitting an extremal curvilinear secant
subspace is always rational. In addition, as Professor Fyodor Zak suggested, we give
some interesting examples which have next to extremal curvilinear secant subspaces
of dimension ≥ 2 but no next to extremal secant lines (Proposition 4.5 and Example
4.6).

§1. Preliminaries

Throughout this paper we work over an algebraically closed field k of charac-
teristic zero. In this section we recall basic results which will be used in what
follows.

Proposition 1.1. Suppose that a coherent sheaf M on Pn+e is m-regular. Then
M has the following properties:

(a) M(m) is generated by its sections;
(b) the multiplication map H0(OPn+e(l)) ⊗ H0(M(m)) → H0(M(m + l)) is

surjective for l ≥ 0.

Proof. See [Mu]. �

If � is an (m + 1)-secant line of X, then, by Proposition 1.1 (b), X cannot be
m-regular. Therefore, X can always be cut out by equations of degree at most
reg (X). On the other hand, for smooth projective varieties of codimension two,
one has the following result:

Theorem 1.2. Let X be a smooth threefold of degree d in P5 which is not contained
in any quadric hypersurface. Then, reg (X) ≤ d − 3. Furthermore, reg (S) ≤ d − 3
for any regular surface S ⊂ P

4 with H0(IS(2)) = 0 with the exception of the
projected Veronese surface.

Proof. See [K2], Theorem 2.11. �

Theorem 1.3. Let X be a locally Cohen-Macaulay codimension 2 subvariety of
dimension n ≥ 2. If X is contained in a quadric hypersurface, then X is one of the
following:

(a) X is a complete intersection of two hypersurfaces of degrees 2 and m and
reg (X) = m + 1;
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(b) X is arithmetically Cohen-Macaulay of degree 2m − 1 which is defined by
three equations of degrees 2, m and m and reg (X) = m.

Proof. This is elementary, and we also remark that X is not necessary smooth; for
details, see [K2]. �

Definition 1.4. Let Xn be a nondegenerate smooth variety of degree d in Pn+e

and let 1 ≤ β ≤ e − 1.

(a) A linear subspace L of dimension β with length (X ∩ L) = d− e + β (resp.
d−e+β−1) is called an extremal (resp. next to extremal) secant subspace
to X.

(b) If length (X ∩ L) is finite and OX∩L,q 	 k[t]/(tm) for some m > 0, i.e.
dim (Tq(X) ∩ L) ≤ 1 for all q ∈ Supp(X ∩L), then L is called a curvilinear
secant subspace to X.

The following proposition and corollary seem to be well known. However, for
lack of suitable reference, we give elementary proofs here.

Proposition 1.5. Let Xn ⊂ Pn+e be a nondegenerate integral variety and let
L = P

β , 1 ≤ β ≤ e − 1, be a multisecant subspace to X. Then, for a general linear
subspace M such that L ⊂ M = Pm ⊂ Pn+e, β ≤ m ≤ e, X ∩ M is also finite.

Proof. First assume that L is a line. Then, for a general plane M = P
2 such that

L ⊂ M ⊂ Pn+e, X ∩ M is also finite. Indeed, choose a general point p ∈ L and
consider the projection πp : Pn+e ��� Pn+e−1 from the point p. Since p /∈ X, we
have the finite morphism πp

∣
∣
X

: X → Y = πp(X) ⊂ Pn+e−1. It is easy to show that
Y is irreducible and nondegenerate. Note that � = πp(M) is a general line through
the point q0 = πp(L) which meets Y at finitely many points {q0, q1, q2, · · · , qt} with
some multiplicities. It is clear that Supp (X ∩ M) = Supp (πp

∣
∣
X

−1(� ∩ Y )) as sets.
Since πp|X is finite, X ∩ M is also a finite scheme.

For the general case, we use induction on dim (L) and dim (M). That is, choose
a general point p ∈ L \ X and consider the projection πp

∣
∣
X

: X → Y = πp(X) ⊂
Pn+e−1. Note that M ′ = πp(M) is a general linear space containing L′ = πp(L)
and dim (L′) = dim (L)−1, dim (M ′) = dim (M)−1. By the induction hypothesis,
Y ∩ M ′ is a finite scheme. Then, by the above argument, X ∩ M is also a finite
scheme. �

Proposition 1.6. Let Xn ⊂ Pn+e be a nondegenerate smooth variety of degree d.
If L = Pβ , 1 ≤ β ≤ e, is a curvilinear secant subspace of dimension β to X, then
length (X ∩ L) ≤ d − e + β.

Proof. Suppose length (X ∩ L) ≥ d− e+β +1. Since L is curvilinear, for a general
hyperplane H containing L, Y = X∩H is also smooth and L is a curvilinear secant
to Y of same length. Thus, we can pick up (e−β) general points p1, p2, · · · , pe−β ∈
X \ L such that M = Span 〈L, p1, p2, · · · , pe−β〉 	 Pe is also curvilinear to X and
length (X ∩ M) ≥ d + 1. Choose a linear subspace M1 	 Pe−1 of M which does
not meet with X and take a projection πM1 : Xn −→ P

n with center M1. Then
πM1 : Xn −→ Pn is a finite flat morphism (cf. Exercise 18.17, [E]) and consequently
all fibers have the same length of degree d which contradicts length (X ∩ M) ≥
d + 1. �



VARIETIES WITH A NEXT TO EXTREMAL CURVILINEAR SPACE 3557

Corollary 1.7. Let Xn ⊂ Pn+e be a nondegenerate smooth variety of degree d.
Suppose that X has an extremal curvilinear secant subspace L = Pβ for some 1 ≤
β ≤ e − 1. Then X is a rational variety.

Proof. Consider the projection πL : X ��� P
n+e−β−1 with center at L. By the

proof of Proposition 1.6, πL is generically one-to-one and thus X is birationally
equivalent to the closure of its image Y = πL(X) which is an irreducible and
nondegenerate variety of minimal degree e − β, [EH]. Thus Y and hence X is a
rational variety. �

Remark 1.8. The curvilinearity condition in Proposition 1.6 and Corollary 1.7 is
used to show that the involved linear projections are generically one to one. How-
ever, for noncurvilinear cases, the projections cannot be even finite morphisms.

§2. Smooth projective varieties of codimension two with extremal

or next to extremal secant lines

Lemma 2.1. Let Xn ⊂ Pn+e, n ≥ 2, be a smooth n-dimensional subvariety of
degree d. If X has a m-secant line �, then for a generic hyperplane H containing
�, X ∩ H is also smooth and � is also m-secant to X ∩ H.

Proof. First note that X ∩ H is smooth outside X ∩ � by Bertini’s theorem. Let
Supp (X ∩ �) = {p1, p2, · · · , pt}. Pick points qi ∈ Tpi

(X) \ � where Tpi
(X) is the

projective tangent space to X at pi. Then we can choose a generic hyperplane H
containing the line �, but not passing through the points qi, 1 ≤ i ≤ t. By the
Jacobian criterion for nonsingularity, X ∩ H is smooth at pi and, consequently,
X ∩ H is smooth irreducible and � is also m-secant to X ∩ H. �

Note that for a nondegenerate projective variety of degree d and codimension
two, any (d−1)-secant line is extremal. If X is of low degree, viz. d = 3 or 4, then it
is easy to consider whether such lines exist or not. Thus it is reasonable to assume
d ≥ 5. For a smooth space curve C in P3, C has an extremal secant line if and
only if C is contained in a smooth quadric and is of type (1, d− 1) or (d− 1, 1) as a
divisor (cf. e.g. [GLP], §3). There are also many space curves of type (2, d − 2) of
degree d and genus (d − 3) with next to extremal secant lines. On the other hand,
for a higher-dimensional codimension two smooth variety X of degree d ≥ 6, it can
be shown that there are no extremal and next to extremal secant lines to X. The
following proposition is a special case of Bertin’s result [Be], but we give another
proof based on regularity techniques which also yield Theorem 2.3.

Proposition 2.2. Let Xn ⊂ Pn+2 be a smooth subvariety of dimension n ≥ 2 and
degree d ≥ 5. Then X does not have (d − 1)-secant lines.

Proof. By Lemma 2.1, we can choose hyperplanes H1, . . . , Hn−2 so that S = X ∩
H1 ∩ H2 ∩ · · · ∩ Hn−2 is smooth and � is a (d − 1)-secant line of S ⊂ P4. By
Corollary 1.7, S is rational, hence regular.

Suppose first that h0(IS(2)) = 0. Then reg (S) ≤ d− 3 by Theorem 1.2. There-
fore, S has no (d − 1)-secant line by Proposition 1.1 (b).

Suppose now that h0(IS(2)) �= 0. Then, by Theorem 1.3, either S = Q∩Z(F ) is
a complete intersection of degree 2m and reg (S) = m+1 or S = Q∩Z(F1)∩Z(F2)
is a projectively Cohen-Macaulay variety of degree 2m − 1 and reg (S) = m =
deg (F1) = deg (F2). From the inequality d − 1 ≤ reg (S) it follows that the only
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possible value of m is m = 2 and S is either a complete intersection of two quadrics
or an intersection of three quadrics. In both cases d = 3, 4, and so the proof is
complete. �

Thus it is natural to consider the next to extremal case, i.e. the case of smooth
varieties of codimension two having a (d− 2)-secant line. As above, for all varieties
of degree less than 6, we observe that it is easy to consider whether such lines exist
or not. So it remains to consider the case d ≥ 6.

Theorem 2.3. Let Xn ⊂ Pn+2 be a smooth subvariety of dimension n ≥ 2 and
degree d ≥ 6. Then X does not have (d − 2)-secant lines.

Proof. Let � be a (d − 2)-secant line of X. Suppose first that n = dim (X) ≥ 3.
As above, one can cut X by successive general hyperplanes containing � to get a
smooth irreducible surface S = X ∩ H1 ∩ H2 ∩ · · · ∩ Hn−2 ⊂ P4 for which � is a
(d − 2)-secant line. Note that h1(OS) = 0 because h1(OX) = 0 for n ≥ 3 (Barth
Theorem).

By Theorem 1.2, h0(IS(2)) = 0 implies reg (S) ≤ d − 3 unless S is a projected
Veronese surface for which d = 4. Thus in this case S does not have (d− 2)-secant
line.

Suppose now that h0(IS(2)) �= 0. Then, by Theorem 1.3, S = Q ∩ Z(F ) is
either a complete intersection of degree 2m, m = deg F and reg (S) = m + 1, or
S = Q∩Z(F1)∩Z(F2) is a projectively Cohen-Macaulay surface of degree 2m− 1,
deg F1 = deg F2 = m and reg (S) = m. From the inequality d − 2 ≤ reg (S) it
follows that the only possible values of m are m = 2 and m = 3. Therefore, S
is either a complete intersection of two quadrics or a projectively Cohen-Macaulay
surface of degree 3 or 5 (note that if S is a complete intersection of a quadric and
a cubic with d = 6, S does not have 4-secant lines). Since we assume d ≥ 6, this
completes the proof of the theorem for n = dim (X) ≥ 3 (and also for regular
surfaces).

Suppose now that S ⊂ P4 is a smooth irregular surface. Let � be a (d − 2)-
secant line of S, and let π� : S ��� P

2 be the projection with center at �. Since
deg X = d, this rational map is generically 2 to 1. Furthermore, the set Σ = {y ∈
P2 | dim (π�

∣
∣
S
)−1(y) = 1} is finite. Taking a general hyperplane section C of S

containing �, we see that the projection π� : C = S∩H ��� P1 is a double covering.
Therefore C is a hyperelliptic curve. We denote by g ≥ 1 the genus of C. If g = 1,
then S is either a Del Pezzo surface or a quintic elliptic scroll (cf. [Io]). If g ≥ 2,
then by the classification of smooth projective varieties with a hyperelliptic curve
section (cf. see (1.1), (1.2), (1.3) and Theorem 3.1 in [SV]), S is either an elliptic
scroll or a conic bundle over P

1. However, in both cases one has d ≤ 5 (cf. [ES]).
Thus smooth surfaces of degree d ≥ 6 in P4 do not have (d − 2)-secant lines in
P4. �

We would like to remark that codimension two smooth varieties of dimension
≥ 4 should be a complete intersection due to Hartshorne’s conjecture. So it would
be interesting to show that there is no (d − 1 − δ)-secant line to these varieties
for smaller δ ≥ 2 because the degree of defining equations are much smaller than
degree of such a variety.

The following problem is also of interest from the point of view of Castelnuovo
regularity.
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Problem 2.4. Classify all smooth surfaces S ⊂ P4 of degree d with reg S = d − 1.
In particular, does a smooth surface S of degree d ≥ 5 with reg (S) = d − 1 have a
(d − 1)-secant line?

It should be noted that the analog of 2.4 for space curves is well known [GLP].

§3. Smooth projective varieties of codimension e ≥ 3 with extremal

or next to extremal curvilinear secant space

We can consider extremal or next to extremal curvilinear secant subspaces as
well as secant lines for smooth projective varieties of codimension e ≥ 3. First of
all, we proceed with giving classification of varieties of arbitrary codimension e ≥ 3
with next to extremal secant lines thus extending M-A. Bertin’s work [Be]. We
start with the following observation. Let X be a smooth n-dimensional variety of
degree d and codimension e. Suppose X has an extremal (d − e + 1)-secant line
� and that the projection πp : X → πp(X) ⊂ P

n+e−1 from a point p outside of
Sec(X) is an isomorphism. Then πp(�) is at least next to extremal secant to πp(X)
because deg X = deg πp(X), codim(X, Pn+e) = codim(πp(X), Pn+e−1) + 1 and

length (πp(X) ∩ πp(�)) ≥ (d − e + 1).

Theorem 3.1 (M-A. Bertin). Let Xn ⊂ Pn+e, n ≥ 1, e ≥ 2, be a nondegenerate
smooth variety of degree d, and let � be an extremal secant line in Pn+e such that
length (X ∩ �) = d − e + 1. Then, X is one of the following:

(a) X is the Veronese surface in P5 or a projected Veronese surface in P4;
(b) X is a rational scroll.

Proof. Let � be an extremal secant line to X, so that

length (X ∩ �) = d − e + 1.

By Corollary 1.7 and Lemma 2.1, taking successive generic hyperplane sections
containing the line �, we get a smooth rational curve C for which � is an extremal
secant line. Thus the sectional genus of X vanishes, i.e. g(X, H) = 0. Hence
∆(X, H) = 0, where ∆(X, H) = d−h0(X,OX(1))+n is the ∆-genus of X. We get
the conclusion by the well-known classification of smooth varieties with ∆(X, H) =
0 (cf. e.g. [Fu]). �

Theorem 3.1 can be generalized to the case of extremal curvilinear secant sub-
spaces to X as follows.

Proposition 3.2. Let Xn ⊂ Pn+e, n ≥ 1, e ≥ 2, be a nondegenerate smooth variety
of degree d, and let L = P

β , 1 ≤ β ≤ e−1, be an extremal curvilinear secant subspace
to X. Then the conclusion of Theorem 3.1 holds, i.e. X is one of the following:

(a) X is the Veronese surface in P
5 or a projected Veronese surface in P

4;
(b) X is a rational scroll.

Proof. Let L be an extremal β-dimensional curvilinear secant subspace to X such
that length (X ∩ L) = d − e + β. Since X ∩ L is curvilinear, arguing as in the
proof of Lemma 2.1, we can take successive generic hyperplane sections containing
L and meeting transversely the tangent spaces at all the points of X ∩ L at each
step. Consequently, we get a smooth curve which is rational by Corollary 1.7. The
argument is completed as in the proof of Theorem 3.1. �
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Remark 3.3. As Fyodor Zak pointed out, it would be interesting to find out smooth
varieties with extremal noncurvilinear secant subspaces which are neither rational
scrolls nor Veronese surfaces.

For a smooth projective variety Xn ⊂ Pn+e, n ≥ 1, e ≥ 3, with a (d − e)-
secant line � and general points p1, p2, . . . , pβ, β ≤ e − 2, of X, first note that
Lβ+1 = 〈�, p1, p2, . . . , pβ〉 is either an extremal or next to extremal curvilinear
secant subspace containing �. If it is extremal, then by Proposition 3.2, X is either
the Veronese surface or a rational scroll.

Therefore, we proceed with describing the structure of smooth projective vari-
eties of arbitrary codimension e ≥ 3 with a next to extremal secant line � such that
Lβ+1 = 〈�, p1, p2, . . . , pβ〉 is always a next to extremal secant subspace if X ∩Lβ+1

is finite for points p1, p2, . . . , pβ of X and 1 ≤ β ≤ e − 2.

Theorem 3.4. Let Xn ⊂ Pn+e, n ≥ 1, e ≥ 3, be a smooth variety of degree d ≥ 6
with a (d− e)-secant line �. Suppose that Lβ+1 = 〈�, p1, p2, . . . , pβ〉 is always a next
to extremal secant subspace for points p1, p2, . . . , pβ of X and 1 ≤ β ≤ e− 2. Then,
X is either a Del Pezzo variety or an elliptic scroll.

Proof. As mentioned before, note that if Lβ+1 = 〈�, p1, p2, . . . , pβ〉 is an extremal
secant subspace for some points p1, p2, . . . , pβ to X, β ≤ e − 2, then X is either
the Veronese surface or a rational scroll. Now, let � be a given next to extremal
(d − e)-secant line to X. We pick general points p1, p2, . . . , pe−3 in X and consider
the linear span

Le−2 = 〈�, p1, p2, . . . , pe−3〉.
By our assumption,

length (X ∩ Le−2) = d − 3,

i.e. Le−2 = P
e−2 is a next to extremal secant subspace to X.

Consider the projection πLe−2 : X ��� Pn+1 with center at Le−2. This rational
map is clearly generically finite. If πLe−2 has a fiber of length 2 at some point
q ∈ Pn+1, then the linear span 〈Le−2, πLe−2

−1(q)〉 = Pe−1 is an extremal secant
space containing �, contrary to our assumption. Therefore, the fibers of πLe−2 are
either positive dimensional or reduce to one point.

Let Y n be the closure of πLe−2(X) in Pn+1, and let Z = {y∈Y | dim (πLe−2)−1(y)
≥ 1}. By the above, πLe−2 is generically one-to-one, and consequently, deg (Y ) =
d − (d − 3) = 3, codimY Z ≥ 2.

Now, take (n − 1) successive general hyperplane sections of the hypersurface
Y in Pn+1. Note that such hyperplane sections are in one-to-one correspondence
with general hyperplane sections of X containing Le−2. Let C be the hyperplane
section curve of X cut out by the corresponding hyperplanes in P

n+e, and consider
the restriction πLe−2

∣
∣
C

. Since codimY Z ≥ 2, a general plane section of Y is a
nonsingular plane cubic (cf. [Ha], Theorem 14.9). Consequently, πLe−2

∣
∣
C

is actually
an isomorphism between the curve C and an elliptic curve, so that the sectional
genus g(X) of X is equal to 1. From the sectional genus formula 2g(X) − 2 =
[KX +(n−1)H]Hn−1, we get [KX +(n−1)H]Hn−1 = 0. Thus, either KX +(n−1)H
is trivial, i.e. KX = −(n − 1)H (in which case X is a Del Pezzo variety) or
h0(X, KX +(n−1)H) = 0 (in which case, by adjunction theorem [Io, Theorem 1.4],
X is an elliptic scroll). �
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Corollary 3.5. Let Xn ⊂ Pn+e, n ≥ 1, e ≥ 3, be a smooth variety of degree d ≥ 6.
Suppose X has a next to extremal curvilinear subspace Lβ, 1 ≤ β ≤ e − 2, i.e.
length(X ∩ Lβ) = d − e + β − 1. We have the following:

(a) If X has an extremal subspace containing Lβ, then X is either a rational
scroll or the Veronese;

(b) if X has no extremal subspace containing Lβ, then X is either a Del Pezzo
variety or an elliptic scroll.

Proof. Proceeding as in the proof of Theorem 3.4, we pick general points p1, p2, . . . ,
pe−β−2 in X. Then Le−2 = 〈Lβ, p1, p2, . . . , pe−β−2〉 = Pe−2 is curvilinear and

length( X ∩ 〈Lβ, p1, p2, . . . , pe−β−2〉) = d − 2 or d − 3.

By considering the projection πLe−2 , we can also use the above argument in Theo-
rem 3.4 to get the sectional genus g(X) = 0 in the case of (a) (resp. g(X) = 1 in
the case of (b)). Thus we are done. �

Remark 3.6. (a) As in Remark 3.3, it would also be interesting to classify smooth
varieties with a next to extremal noncurvilinear secant space which are neither Del
Pezzo nor elliptic scrolls.

(b) In comparison with Corollary 3.5, we can consider a next to extremal curvi-
linear space Lβ of dimension β = e − 1 to a smooth projective variety X whose
subspaces are not next to extremal at all. In this case, we cannot get the same
upper bound of the sectional genus. Instead, it can be easily shown that X has
a hyperelliptic curve section. For the classification of projective varieties with hy-
perelliptic curve sections, see (2.1), [SV]. For example, let X = P(E) → C be a
projective bundle over a curve C of genus 2 where E is a normalized indecomposable
rank 2 vector bundle with deg(∧2E) = 2. Consider an embedding of X in P5 by the
very ample complete linear system |C0 + 3f | where C0 is a minimal section. Then,
deg(X) = (C0 + 3f).(C0 + 3f) = 8 and a generic element D in |C0 + 3f − π∗(KC)|
is a smooth space curve of degree 6 and genus 2 by the simple computation. By
Cayley’s formula, D has a unique 4-secant line � which also meets with X only at 4
points (up to length) by Theorem 3.4. Now, take a projection π� : X ��� Y ⊂ P3

where Y is the closure of the image under π�. Then we can check that Y is a quadric
hypersurface and π� is generically 2:1 (cf. [ABB]). Consequently, for a generic point
q ∈ Y , the linear span 〈�, π�

−1(q)〉 = P2 is a 6-secant plane to X which is a next to
extremal curvilinear subspace.

§4. Existence of extremal or next to extremal secant subspaces

and examples

In the previous section, we obtained necessary conditions for smooth projective
varieties to have extremal or next to extremal curvilinear subspaces. Note that the
Veronese surface in P5 or the projected Veronese in P4 have obviously extremal
secant lines. Now, we investigate whether extremal or next to extremal secant lines
or subspaces exist or not when X is either a scroll over a curve of genus g ≤ 1 or a
Del Pezzo variety. First of all, we consider projective varieties which are embedded
by the complete linear system.

Example 4.1 (Del Pezzo varieties). Let Xn be a linearly normal Del Pezzo variety
of degree d in Pn+e. Then X has no extremal curvilinear secant subspace but a
next to extremal subspace Lβ for all 1 ≤ β ≤ e − 1. Indeed, we have ∆(X, H) =
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deg (X)+ n− h0(OX(1)) = 1. So d = e + 2, i.e. X is of next to minimal degree. In
addition, it can be easily checked that reg(X) = 3 and X is cut out by quadrics.
Therefore, X has no trisecant lines. More generally, let {p1, p2, . . . , pβ}, β ≤ e, be
a general collection of β points of X, and put Lβ−1 = 〈p1, p2, . . . , pβ〉 = Pβ−1. By
Corollary 3.5, X does not have extremal curvilinear secant subspaces. Therefore,
we have d − e + (β − 1) − 1 = β and

X ∩ 〈p1, p2, . . . , pβ〉 = {p1, p2, . . . , pβ}.
Here Lβ−1 is a next to extremal curvilinear secant subspace to X.

Next, we consider an n-dimensional scroll X of degree d over a curve, not nec-
essarily linearly normal, embedded in a projective space Pn+e. First note that
codim(X) = e ≥ n − 1 since otherwise, by the Barth-Lefschetz theorem, the rank
of the Picard group of X would be equal to one, which is not the case for scrolls.
Furthermore, e = n − 1 if and only if X is the Segre embedding of P1 × Pn−1 in
P2n−1 [Oh].

According to [Be, Theorem 4], reg (X) ≤ d − e + 1 for all scrolls over a curve
(this is the conjectured bound for arbitrary varieties). However, in order to classify
scrolls with next to extremal secant lines, it is useful to compute precisely the
Castelnuovo-Mumford regularity of rational and elliptic scrolls. Let ∆(X, H) =
deg X +n−h0(OX(1)) be the ∆-genus of (X, H) where H is the hyperplane section
divisor. In the following lemma we put together some known facts that will be used
in this section.

Lemma 4.2. Let Xn ⊂ Pn+e, n ≥ 1, be an n-dimensional elliptic scroll and let H
be its hyperplane section divisor. Then:

(a) ∆(X, H) = n.
(b) If X is embedded by a complete linear system, then X is projectively normal.

Proof. For an elliptic normal curve, it is clearly projectively normal and by Rie-
mann-Roch, ∆(X, H) = 1. For n ≥ 2, let (X, H) = (P(E),OP(E)(1)) be a scroll
over an elliptic curve C. By the Riemann-Roch theorem for vector bundles, χ(E) =
c1(E) + rank (E)(1 − g) = c1(E). Furthermore, h1(C, E) = h0(C, E∗) = 0 because a
nonzero section s of E∗ defines a surjective morphism

0 → K → E → OC(−D) → 0,

where K is the kernel of s∗ and D is the zero locus of s. Since E is ample, from
the above exact sequence it follows that OC(−D) is also ample, which is clearly
impossible. Thus χ(E) = h0(C, E) = c1(E). Note also that deg X = c1(E) for a
scroll over a curve. Thus, deg(X) = h0(C, E) = h0(OP(E)(1)) = h0(OX(1)) and
∆(X, H) = deg X +n−h0(OX(1)) = n. The proof of (b) can be found in [AB] and
[Bu]. �

In general, for nonlinearly normal scrolls, it is important to find m1 such that
h1(IX(j)) = 0 for all j ≥ m1 in order to compute Castelnuovo-Mumford regularity,
i.e. the hypersurface sections of degree k is complete. In the case of linearly normal
elliptic scrolls, we can compute reg(X) by the standard cohomological computation.

Proposition 4.3. Let Xn, n ≥ 1, be an elliptic scroll of degree d in Pn+e which is
embedded by a complete linear system. Then, we have

(a) reg (X) = 3.
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(b) If X has a next to extremal secant line, then it is either an elliptic normal
curve or an elliptic surface scroll P(E) embedded by the complete linear
system |C0 + bf |, deg(b) = −c1(E) + 3, where E is a normalized rank two
vector bundle and C0 is a minimal section.

Proof. Note that a linearly normal elliptic scroll is projectively normal by Lemma
4.2. So, it is enough to show that

Hi(X,OX(2 − i)) = 0, i ≥ 1.

Clearly, a linearly normal elliptic curve is not 2-regular but 3-regular. Suppose
n ≥ 2; one has hi(OX(2− i)) = hi(OP(E)(2− i)) = hi(C, Sym2−i(E)) = 0 for i ≥ 2.
For i = 1, h1(OX(1)) = h1(OP(E)(1)) = h1(C, E) = 0 by the argument in the proof
of the preceding lemma. Thus reg (X) = 3 and in particular, the linearly normal
elliptic scrolls do not have 4-secant lines. On the other hand, d − e = n + 1 and
if it has a (d − e)-secant line, then n = 1, 2. When n = 1, d − e = 2 and an
elliptic normal curve is cut out by quadrics and clearly has a 2-secant line. For
an elliptic surface scroll P(E) where E is a normalized rank two vector bundle and
C0 is a minimal section, it is known that |C0 + bf | is very ample if and only if
deg(b) ≥ −c1(E)+ 3. In addition, if deg(b) > −c1(E)+ 3, then the embedded scroll
X is cut out by quadrics, [Bu], [GP]. So there is no 3-secant line to X. However,
the elliptic surface scroll embedded by |C0 + bf |, deg(b) = −c1(E)+ 3 has the plane
cubic curve corresponding to C0 because C0.(C0 + (−c1(E) + 3)f) = 3, g(C0) = 1.
So, trisecant lines exist only for this elliptic scroll. �
Corollary 4.4. Let Xn be a linearly normal smooth variety in P

n+e, n ≥ 1, e ≥ 3.
Suppose X has no extremal curvilinear secant subspace. X has a next to extremal
secant line if and only if it is one of the following:

(a) X is an elliptic normal curve;
(b) X is an elliptic surface scroll P(E) embedded by |C0+bf |, deg(b) = −c1(E)+

3, where E is a normalized rank two vector bundle and C0 is a minimal
section;

(c) X is a Del Pezzo variety.

Proof. This follows from Example 4.1 and Proposition 4.3. �
On the other hand, as Fyodor Zak suggested, it would also be very interesting

to investigate whether or not an elliptic scroll Xn, n ≥ 2, has next to extremal
curvilinear spaces of dimension ≥ 2 instead of next to extremal secant lines. We
characterize the linearly normal smooth projective varieties of dimension ≤ 3 in
terms of the existence of next to extremal curvilinear spaces when e ≥ 3.

Proposition 4.5. Let Xn ⊂ Pn+e, e ≥ 3, be a linearly normal elliptic scroll of
dimension n = 2, 3 of degree d. Then X has a next to extremal curvilinear secant
subspace Lβ for some 1 ≤ β ≤ e − 1.

Proof. For an elliptic surface scroll X, we suppose that X does not have a trisecant
line. So, e = codim(X) ≥ 3, d = 3 + e. Choose a bisecant line � to X and
general points p1, p2, . . . , pe−3 in X. Then L = 〈�, p1, p2, . . . , pe−3〉 	 Pe−2 and
length(〈�, p1, p2, . . . , pe−3〉 ∩ X) = e − 1 or e. If the length is d − e + [(e − 2) −
1] = d − 3 = e, then L is next to extremal and we are done. Suppose that
length 〈�, p1, p2, . . . , pe−3〉 ∩ X = e−1 and consider the linear projection πL : X ���
X ′ ⊂ P3 with center at L. This rational morphism is generically m : 1, and from
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the equality (e−1)+m deg X ′ = d = e+3, it follows that either m = 2, deg X ′ = 2
or m = 1, deg X ′ = 4. If m = 2, then the morphism πL has a fiber of length 2
at some point q ∈ X ′. Therefore, the linear span 〈L, π−1

L (q)〉 = P
e−1 is next to

extremal. On the other hand, if m = 1, deg X ′ = 4, then X ′ has the sectional
genus 3 which is false by Riemann-Hurwitz theorem.

For a linearly normal elliptic threefold scroll X ⊂ Pd−1 of degree d = e +
4, if X has a trisecant line � , then length(〈�, p1, p2, . . . , pe−3〉 ∩ X) = e or e +
1. By the same argument as above, we are done. Suppose X has no trisecant
line. Then choose a bisecant line � to X and general points p1, p2, . . . , pe−3 in
X. So, length 〈�, p1, p2, . . . , pe−3〉 ∩ X = e − 1, e or e + 1. We have only to check
the case of length(〈�, p1, p2, . . . , pe−3〉 ∩ X) = e − 1. For the linear span L =
〈�, p1, p2, . . . , pe−3〉 	 Pe−2, consider the linear projection πL : X ��� X ′ ⊂ P3 with
center at L. From the equality (e − 1) + m deg X ′ = d = e + 4, it follows that
either m = 1, deg X ′ = 5 or m = 5, deg X ′ = 1. Both cases are contrary to the
assumption by the same argument. �

We can construct an elliptic scroll admitting a next to extremal secant subspace
which has no extremal secant line.

Example 4.6. Let C be an elliptic curve. Consider the following decomposable
normalized vector bundle E0 = E1 ⊕L of rank r where L is a line bundle of degree
≤ 0. By tensoring some power of a positive degree line bundle over C, we can assume
that E0 is very ample, i.e., OPC(E0)(1) is very ample. Note that h0(OPC(E0)(1)) =
h0(C, E0) = h0(C, E1) + h0(C,L). Let m1 = h0(C, E1), m2 = h0(C,L) and π0 : X 	
PC(E0) → C be an embedded scroll of degree m1 + m2 in Pm1+m2−1 by the linear
system |OPC(E0)(1)|. On the other hand, let π1 : Y 	 PC(E1) → C be an embedded
scroll of degree m1 in Pm1−1 by |OPC(E1)(1)| and ψ|L|(C) be an elliptic normal curve
of degree m2 in Pm2−1 embedded by the complete linear system ψ|L|. Note that
P

m1−1 and P
m2−1 are complementary linear subspaces in P

m1+m2−1. Thus X is a
scroll over an elliptic curve C whose fiber is π0

−1(p) = 〈π1
−1(p), ψ|L|(p)〉 = Pr−1

for all p ∈ C, where r = rank E0. For a general L = P
β in P

m1−1, β = m1 − r =
codim(Y, Pm1−1), we have Pm1−r ∩ X = Pm1−r ∩ Y = deg(Y ) = m1. Note that
deg(X)−codim(X)+(m1−r)−1 = (m1+m2)−(m1+m2−1−r)+(m1−r)−1 = m1.
Therefore Pm1−r is a next to extremal curvilinear subspace to X. Note also that
β = m1 − r and e = codim(X) = β + (m2 − 1)

However, by Corollary 4.4, X has no next to extremal secant line if dim(X) ≥ 3
or m2 − 1 ≥ 3 for elliptic surfaces.

Remark 4.7. Let Xn ⊂ P
n+e be an n-dimensional scroll of degree d, not necessarily

linearly normal, which is obtained by successive linear projections of a linearly
normal scroll. Consider the ascending chain of higher secant varieties Si−1(X)
which is the Zariski closure of the union of linear subspaces 〈p1, p2, . . . , pi〉 	 Pi−1

for i-points of X, i.e., for some m ≥ 2,

X ⊂ S1(X) ⊂ S2(X) · · · ⊂ Si(X) ⊂ Si+1(X) · · · ⊂ Sm(X) = P
n+e.

The image πp(X) under the projection from a point p ∈ S2(X) \ S1(X) has a
trisecant line and successive isomorphic projections starting from p ∈ Si(X) \
Si−1(X) give some i-secant lines to the projection image. Note that Si−1(X) �=
Si(X) if Si−1(X) �= Pn+e (see Proposition 1.3, Ch.V in [Z]). Thus a study of the
position of the center of projections with respect to the higher secant varieties Si(X)
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should allow us to find out whether X has next to extremal secant subspaces and to
describe them geometrically if they exist. In addition, it would also be very helpful
to compute Castelnuovo-Mumford regularity and linear syzygies (Np property) for
nonlinearly normal scrolls over a curve of small geometric genus if we would like to
get an upper bound of degree of defining equations and consequently to find nearly
extremal secant lines (cf. [KP]).
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